GnuTLS

Transport Layer Security Library for the GNU system
for version 3.3.23, 23 March 2015

Nikos Mavrogiannopoulos
Simon Josefsson (bugs@gnutls.org)

mailto:bugs@gnutls.org

This manual is last updated 23 March 2015 for version 3.3.23 of GnuTLS.

Copyright (©) 2001-2013 Free Software Foundation, Inc.\\ Copyright © 2001-2013 Nikos
Mavrogiannopoulos

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Preface........... 1
2 Introduction to GnuTLS....................... 2
2.1 Downloading and installing..............., 2
2.2 OVEIVIEW ..ttt 3

3 Introduction to TLS and DTLS 4
3.1 TLS Iayers . o .ov e 4
3.2 The transport layer 4
3.3 The TLS record protocol...... ..., 5
3.3.1 Encryption algorithms used in the record layer............. 5)

3.3.2 Compression algorithms used in the record layer........... 7

3.3.3 Weaknesses and countermeasures 7

3.34 Onrecord padding ..o, 7

3.4 The TLS alert protocol.......... oo, 8
3.5 The TLS handshake protocol........... o .. 9
3.5.1 TLS ciphersuites 9

3.5.2 Authentication............. ... 10

3.5.3 Client authentication................coiiiiiiiiiii... 10

3.5.4 Resuming Sessions..........ccouuiiiiiiiiiiiiiiieennnnnn. 10

3.6 TLS eXtensionsttt 10
3.6.1 Maximum fragment length negotiation.................... 10

3.6.2 Server name indicationoiiiiiiiaa.... 11

3.6.3 Session tickets........ ... 11

3.6.4 HeartBeat.........oooii 11

3.6.5 Safe renegotiation.......... o i 12

3.6.6 OCSP status requestoovireniiniiiii e 13

3.6.7 SR P .. 14

3.6.8 Application Layer Protocol Negotiation (ALPN).......... 15

3.7 How to use TLS in application protocols....................... 15
3.7.1 Separate portsoiiiii 15

3.7.2 Upward negotiation, 16

3.8 On SSL 2 and older protocolsc.ooiiiiiiiiiiia... 17

4 Authentication methods...................... 18
4.1 Certificate authenticationccooiiiiiieian. 18
4.1.1 X.509 certificates ... 19
4.1.1.1 X.509 certificate structure.............. 20

4.1.1.2 Importing an X.509 certificate 23

4.1.1.3 X.509 distinguished names........................... 23

4.1.1.4 Accessing public and private keys.................... 25

4.1.1.5 Verifying X.509 certificate paths...................... 25

4.1.1.6 Verifying a certificate in the context of TLS session .. 30

4.1.2 OpenPGP certificates ..., 31
4.1.2.1 OpenPGP certificate structure........................ 33
4.1.2.2 Verifying an OpenPGP certificate 34
4.1.2.3 Verifying a certificate in the context of a TLS session

... 34

4.1.3 Advanced certificate verification 35

4.1.3.1 Verifying a certificate using trust on first use
authentication........... ... o i 35
4.1.3.2 Verifying a certificate using DANE (DNSSEC)....... 35

4.1.4 Digital signatureso 36

4.1.4.1 Trading security for interoperability 37
4.2 More on certificate authentication..............., 37

4.2.1 PKCS #10 certificate requests 37

4.2.2 PKIX certificate revocation lists.......................... 40

4.2.3 OCSP certificate status checking.................. 43

4.2.4 Managing encrypted keys......... il 48

4.2.5 Invoking certtool....... 53

4.2.6 Invoking ocsptool i 63

4.2.7 Invoking danetool........ i 67

4.3 Shared-key and anonymous authentication..................... 71

4.3.1 SRP authentication 71
4.3.1.1 Authentication using SRP, 71
4.3.1.2 Invoking srptool......... i i 72

4.3.2 PSK authentication i 74
4.3.2.1 Authentication using PSK, 74
4.3.2.2 Invoking psktool......... il 75

4.3.3 Anonymous authentication 76

4.4 Selecting an appropriate authentication method 7

4.4.1 Two peers with an out-of-band channel 77

4.4.2 Two peers without an out-of-band channel................ 77

4.4.3 Two peers and a trusted third party................... ... 7

Hardware security modules and abstract key
By PES oo 79
5.1 Abstract key types.o 79

5.1.1 Publickeyso 79

5.1.2 Private keys. ... 81

5.1.3 Operations....... ..o 83

5.2 Smart cards and HSMs....... ... i 85

5.2.1 Initializationcoooiiiiiiii i 86

5.2.2 Accessing objects that require a PIN 87

5.2.3 Reading objects...... ..o 88

5.2.4 Writing objects. ... 91

5.2.5 Using a PKCS #11 token with TLS....................... 92

5.2.6 Invoking plltool......... .. oo 93

5.3 Trusted Platform Module (TPM).................oooiiiiiat 96

5.3.1 Keysin TPM ..o 96

ii

5.3.2 Key generation............ooiiiiiiiiiii 97
5.3.3 Using keys ..o 98
5.3.4 Invoking tpmtool........ 99

6 How to use GnuTLS in applications......... 102
6.1 Introduction........... ..o 102
6.1.1 General idea ... 102
6.1.2 Error handling.........o i i 103
6.1.3 Common tyPeSouettet it 103
6.1.4 Debugging and auditing............... L 104
6.1.5 Thread safetyo 104
6.1.6 Callback functionso i, 105
6.2 Preparation.............ooiiiiiiiii 105
6.2.1 Headers. ... 105
6.2.2 Initialization.......... ... 106
6.2.3 Version check ... 106
6.2.4 Building the source i 106
6.3 Session initialization 107
6.4 Associating the credentials............... L. 108
6.4.1 Certificates ... 108
6.4.2 SRP .. 113
6.4.3 PSK ..o 115
6.4.4 ANONYMOUS . ..ottt ittt 116
6.5 Setting up the transport layer........... 116
6.5.1 Asynchronous operation.................ccoiiiiiaiii... 119
6.5.2 DTLS SESSIONS . .. v vttt e 120
6.6 TLS handshake......... i i 121
6.7 Data transfer and termination................... 122
6.8 Buffered data transfer.......... L. 125
6.9 Handling alertso 125
6.10 Priority strings ... e 127
6.11 Selecting cryptographic key sizes.................cooiii.. 132
6.12 Advanced tOPICS ... vvtt it e 134
6.12.1 Session resumption.............c.eeiiiiiiiiiie i, 134
6.12.2 Certificate verification............. oL 136
6.12.2.1 Trustonfirst use...........ccooiiiiiiiiiiL, 136
6.12.2.2 DANE verification 138
6.12.3 Parameter generation i 139
6.12.4 Keying material exporters................ 140
6.12.5 Channel bindingso i 140
6.12.6 Interoperability i i 141

6.12.7 Compatibility with the OpenSSL library................ 141

iii

7 GnuTLS application examples 143
7.1 Client examples.oou i e 143
7.1.1 Simple client example with X.509 certificate support 143
7.1.2 Simple client example with SSH-style certificate verification
... 147
7.1.3 Simple client example with anonymous authentication ... 150
7.1.4 Simple datagram TLS client example 152
7.1.5 Obtaining session information........................... 155
7.1.6 Using a callback to select the certificate to use........... 158
7.1.7 Verifying a certificate i 164
7.1.8 Using a smart card with TLS............................ 167
7.1.9 Client with resume capability example................... 171
7.1.10 Simple client example with SRP authentication......... 174
7.1.11 Simple client example using the C++ APL.............. 177
7.1.12 Helper functions for TCP connections 179
7.1.13 Helper functions for UDP connections.................. 181
7.2 Server eXamples. 182
7.2.1 Echo server with X.509 authentication................... 182
7.2.2 Echo server with OpenPGP authentication............... 186
7.2.3 Echo server with SRP authentication 190
7.2.4 Echo server with anonymous authentication 194
7.2.5 DTLS echo server with X.509 authentication............. 197
7.3 OCSP example 207
7.4 Miscellaneous examples ... 214
7.4.1 Checking for an alert............. ... i, 214
7.4.2 X.509 certificate parsing example 215
7.4.3 Listing the ciphersuites in a priority string............... 217
7.4.4 PKCS #12 structure generation example 219
7.5 XSSL examples ...ttt e 222
7.5.1 Example client with X.509 certificate authentication..... 222
7.5.2 Example client with X.509 certificate authentication and
TOFU o 224

Using GnuTLS as a cryptographic library

... 227

8.1 Symmetric algorithms.......... 227
8.2 Public key algorithms............c. .o i 227
8.3 Hash and HMAC functions............ ... 227
8.4 Random number generation............... ... il 228
Other included programs.................... 229
9.1 Invoking gnutls-cli 229
9.2 Invoking gnutls-serv........ ... 234

9.3 Invoking gnutls-cli-debug........... il 238

iv

10 Internal Architecture of GnuTLS.......... 242

10.1 The TLS Protocolo 242
10.2 TLS Handshake Protocol 242
10.3 TLS Authentication Methods 243
10.4 TLS Extension Handling............... ..o o it 244
10.5 Cryptographic Backend oL 250

Appendix A Upgrading from previous versions

... 253
Appendix B Support.......................... 255
B.1 Getting Help . ..o 255
B.2 Commercial SUpportcooiiiiiiiii i 255
B.3 Bug Reports ... 255
B.4 Contributingo 256
B.5 Certification.c.ouiiiiiii 256

Appendix C Error Codes and Descriptions.. 258

Appendix D Supported Ciphersuites......... 265
Appendix E API reference.................... 271
E.1 Core TLS APIL. 271
E.2 Highlevel TLS APL o 351
E.3 Datagram TLS API 351
E.4 X.509 certificate APIL. 354
E5 OCSP API. ... o 432
E.6 OpenPGP APIL.... ..o e 442
E.7 PKCS 12 APL ... 462
E.8 Hardware token via PKCS 11 APL........................... 468
E.9 TPM APL. ... 480
E.10 Abstract key APL 482
E.11 DANE API. ... 506
E.12 Cryptographic API 510
E.13 Compatibility APT 517
Appendix F Copying Information............ 527
Bibliography............ 535
Function and Data Index........................ 539

Concept Index.............. ... i, 548

Chapter 1: Preface 1

1 Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require
the programmer to make careful and correct usage of them. Otherwise it is likely to only
obtain a false sense of security. The term of security is very broad even if restricted to
computer software, and cannot be confined to a single cryptographic library. For that
reason, do not consider any program secure just because it uses GnuTLS; there are several
ways to compromise a program or a communication line and GnuTLS only helps with some
of them.

Although this document tries to be self contained, basic network programming and public
key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to
networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to
security engineering in [ANDERSON].

Updated versions of the GnuTLS software and this document will be available from http://
www.gnutls.org/.

http://www.gnutls.org/
http://www.gnutls.org/

Chapter 2: Introduction to GnuTLS 2

2 Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (see Chapter 3 [Introduction to TLS], page 4, for a detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. Important features of the GnuTLS library include:

e Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

e Support for Datagram TLS 1.0 and 1.2.

e Support for handling and verification of X.509 and OpenPGP certificates.
e Support for password authentication using TLS-SRP.

e Support for keyed authentication using TLS-PSK.

e Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it
uses functionality from the libtasnl library. The “Cryptographic back-end” is provided by
the nettle and gmplib libraries.

2.1 Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable
release and a odd minor version number indicate a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on nettle and gmplib, and you will need to install it before installing
GnuTLS. The nettle library is available from http://www.lysator.liu.se/ nisse/
nettle/, while gmplib is available from http://www.gmplib.org/. Don’t forget to verify
the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the INSTALL file
that is part of the distribution archive. Typically you invoke ./configure and then make
check install. There are a number of compile-time parameters, as discussed below.

Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called
libtasnl. A copy of libtasnl is included in GnuTLS. If you want to install it separately
(e.g., to make it possibly to use libtasnl in other programs), you can get it from http://
www.gnu.org/software/libtasnl/.

The compression library, 1ibz, the PKCS #11 helper library p11-kit, as well as the TPM
library trousers, are optional dependencies. You may get libz from http://www.zlib.

http://www.gnutls.org/download.html
http://www.lysator.liu.se/~nisse/nettle/
http://www.lysator.liu.se/~nisse/nettle/
http://www.gmplib.org/
http://www.gnu.org/software/libtasn1/
http://www.gnu.org/software/libtasn1/
http://www.zlib.net/

Chapter 2: Introduction to GnuTLS 3

net/, pll-kit from http://pll-glue.freedesktop.org/ and trousers from http://
trousers.sourceforge.net/.

A few configure options may be relevant, summarized below. They disable or enable
particular features, to create a smaller library with only the required features. Note however,
that although a smaller library is generated, the included programs are not guaranteed to
compile if some of these options are given.

--disable-srp-authentication
--disable-psk-authentication
--disable-anon-authentication
--disable-openpgp-authentication
--disable-dhe

—--disable-ecdhe
--disable-openssl-compatibility
--disable-dtls-srtp-support
--disable-alpn-support
--disable-heartbeat-support
--disable-libdane
--without-pl1-kit

--without-tpm

--without-zlib

For the complete list, refer to the output from configure —-help.

2.2 Overview

In this document we present an overview of the supported security protocols in Chapter 3
[Introduction to TLS], page 4, and continue by providing more information on the certifi-
cate authentication in Section 4.1 [Certificate authentication|, page 18, and shared-key as
well anonymous authentication in Section 4.3 [Shared-key and anonymous authentication],
page 71. We elaborate on certificate authentication by demonstrating advanced usage of
the API in Section 4.2 [More on certificate authentication], page 37. The core of the TLS
library is presented in Chapter 6 [How to use GnuTLS in applications|, page 102 and ex-
ample applications are listed in Chapter 7 [GnuTLS application examples|, page 143. In
Chapter 9 [Other included programs], page 229 the usage of few included programs that
may assist debugging is presented. The last chapter is Chapter 10 [Internal architecture of
GnuTLS]|, page 242 that provides a short introduction to GnuTLS’ internal architecture.

http://www.zlib.net/
http://www.zlib.net/
http://p11-glue.freedesktop.org/
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/

Chapter 3: Introduction to TLS and DTLS 4

3 Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF?,
described in [RFC5246]. The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to
all other TLS versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [RFC/347] is a protocol with identical goals as
TLS, but can operate under unreliable transport layers such as UDP. The discussions below
apply to this protocol as well, except when noted otherwise.

3.1 TLS layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and
the alert protocol. The record protocol is to serve all other protocols and is above the
transport layer. The record protocol offers symmetric encryption, data authenticity, and
optionally compression. The alert protocol offers some signaling to the other protocols.
It can help informing the peer for the cause of failures and other error conditions. See
[The Alert Protocol], page 8, for more information. The alert protocol is above the record
protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol|, page 9, for more informa-
tion about the handshake protocol. The protocol layering in TLS is shown in (undefined)
[fig-tls-layers|, page (undefined).

— —

'FI;LStHar;dshake TLS Alert Application
rotoco Protocol Protocol

—_—— ———

TLS Record
Protocol

S ————

Transport Layer

— -

Figure 3.1: The TLS protocol layers.

IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS and DTLS 5

3.2 The transport layer

TLS is not limited to any transport layer and can be used above any transport layer,
as long as it is a reliable one. DTLS can be used over reliable and unreliable transport
layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets
API. However, any transport layer can be used by providing callbacks for GnuTLS to access
the transport layer (for details see Section 6.5 [Setting up the transport layer|, page 116).

3.3 The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The record layer functions can be called
at any time after the handshake process is finished, when there is need to receive or send
data. In DTLS however, due to re-transmission timers used in the handshake out-of-order
handshake data might be received for some time (maximum 60 seconds) after the handshake
process is finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the
record protocol’s parameters are all set by the handshake protocol. The record protocol
initially starts with NULL parameters, which means no encryption, and no MAC is used.
Encryption and authentication begin just after the handshake protocol has finished.

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption al-
gorithms like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
CBC mode also provide protection against statistical analysis of the data. Thus, if you're
using the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 3.1 and Table 3.2.

Chapter 3: Introduction to TLS and DTLS 6

Algorithm Description

3DES_CBC This is the DES block cipher algorithm used with triple en-
cryption (EDE). Has 64 bits block size and is used in CBC
mode.

ARCFOUR_128 ARCFOUR_128 is a compatible algorithm with RSA’s RC4
algorithm, which is considered to be a trade secret. It is a
fast cipher but considered weak today.

AES_CBC AES or RIJNDAEL is the block cipher algorithm that replaces
the old DES algorithm. Has 128 bits block size and is used in
CBC mode.

AES_GCM This is the AES algorithm in the authenticated encryption

GCM mode. This mode combines message authentication and
encryption and can be extremely fast on CPUs that support
hardware acceleration.

CAMELLIA _- This is an 128-bit block cipher developed by Mitsubishi and
CBC NTT. It is one of the approved ciphers of the European
NESSIE and Japanese CRYPTREC projects.

Table 3.1: Supported ciphers.

Algorithm Description
MAC_MD5 This is an HMAC based on MD5 a cryptographic hash algo-
rithm designed by Ron Rivest. Outputs 128 bits of data.

MAC_SHA1 An HMAC based on the SHA1 cryptographic hash algorithm
designed by NSA. Outputs 160 bits of data.

MAC_SHA256 An HMAC based on SHA256. Outputs 256 bits of data.

MAC_AEAD This indicates that an authenticated encryption algorithm,
such as GCM, is in use.

Table 3.2: Supported MAC algorithms.

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS
can be found in the table below. The included algorithms perform really good when text,
or other compressible data are to be transferred, but offer nothing on already compressed
data, such as compressed images, zipped archives etc. These compression algorithms, may

Chapter 3: Introduction to TLS and DTLS 7

be useful in high bandwidth TLS tunnels, and in cases where network usage has to be
minimized. It should be noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [RFC3749]. The sup-
ported algorithms are shown below.

GNUTLS_COMP_UNKNOWN
Unknown compression method.

GNUTLS_COMP_NULL
The NULL compression method (no compression).

GNUTLS_COMP_DEFLATE
The DEFLATE compression method from zlib.

GNUTLS_COMP_ZLIB
Same as GNUTLS_COMP_DEFLATE .

Figure 3.2: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery
under certain circumstances. To avoid some of these attacks GnuTLS allows each record
to be compressed independently (i.e., stateless compression), by using the "%STATE-
LESS_COMPRESSION" priority string, in order to be used in cases where the attacker
controlled data are pt in separate records.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS
1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption_failed” and “bad_record_mac”
2. The decryption failure reason can be detected by timing the response time.
3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [RFC43/6] which is implemented in GnuTLS. For
this reason we suggest to always negotiate the highest supported TLS version with the

peer?. For a detailed discussion of the issues see the archives of the TLS Working Group
mailing list and [CBCATT].

3.3.4 On record padding

The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical
analysis based on the length of exchanged messages (see [REFC5246] section 6.2.3.2).
GnuTLS appears to be one of few implementations that take advantage of this feature:
the user can provide some plaintext data with a range of lengths she wishes to hide, and
GnuTLS adds extra padding to make sure the attacker cannot tell the real plaintext
length is in a range smaller than the user-provided one. Use [gnutls_record_send_range],
page 326 to send length-hidden messages and [gnutls_record_can_use_length_hiding],
page 324 to check whether the current session supports length hiding. Using the standard
[gnutls_record_send], page 326 will only add minimal padding.

2 If this is not possible then please consult Section 6.12.6 [Interoperability], page 141.

Chapter 3: Introduction to TLS and DTLS 8

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as ’A TLS fatal alert has
been received’, 'Bad record MAC’, or both, on the GnuTLS server side.

If compatibility with such devices is a concern, not sending length-hidden messages solves
the problem by using minimal padding.

If you implement an application that has a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls_priority_set], page 318. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

3.4 The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (e.g. GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(e.g. GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future re-negotiations using the current session ID. All alert messages are summarized in
the table below.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

Alert ID Description
GNUTLS_A_CLOSE_NOTIFY 0 Close notify
GNUTLS_A_UNEXPECTED_MESSAGE 10 Unexpected message
GNUTLS_A_BAD_RECORD_MAC 20 Bad record MAC
GNUTLS_A_DECRYPTION_FAILED 21 Decryption failed
GNUTLS_A_RECORD_OVERFLOW 22 Record overflow
GNUTLS_A_DECOMPRESSION_FAILURE 30 Decompression failed
GNUTLS_A_HANDSHAKE_FAILURE 40 Handshake failed
GNUTLS_A_SSL3_NO_CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS_A_BAD_CERTIFICATE 42 Certificate is bad
GNUTLS_A_UNSUPPORTED_CERTIFICATE 43 Certificate is not
supported
GNUTLS_A_CERTIFICATE_REVOKED 44 Certificate was revoked
GNUTLS_A_CERTIFICATE_EXPIRED 45 Certificate is expired
GNUTLS_A_CERTIFICATE_.UNKNOWN 46 Unknown certificate
GNUTLS_A_ILLEGAL_PARAMETER 47 Illegal parameter
GNUTLS_A_UNKNOWN_CA 48 CA is unknown
GNUTLS_A_ACCESS_DENIED 49 Access was denied

GNUTLS_A_DECODE_ERROR 50 Decode error

Chapter 3: Introduction to TLS and DTLS 9

GNUTLS_A_DECRYPT_ERROR 51 Decrypt error
GNUTLS_A_EXPORT_RESTRICTION 60 Export restriction
GNUTLS_A_PROTOCOL_VERSION 70 Error in protocol version
GNUTLS_A_INSUFFICIENT_SECURITY 71 Insufficient security
GNUTLS_A_INTERNAL_ERROR 80 Internal error
GNUTLS_A_USER_CANCELED 90 User canceled
GNUTLS_A_NO_RENEGOTIATION 100 No renegotiation is
allowed
GNUTLS_A_UNSUPPORTED_EXTENSION 110 An unsupported exten-

sion was sent

GNUTLS_A_CERTIFICATE_UNOBTAINABLE 111 Could not retrieve the
specified certificate

GNUTLS_A_UNRECOGNIZED_NAME 112 The server name sent
was not recognized
GNUTLS_A_UNKNOWN_PSK_IDENTITY 115 The SRP/PSK username

is missing or not known

GNUTLS_A_NO_APPLICATION_PROTOCOL 120 No supported applica-
tion protocol could be
negotiated

3.5 The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. The main handshake func-
tion is [gnutls_handshake], page 303. In the next paragraphs we elaborate on the handshake
protocol, i.e., the ciphersuite negotiation.

3.5.1 TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these
parameters:

e The key exchange algorithm. DHE_RSA in the example.

e The Symmetric encryption algorithm and mode 3DES_CBC in this example.

e The MAC? algorithm used for authentication. MAC_SHA is used in the above example.
The cipher suite negotiated in the handshake protocol will affect the record protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS

to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are listed in [ciphersuites], page 265.
3.5.2 Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

3 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS and DTLS 10

e Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

e SRP authentication: Authenticated key exchange using a password.
e PSK authentication: Authenticated key exchange using a pre-shared key.

e Anonymous authentication: Key exchange without peer authentication.

3.5.3 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client using the
[gnutls_certificate_server_set_request], page 278 function. We elaborate in Section 6.4.1
[Certificate credentials], page 108.

3.5.4 Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature of
the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established
keys, meaning the server needs to store the state of established connections (unless session
tickets are used — Section 3.6.3 [Session tickets|, page 11).

Session resumption is an integral part of GnuTLS, and Section 6.12.1 [Session resumption],
page 134, (undefined) [ex-resume-client], page (undefined) illustrate typical uses of it.

3.6 TLS extensions

A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The
extensions supported in GnuTLS are discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities.
The functions shown below can be used to control this extension.

size_t [gnutls_record_get_max_size], page 325 (gnutls_session_t session)
ssize_t [gnutls_record_set_max_size], page 327 (gnutls_session_t session,
size_t size)

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls_server_name_set], page 330 and [gnutls_server_name_get], page 329 can be
used to enable this extension, or to retrieve the name sent by a client.

Chapter 3: Introduction to TLS and DTLS 11

int [gnutls_server_name_set], page 330 (gnutls_session_t session,
gnutls_server_name_type_t type, const void * name, size_t name_length)
int [gnutls_server_name_get], page 329 (gnutls_session_t session, void *
data, size_t * data_length, unsigned int * type, unsigned int indx)

3.6.3 Session tickets

To resume a TLS session, the server normally stores session parameters. This complicates
deployment, and can be avoided by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to
the server and then sent to the client. The Session Tickets extension is described in RFC
5077 [TLSTKT].

A disadvantage of session tickets is that they eliminate the effects of forward secrecy when a
server uses the same key for long time. That is, the secrecy of all sessions on a server using
tickets depends on the ticket key being kept secret. For that reason server keys should be
rotated and discarded regularly.

Since version 3.1.3 GnuTLS clients transparently support session tickets.

3.6.4 HeartBeat

This is a TLS extension that allows to ping and receive confirmation from the peer, and is
described in [RFC6520]. The extension is disabled by default and [gnutls_heartbeat_enable],
page 306 can be used to enable it. A policy may be negotiated to only allow sending
heartbeat messages or sending and receiving. The current session policy can be checked with
[gnutls_heartbeat_allowed], page 305. The requests coming from the peer result to GNUTLS_
E_HERTBEAT_PING_RECEIVED being returned from the receive function. Ping requests to
peer can be send via [gnutls_heartbeat_ping], page 306.

int [gnutls_heartbeat_allowed], page 305 (gnutls_session_t session, unsigned
int type)

void [gnutls_heartbeat_enable], page 306 (gnutls_session_t session, unsigned
int type)

int [gnutls_heartbeat_ping]l, page 306 (gnutls_session_t session, size_t
data_size, unsigned int max_tries, unsigned int flags)

int [gnutls_heartbeat_pongl, page 307 (gnutls_session_t session, unsigned int
flags)

void [gnutls_heartbeat_set_timeouts], page 307 (gnutls_session_t session,
unsigned int retrans_timeout, unsigned int total_timeout)

unsigned int [gnutls_heartbeat_get_timeout], page 306 (gnutls_session_t
session)

3.6.5 Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect
using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could

Chapter 3: Introduction to TLS and DTLS 12

forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or
understood, thus today some application protocols use the TLS renegotiation feature in a
manner that enables a malicious server to insert content of his choice in the beginning of a
TLS session.

The most prominent vulnerability was with HT'TPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with
server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client
attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-
tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behavior would prevent in-
teroperability against the majority of deployed servers out there. We will reconsider this
default behavior in the future when more servers have been upgraded. Note that it is easy
to configure clients to always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see
Section 6.10 [Priority Strings|, page 127). The %UNSAFE_RENEGOTIATION priority string
permits (re-)handshakes even when the safe renegotiation extension was not negotiated.
The default behavior is %PARTIAL_RENEGOTIATION that will prevent renegotiation with
clients and servers not supporting the extension. This is secure for servers but leaves clients
vulnerable to some attacks, but this is a trade-off between security and compatibility with
old servers. The %SAFE_RENEGOTIATION priority string makes clients and servers require
the extension for every handshake. The latter is the most secure option for clients, at the
cost of not being able to connect to legacy servers. Servers will also deny clients that do
not support the extension from connecting.

Chapter 3: Introduction to TLS and DTLS 13

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:
Server: %PARTIAL_RENEGOTIATION
Client: %PARTIAL_RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The
[gnutls_safe_renegotiation_status|, page 328 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

3.6.6 OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify
the server certificate for revocation without messing with certificate revocation lists. Its
drawback is that it requires the client to connect to the server’s CA OCSP server and
request the status of the certificate. This extension however, enables a TLS server to
include its CA OCSP server response in the handshake. That is an HTTPS server may
periodically run ocsptool (see Section 4.2.6 [ocsptool Invocation|, page 63) to obtain its
certificate revocation status and serve it to the clients. That way a client avoids an additional
connection to the OCSP server.

void [gnutls_certificate_set_ocsp_status_request_function], page 279
(gnutls_certificate_credentials_t sc, gnutls_status_request_ocsp_func
ocsp_func, void * ptr)

int [gnutls_certificate_set_ocsp_status_request_file], page 279
(gnutls_certificate_credentials_t sc, const char * response_file, unsigned
int flags)

int [gnutls_ocsp_status_request_enable_client], page 311 (gnutls_session_t
session, gnutls_datum_t * responder_id, size_t responder_id_size,
gnutls_datum_t * extensions)

int [gnutls_ocsp_status_request_is_checked], page 311 (gnutls_session_t
session, unsigned int flags)

A server is required to provide the OCSP server’s response using the
[gnutls_certificate_set _ocsp_status_request_file], page 279. The response may be
obtained periodically using the following command.

ocsptool --ask --load-cert server_cert.pem --load-issuer the_issuer.pem
--load-signer the_issuer.pem --outfile ocsp.response

Since version 3.1.3 GnuTLS clients transparently support the certificate status request.

3.6.7 SRTP

The TLS protocol was extended in [RFC5764] to provide keying material to the Secure RTP
(SRTP) protocol. The SRTP protocol provides an encapsulation of encrypted data that is
optimized for voice data. With the SRTP TLS extension two peers can negotiate keys using
TLS or DTLS and obtain keying material for use with SRTP. The available SRTP profiles
are listed below.

Chapter 3: Introduction to TLS and DTLS 14

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_80
128 bit AES with a 80 bit HMAC-SHA1

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_32
128 bit AES with a 32 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_80
NULL cipher with a 80 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_32
NULL cipher with a 32 bit HMAC-SHA1

Figure 3.3: Supported SRTP profiles

To enable use the following functions.

int [gnutls_srtp_set_profile], page 343 (gnutls_session_t session,
gnutls_srtp_profile_t profile)

int [gnutls_srtp_set_profile_direct], page 344 (gnutls_session_t session,
const char * profiles, const char ** err_pos)

To obtain the negotiated keys use the function below.

int gnutls_srtp_get_keys (gnutls_session_t session, void * [Function]
key_material, unsigned int key_material_size, gnutls_datum_t *
client_key, gnutls_datum_t * client_salt, gnutls_datum_t *
server_key, gnutls_datum_t * server_salt)
session: is a gnutls_session_t structure.

key_material: Space to hold the generated key material
key_material_size: The maximum size of the key material

client_key: The master client write key, pointing inside the key material
client_salt: The master client write salt, pointing inside the key material
server_key: The master server write key, pointing inside the key material
server_salt: The master server write salt, pointing inside the key material

This is a helper function to generate the keying material for SRTP. It requires the
space of the key material to be pre-allocated (should be at least 2x the maximum key
size and salt size). The client_key , client_salt , server_key and server_salt
are convenience datums that point inside the key material. They may be NULL .

Returns: On success the size of the key material is returned, otherwise, GNUTLS_E_
SHORT_MEMORY_BUFFER if the buffer given is not sufficient, or a negative error code.

Since 3.1.4

Other helper functions are listed below.

int [gnutls_srtp_get_selected_profile], page 343 (gnutls_session_t session,
gnutls_srtp_profile_t * profile)

const char * [gnutls_srtp_get_profile_name], page 343 (gnutls_srtp_profile_t
profile)

int [gnutls_srtp_get_profile_id], page 342 (const char * name,
gnutls_srtp_profile_t * profile)

Chapter 3: Introduction to TLS and DTLS 15

3.6.8 Application Layer Protocol Negotiation (ALPN)

The TLS protocol was extended in draft-ietf-tls-applayerprotoneg-00 to provide the
application layer a method of negotiating the application protocol version. This allows
for negotiation of the application protocol during the TLS handshake, thus reducing round-
trips. The application protocol is described by an opaque string. To enable, use the following
functions.

int [gnutls_alpn_set_protocols], page 272 (gnutls_session_t session, const
gnutls_datum_t * protocols, unsigned protocols_size, unsigned int flags)

int [gnutls_alpn_get_selected_protocol], page 272 (gnutls_session_t session,
gnutls_datum_t * protocol)

Note that these functions are intended to be used with protocols that are registered in the
Application Layer Protocol Negotiation TANA registry. While you can use them for other
protocols (at the risk of collisions), it is preferable to register them.

3.7 How to use TLS in application protocols

This chapter is intended to provide some hints on how to use TLS over simple custom made
application protocols. The discussion below mainly refers to the TCP/IP transport layer
but may be extended to other ones too.

3.7.1 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for
the secure services. By doing this two separate ports were assigned, one for the non-secure
sessions, and one for the secure sessions. This method ensures that if a user requests a
secure session then the client will attempt to connect to the secure port and fail otherwise.
The only possible attack with this method is to perform a denial of service attack. The
most famous example of this method is “HTTP over TLS” or HTTPS protocol [RFC2818].

Despite its wide use, this method has several issues. This approach starts the TLS Hand-
shake procedure just after the client connects on the —so called— secure port. That way
the TLS protocol does not know anything about the client, and popular methods like the
host advertising in HT'TP do not work?. There is no way for the client to say “I connected
to YYY server” before the Handshake starts, so the server cannot possibly know which
certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon deprecated in favor of upward negotiation.

3.7.2 Upward negotiation

Other application protocols® use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it
is more flexible. The idea is to extend the application protocol to have a “STARTTLS”
request, whose purpose it to start the TLS protocols just after the client requests it. This

4 See also the Server Name Indication extension on [serverind], page 11.
5 See LDAP, IMAP etc.

Chapter 3: Introduction to TLS and DTLS 16

approach does not require any extra port to be reserved. There is even an extension to
HTTP protocol to support this method [RFC2817].

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

ik TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA
And an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was naive enough to send the confidential
data in the clear, despite the server telling the client that it does not support “STARTTLS”.

How do we avoid the above attack? As you may have already noticed this situation is easy
to avoid. The client has to ask the user before it connects whether the user requests TLS
or not. If the user answered that he certainly wants the secure layer the last conversation
should be:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is
that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file, or anything else!

Chapter 3: Introduction to TLS and DTLS 17

3.8 On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

e Message integrity compromised. The SSLv2 message authentication uses the MDb5
function, and is insecure.

e Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

e Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

o Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are
negotiated (say 40-bit keys) the message authentication code uses the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

Chapter 4: Authentication methods 18

4 Authentication methods

The initial key exchange of the TLS protocol performs authentication of the peers. In
typical scenarios the server is authenticated to the client, and optionally the client to the
server.

While many associate TLS with X.509 certificates and public key authentication, the pro-
tocol supports various authentication methods, including pre-shared keys, and passwords.
In this chapter a description of the existing authentication methods is provided, as well as
some guidance on which use-cases each method can be used at.

4.1 Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [PKIX] public
key infrastructure is daily used by anyone using a browser today. GnuTLS supports both
X.509 certificates [PKIX] and OpenPGP certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 4.1.

Chapter 4: Authentication methods 19

Key exchange Description

RSA The RSA algorithm is used to encrypt a key and send it to
the peer. The certificate must allow the key to be used for
encryption.

DHE_RSA The RSA algorithm is used to sign ephemeral Diffie-Hellman

parameters which are sent to the peer. The key in the certifi-
cate must allow the key to be used for signing. Note that key
exchange algorithms which use ephemeral Diffie-Hellman pa-
rameters, offer perfect forward secrecy. That means that even
if the private key used for signing is compromised, it cannot
be used to reveal past session data.

ECDHE_RSA The RSA algorithm is used to sign ephemeral elliptic curve
Diffie-Hellman parameters which are sent to the peer. The key
in the certificate must allow the key to be used for signing. It
also offers perfect forward secrecy. That means that even if
the private key used for signing is compromised, it cannot be
used to reveal past session data.

DHE_DSS The DSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The certificate must
contain DSA parameters to use this key exchange algorithm.
DSA is the algorithm of the Digital Signature Standard
(DSS).

ECDHE_ECDSA The Elliptic curve DSA algorithm is used to sign ephemeral
elliptic curve Diffie-Hellman parameters which are sent to the
peer. The certificate must contain ECDSA parameters (i.e.,
EC and marked for signing) to use this key exchange algo-
rithm.

Table 4.1: Supported key exchange algorithms.

4.1.1 X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

Chapter 4: Authentication methods 20

i l Web Server

Alice Bob

Figure 4.1: An example of the X.509 hierarchical trust model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated
on (undefined) [fig-x509], page (undefined).

4.1.1.1 X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [PKIX] as shown in Table 4.2.

Chapter 4: Authentication methods 21

Field Description

version The field that indicates the version of the certificate.
serialNumber This field holds a unique serial number per certificate.
signature The issuing authority’s signature.

issuer Holds the issuer’s distinguished name.

validity The activation and expiration dates.

subject The subject’s distinguished name of the certificate.
extensions The extensions are fields only present in version 3 certificates.

Table 4.2: X.509 certificate fields.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
gnutls/x509.h.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The validity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in gnutls/x509.h. An
example program to demonstrate the X.509 parsing capabilities can be found in (undefined)
[ex-x509-infol, page (undefined).

4.1.1.2 Importing an X.509 certificate

The certificate structure should be initialized using [gnutls_x509_crt_init|, page 403, and a
certificate structure can be imported using [gnutls_x509_crt_import], page 403.

int [gnutls_x509_crt_init], page 403 (gnutls_x509_crt_t * cert)

int [gnutls_x509_crt_import], page 403 (gnutls_x509_crt_t cert, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

void [gnutls_x509_crt_deinit], page 384 (gnutls_x509_crt_t cert)

In several functions an array of certificates is required. To assist in initialization and import
the following two functions are provided.

Chapter 4: Authentication methods 22

int [gnutls_x509_crt_list_import], page 403 (gnutls_x509_crt_t * certs,
unsigned int * cert_max, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

int [gnutls_x509_crt_list_import2], page 404 (gnutls_x509_crt_t ** certs,
unsigned int * size, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

In all cases after use a certificate must be deinitialized using [gnutls_x509_crt_deinit],
page 384. Note that although the functions above apply to gnutls_x509_crt_t structure,
similar functions exist for the CRL structure gnutls_x509_crl_t.

4.1.1.3 X.509 distinguished names

The “subject” of an X.509 certificate is not described by a single name, but rather with a
distinguished name. This in X.509 terminology is a list of strings each associated an ob-
ject identifier. To make things simple GnuTLS provides [gnutls_x509_crt_get_dn2|, page 388
which follows the rules in [RFC451/] and returns a single string. Access to each string by in-
dividual object identifiers can be accessed using [gnutls_x509_crt_get_dn_by_oid], page 389.

int gnutls_x509_crt_get_dn2 (gnutls_x509_crt_t cert, [Function]
gnutls_datum_t * dn)
cert: should contain a gnutls_x509_crt_t structure

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of the Certificate. The name will
be in the form "C=xxxx,0=yyyy,CN=zzzz" as described in RFC4514. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

Since: 3.1.10

int [gnutls_x509_crt_get_dn], page 388 (gnutls_x509_crt_t cert, char * buf,
size_t * buf_size)

int [gnutls_x509_crt_get_dn_by_oid], page 389 (gnutls_x509_crt_t cert, const
char * oid, int indx, unsigned int raw_flag, void * buf, size_t * buf_size)

int [gnutls_x509_crt_get_dn_oid], page 389 (gnutls_x509_crt_t cert, int indx,
void * oid, size_t * oid_size)

Similar functions exist to access the distinguished name of the issuer of the certificate.

Chapter 4: Authentication methods 23

int [gnutls_x509_crt_get_issuer_dn], page 394 (gnutls_x509_crt_t cert, char *
buf, size_t * buf_size)

int [gnutls_x509_crt_get_issuer_dn2], page 394 (gnutls_x509_crt_t cert,
gnutls_datum_t * dn)

int [gnutls_x509_crt_get_issuer_dn_by_oid], page 394 (gnutls_x509_crt_t

cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size_t *
buf_size)

int [gnutls_x509_crt_get_issuer_dn_oid], page 395 (gnutls_x509_crt_t cert,
int indx, void * oid, size_t * oid_size)

int [gnutls_x509_crt_get_issuer], page 392 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

The more powerful [gnutls_x509_crt_get_subject], page 400 and [gnutls_x509_dn_get_rdn_ava,
page 416 provide efficient but low-level access to the contents of the distinguished name
structure.

int [gnutls_x509_crt_get_subject], page 400 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

int [gnutls_x509_crt_get_issuer], page 392 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

int gnutls_x509_dn_get_rdn_ava (gnutls-x509_dn_t dn, int irdn, int [Function]
iava, gnutls_x509_ava_st * ava)
dn: a pointer to DN

irdn: index of RDN

iava: index of AVA.

ava: Pointer to structure which will hold output information.

Get pointers to data within the DN. The format of the ava structure is shown below.

struct gnutls_x509_ava_st { gnutls_datum_t oid; gnutls_datum_t value; unsigned long
value_tag; };

The X.509 distinguished name is a sequence of sequences of strings and this is what
the irdn and iava indexes model.

Note that ava will contain pointers into the dn structure which in turns points to the
original certificate. Thus you should not modify any data or deallocate any of those.

This is a low-level function that requires the caller to do the value conversions when
necessary (e.g. from UCS-2).

Returns: Returns 0 on success, or an error code.

4.1.1.4 X.509 extensions

X.509 version 3 certificates include a list of extensions that can be used to obtain additional
information on the subject or the issuer of the certificate. Those may be e-mail addresses,
flags that indicate whether the belongs to a CA etc. All the supported X.509 version 3
extensions are shown in Table 4.3.

The certificate extensions access is split into two parts. The first requires to retrieve the
extension, and the second is the parsing part.

To enumerate and retrieve the DER-encoded extension data available in a certificate the
following two functions are available.

Chapter 4: Authentication methods 24

int [gnutls_x509_crt_get_extension_info], page 391 (gnutls_x509_crt_t cert,
int indx, void * oid, size_t * oid_size, unsigned int * critical)

int (undefined) [gnutls_x509_crt_get_extension_data2], page (undefined)
(gnutls_x509_crt_t cert, unsigned indx, gnutls_datum_t * data)

int (undefined) [gnutls_x509_crt_get_extension_by_oid2], page (undefined)
(gnutls_x509_crt_t cert, const char * oid, int indx, gnutls_datum_t * output,
unsigned int * critical)

After a supported DER-encoded extension is retrieved it can be parsed using the APIs in
x509-ext.h. Complex extensions may require initializing an intermediate structure that
holds the parsed extension data. Examples of simple parsing functions are shown below.

int (undefined) [gnutls_x509_ext_import_basic_constraints], page (undefined)
(const gnutls_datum_t * ext, unsigned int * ca, int * pathlen)

int (undefined) [gnutls_x509_ext_export_basic_constraints], page (undefined)
(unsigned int ca, int pathlen, gnutls_datum_t * ext)

int (undefined) [gnutls_x509_ext_import_key_usagel], page (undefined) (const
gnutls_datum_t * ext, unsigned int * key_usage)

int (undefined) [gnutls_x509_ext_export_key_usage], page (undefined)
(unsigned int usage, gnutls_datum_t * ext)

More complex extensions, such as Name Constraints, require an intermediate structure, in
that case gnutls_x509_name_constraints_t to be initialized in order to store the parsed
extension data.

int (undefined) [gnutls_x509_ext_import_name_constraints], page (undefined)
(const gnutls_datum_t * ext, gnutls_x509_name_constraints_t nc, unsigned int
flags)

int (undefined) [gnutls_x509_ext_export_name_constraints], page (undefined)
(gnutls_x509_name_constraints_t nc, gnutls_datum_t * ext)

After the name constraints are extracted in the structure, the following functions can be
used to access them.

Chapter 4: Authentication methods 25

int (undefined) [gnutls_x509_name_constraints_get_permitted],

page (undefined) (gnutls_x509_name_constraints_t nc, unsigned idx, unsigned *
type, gnutls_datum_t * name)

int (undefined) [gnutls_x509_name_constraints_get_excluded], page (undefined)
(gnutls_x509_name_constraints_t nc, unsigned idx, unsigned * type,
gnutls_datum_t * name)

int (undefined) [gnutls_x509_name_constraints_add_permitted],

page (undefined) (gnutls_x509_name_constraints_t nc,
gnutls_x509_subject_alt_name_t type, const gnutls_datum_t * name)

int (undefined) [gnutls_x509_name_constraints_add_excluded], page (undefined)
(gnutls_x509_name_constraints_t nc, gnutls_x509_subject_alt_name_t type,
const gnutls_datum_t * name)

unsigned (undefined) [gnutls_x509_name_constraints_check], page (undefined)
(gnutls_x509_name_constraints_t nc, gnutls_x509_subject_alt_name_t type,
const gnutls_datum_t * name)

unsigned (undefined) [gnutls_x509_name_constraints_check_crt],

page (undefined) (gnutls_x509_name_constraints_t nc,
gnutls_x509_subject_alt_name_t type, gnutls_x509_crt_t cert)

Other utility functions are listed below.

int (undefined) [gnutls_x509_name_constraints_init], page (undefined)
(gnutls_x509_name_constraints_t * nc)

void (undefined) [gnutls_x509_name_constraints_deinit], page (undefined)
(gnutls_x509_name_constraints_t nc)

Similar functions exist for all of the other supported extensions, listed in Table 4.3.

Chapter 4: Authentication methods

Extension

Subject key id

Key usage

Private key usage period

Subject alternative name

Issuer alternative name

Basic constraints

Name constraints

CRL distribution points

Certificate policy

Authority key identifier

Extended key usage

Authority information
access

Proxy Certification
Information

OID

2.5.29.14

2.5.29.15

2.5.29.16

2.5.29.17

2.5.29.18

2.5.29.19

2.5.29.30

2.5.29.31

2.5.29.32

2.5.29.35

2.5.29.37

1.3.6.1.5.5.7.1.1

1.3.6.1.5.5.7.1.14

Description

An identifier of the key of the sub-
ject.

Constraints the key’s usage of the
certificate.

Constraints the validity time of
the private key.

Alternative names to subject’s
distinguished name.

Alternative names to the issuer’s
distinguished name.

Indicates whether this is a CA
certificate or not, and specify the
maximum path lengths of certifi-
cate chains.

A field in CA certificates that re-
stricts the scope of the name of
issued certificates.

This extension is set by the CA, in
order to inform about the issued
CRLs.

This extension is set to indicate
the certificate policy as object
identifier and may contain a de-
scriptive string or URL.

An identifier of the key of the is-
suer of the certificate. That is
used to distinguish between differ-
ent keys of the same issuer.

Constraints the purpose of the
certificate.

Information on services by the is-
suer of the certificate.

Proxy Certificates includes this
extension that contains the OID
of the proxy policy language used,
and can specify limits on the max-
imum lenocths of bproxv chains.

Chapter 4: Authentication methods 27

Note, that there are also direct APIs to access extensions that may be simpler to use for
non-complex extensions. They are available in x509.h and some examples are listed below.

int [gnutls_x509_crt_get_basic_constraints], page 387 (gnutls_x509_crt_t
cert, unsigned int * critical, unsigned int * ca, int * pathlen)

int [gnutls_x509_crt_set_basic_constraints], page 406 (gnutls_x509_crt_t
crt, unsigned int ca, int pathLenConstraint)

int [gnutls_x509_crt_get_key_usage], page 397 (gnutls_x509_crt_t cert,
unsigned int * key_usage, unsigned int * critical)

int [gnutls_x509_crt_set_key_usage], page 410 (gnutls_x509_crt_t crt,
unsigned int usage)

4.1.1.5 Accessing public and private keys

Each X.509 certificate contains a public key that corresponds to a private key. To get a
unique identifier of the public key the [gnutls_x509_crt_get_key_id], page 396 function is
provided. To export the public key or its parameters you may need to convert the X.509
structure to a gnutls_pubkey_t. See Section 5.1.1 [Abstract public keys], page 79 for more

information.

int gnutls_x509_crt_get_key_id (gnutls-x509_crt_t crt, unsigned [Function]
int flags, unsigned char * output_data, size_t * output_data_size)
crt: Holds the certificate

flags: should be 0 for now
output_data: will contain the key ID

output_data_size: holds the size of output_data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output_data_size
is updated and GNUTLS_E_.SHORT_MEMORY _BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

The private key parameters may be directly accessed by using one of the following functions.

int [gnutls_x509_privkey_get_pk_algorithm2], page 422 (gnutls_x509_privkey_t
key, unsigned int * bits)

int [gnutls_x509_privkey_export_rsa_raw2], page 421 (gnutls_x509_privkey_t
key, gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t

Chapter 4: Authentication methods 28

* p, gnutls_datum_t * g, gnutls_datum_t * u, gnutls_datum_t * el,
gnutls_datum_t * e2)

int [gnutls_x509_privkey_export_ecc_raw], page 419 (gnutls_x509_privkey_t
key, gnutls_ecc_curve_t * curve, gnutls_datum_t * x, gnutls_datum_t * y,
gnutls_datum_t * k)

int [gnutls_x509_privkey_export_dsa_raw], page 419 (gnutls_x509_privkey_t
key, gnutls_datum_t * p, gnutls_datum_t * g, gnutls_datum_t * g, gnutls_datum_t
* y, gnutls_datum_t * x)

int [gnutls_x509_privkey_get_key_id], page 422 (gnutls_x509_privkey_t key,
unsigned int flags, unsigned char * output_data, size_t * output_data_size)

4.1.1.6 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the fol-
lowing functions are provided.

int gnutls_x509_trust_list_add_cas (gnutls_x509_trust_list_t [Function]
list, const gnutls_x509_crt_t * clist, unsigned clist_size, unsigned int
flags)

list: The structure of the list

clist: A list of CAs

clist_size: The length of the CA list

flags: should be 0 or an or’ed sequence of GNUTLS_TL options.

This function will add the given certificate authorities to the trusted list. The list of
CAs must not be deinitialized during this structure’s lifetime.

If the flag GNUTLS_TL_NO_DUPLICATES is specified, then the provided clist entries
that are duplicates will not be added to the list and will be deinitialized.

Returns: The number of added elements is returned.
Since: 3.0.0

int gnutls_x509_trust_list_add_named_crt [Function]
(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags)
list: The structure of the list

cert: A certificate

name: An identifier for the certificate
name_size: The size of the identifier
flags: should be 0.

This function will add the given certificate to the trusted list and associate it with a
name. The certificate will not be be used for verification with gnutls_x509_trust_
list_verify_crt() but only with gnutls_x509_trust_list_verify_named_crt()

In principle this function can be used to set individual "server" certificates that are
trusted by the user for that specific server but for no other purposes.

The certificate must not be deinitialized during the lifetime of the trusted list.

Chapter 4: Authentication methods 29

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0.0
int gnutls_x509_trust_list_add_crls (gnutls-x509_trust_list_t [Function]

list, const gnutls_x509_crl_t * crl_list, int crl_size, unsigned int flags,
unsigned int verification_flags)
list: The structure of the list

crl_list: A list of CRLs
crl_size: The length of the CRL list

flags: if GNUTLS_TL_VERIFY_CRL is given the CRLs will be verified before being
added.

verification_flags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function will add the given certificate revocation lists to the trusted list. The
list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls_x509_trust_list_add_cas() to allow
verifying the CRLs for validity. If the flag GNUTLS_TL_NO_DUPLICATES is given, then
any provided CRLs that are a duplicate, will be deinitialized and not added to the list
(that assumes that gnutls_x509_trust_list_deinit() will be called with all=1).

Returns: The number of added elements is returned.
Since: 3.0

int gnutls_x509_trust_list_verify_crt (gnutls_x509_trust_list_t [Function]
list, gnutls_x509_crt_t * cert_list, unsigned int cert_list_size,
unsigned int flags, unsigned int * voutput, gnutls_verify_output_function
func)
list: The structure of the list

cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

voutput: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_
certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS () to the verification flags.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

Chapter 4: Authentication methods 30

int gnutls_x509_trust_list_verify_crt2 (gnutls_x509_trust_list_t [Function]
list, gnutls_x509_crt_t * cert_list, unsigned int cert_list_size,
gnutls_typed_vdata_st * data, unsigned int elements, unsigned int flags,
unsigned int * voutput, gnutls_verify_output_function func)
list: The structure of the list

cert_list: is the certificate list to be verified

cert_list_size: is the certificate list size

data: an array of typed data

elements: the number of data elements

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

voutput: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.
This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_
certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS () to the verification flags.

The acceptable data types are GNUTLS_DT_DNS_HOSTNAME and GNUTLS_DT_KEY_
PURPOSE_OID . The former accepts as data a null-terminated hostname, and the latter
a null-terminated object identifier (e.g., GNUTLS_KP_TLS_WWW_SERVER). If a DNS
hostname is provided then this function will compare the hostname in the certificate
against the given. If names do not match the GNUTLS_CERT_UNEXPECTED_OWNER
status flag will be set. If a key purpose OID is provided and the end-certificate
contains the extended key usage PKIX extension, it will be required to be have the
provided key purpose or be marked for any purpose, otherwise verification will fail
with GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE status.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. Note that verification failure will not result to an error code, only voutput
will be updated.

Since: 3.3.8

int gnutls_x509_trust_list_verify_named_crt [Function]
(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags, unsigned int * voutput,
gnutls_verify_output_function func)
list: The structure of the list

cert: is the certificate to be verified
name: is the certificate’s name
name_size: is the certificate’s name size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

voutput: will hold the certificate verification output.

Chapter 4: Authentication methods 31

func: If non-null will be called on each chain element verification with the output.

This function will try to find a certificate that is associated with the provided name —
see gnutls_x509_trust_list_add_named_crt() . If a match is found the certificate
is considered valid. In addition to that this function will also check CRLs. The
voutput parameter will hold an OR’ed sequence of gnutls_certificate_status_t
flags.

Additionally a certificate verification profile can be specified from the ones in gnutls_
certificate_verification_profiles_t by ORing the result of GNUTLS_PROFILE_
TO_VFLAGS () to the verification flags.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0.0
int gnutls_x509_trust_list_add_trust_file [Function]

(gnutls_x509_trust_list_t 1ist, const char * ca_file, const char * crl_file,
gnutls_x509_crt_fmt_t type, unsigned int t1_flags, unsigned int t1_vflags)
list: The structure of the list

ca_file: A file containing a list of CAs (optional)

crl_file: A file containing a list of CRLs (optional)

type: The format of the certificates

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function will add the given certificate authorities to the trusted list. PKCS 11
URLs are also accepted, instead of files, by this function. A PKCS 11 URL implies
a trust database (a specially marked module in pl1-kit); the URL "pkes11:" implies
all trust databases in the system. Only a single URL specifying trust databases can
be set; they cannot be stacked with multiple calls.

Returns: The number of added elements is returned.
Since: 3.1

int gnutls_x509_trust_list_add_trust_mem [Function]
(gnutls_x509_trust_list_t 1ist, const gnutls_datum-t * cas, const
gnutls_datum_t * crls, gnutls_x509_crt_fmt_t type, unsigned int t1_flags,
unsigned int t1_vflags)
list: The structure of the list

cas: A buffer containing a list of CAs (optional)

crls: A buffer containing a list of CRLs (optional)

type: The format of the certificates

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list.

Returns: The number of added elements is returned.

Since: 3.1

Chapter 4: Authentication methods 32

int gnutls_x509_trust_list_add_system_trust [Function]
(gnutls_x509_trust_list_t 1ist, unsigned int t1_flags, unsigned int
tl_vflags)

list: The structure of the list

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function adds the system’s default trusted certificate authorities to
the trusted list. Note that on unsupported systems this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE .

This function implies the flag GNUTLS_TL_NO_DUPLICATES .

Returns: The number of added elements or a negative error code on error.

Since: 3.1

The verification function will verify a given certificate chain against a list of certificate au-
thorities and certificate revocation lists, and output a bit-wise OR of elements of the gnutls_
certificate_status_t enumeration shown in Figure 4.2. The GNUTLS_CERT_INVALID flag
is always set on a verification error and more detailed flags will also be set when appropriate.

Chapter 4: Authentication methods 33

GNUTLS_CERT_INVALID
The certificate is not signed by one of the known authorities or the signa-
ture is invalid (deprecated by the flags GNUTLS_CERT_SIGNATURE_FAILURE and
GNUTLS_CERT_SIGNER_NOT_FOUND)

GNUTLS_CERT_REVOKED
Certificate is revoked by its authority. In X.509 this will be set only if CRLSs
are checked.

GNUTLS_CERT_SIGNER_NOT_FOUND
The certificate’s issuer is not known. This is the case if the issuer is not included
in the trusted certificate list.

GNUTLS_CERT_SIGNER_NOT_CA
The certificate’s signer was not a CA. This may happen if this was a version 1
certificate, which is common with some CAs, or a version 3 certificate without
the basic constrains extension.

GNUTLS_CERT_INSECURE_ALGORITHM
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

GNUTLS_CERT_NOT_ACTIVATED
The certificate is not yet activated.

GNUTLS_CERT_EXPIRED
The certificate has expired.

GNUTLS_CERT_SIGNATURE_FAILURE
The signature verification failed.

GNUTLS_CERT_REVOCATION_DATA_SUPERSEDED
The revocation data are old and have been superseded.

GNUTLS_CERT_UNEXPECTED_OWNER
The owner is not the expected one.

GNUTLS_CERT_REVOCATION_DATA_ISSUED_IN_FUTURE
The revocation data have a future issue date.

GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE
The certificate’s signer constraints were violated.

GNUTLS_CERT_MISMATCH
The certificate presented isn’t the expected one (TOFU)

Figure 4.2: The gnutls_certificate_status_t enumeration.

An example of certificate verification is shown in (undefined) [ex-verify2], page (un-
defined). It is also possible to have a set of certificates that are trusted for
a particular server but not to authorize other certificates. This purpose is
served by the functions [gnutls_x509_trust_list_add_named_crt], page 428 and
[gnutls_x509_trust_list_verify_named_crt], page 432.

Chapter 4: Authentication methods 34

4.1.1.7 Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate authority list may
also be set using:

int [gnutls_certificate_set_x509_trust_file], page 287
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int (undefined) [gnutls_certificate_set_x509_trust_dir], page (undefined)
(gnutls_certificate_credentials_t cred, const char * ca_dir,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_crl_file], page 282
(gnutls_certificate_credentials_t res, const char * crifile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_system_trust], page 286
(gnutls_certificate_credentials_t cred)

These functions allow the specification of the trusted certificate authorities, either via a
file, a directory or use the system-specified certificate authories. Unless the authorities
are application specific, it is generally recommended to use the system trust storage (see
[gnutls_certificate_set _x509_system_trust|, page 286).

Unlike the previous section it is not required to setup a trusted list, and the function
[gnutls_certificate_verify_peers3], page 289 is used to verify the peer’s certificate chain and
identity. The reported verification status is identical to the verification functions described
in the previous section. Note that in certain cases it is required to check the marked purpose
of the end certificate (e.g. GNUTLS_KP_TLS_WWW_SERVER); in these cases the more advanced
(undefined) [gnutls_certificate_verify_peers], page (undefined) should be used instead.

There is also the possibility to pass some input to the verification functions in the form
of flags. For (undefined) [gnutls_x509_trust_list_verify_crt2], page (undefined) the flags
are passed directly, but for [gnutls_certificate_verify_peers3|, page 289, the flags are set
using [gnutls_certificate_set_verify_flags], page 281. All the available flags are part of the
enumeration gnutls_certificate_verify_flags shown in Figure 4.3.

Chapter 4: Authentication methods 35

GNUTLS_VERIFY_DISABLE_CA_SIGN
If set a signer does not have to be a certificate authority. This flag should
normally be disabled, unless you know what this means.

GNUTLS_VERIFY_DO_NOT_ALLOW_SAME
If a certificate is not signed by anyone trusted but exists in the trusted CA list
do not treat it as trusted.

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT
Allow CA certificates that have version 1 (both root and intermediate). This
might be dangerous since those haven’t the basicConstraints extension.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
Allow certificates to be signed using the broken MD2 algorithm.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5
Allow certificates to be signed using the broken MD5 algorithm.

GNUTLS_VERIFY_DISABLE_TIME_CHECKS
Disable checking of activation and expiration validity periods of certificate
chains. Don’t set this unless you understand the security implications.

GNUTLS_VERIFY_DISABLE_TRUSTED_TIME_CHECKS
If set a signer in the trusted list is never checked for expiration or activation.

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT
Do not allow trusted CA certificates that have version 1. This option is to be
used to deprecate all certificates of version 1.

GNUTLS_VERIFY_DISABLE_CRL_CHECKS
Disable checking for validity using certificate revocation lists or the available
OCSP data.

GNUTLS_VERIFY_ALLOW_UNSORTED_CHAIN
A certificate chain is tolerated if unsorted (the case with many TLS servers out
there). This is the default since GnuTLS 3.1.4.

GNUTLS_VERIFY_DO_NOT_ALLOW_UNSORTED_CHAIN
Do not tolerate an unsorted certificate chain.

GNUTLS_VERIFY_DO_NOT_ALLOW_WILDCARDS
When including a hostname check in the verification, do not consider any wild-
cards.

Figure 4.3: The gnutls_certificate_verify_flags enumeration.

4.1.1.8 Verifying a certificate using PKCS #11

Some systems provide a system wide trusted certificate storage accessible using the PKCS
#11 API. That is, the trusted certificates are queried and accessed using the PKCS #11

Chapter 4: Authentication methods 36

API, and trusted certificate properties, such as purpose, are marked using attached exten-
sions. One example is the p11-kit trust module®.

These special PKCS #11 modules can be used for GnuTLS certificate verification if
marked as trust policy modules, i.e., with trust-policy: yes in the pll-kit module
file. The way to use them is by specifying to the file verification function (e.g.,
[gnutls_certificate_set_x509_trust_file], page 287), a pkes1l URL, or simply pkcsil: to use
all the marked with trust policy modules.

The trust modules of p11-kit assign a purpose to trusted authorities using the extended key
usage object identifiers. The common purposes are shown in (undefined) [tab:purposes],
page (undefined). Note that typically according to [RFC5280] the extended key usage object
identifiers apply to end certificates. Their application to CA certificates is an extension used
by the trust modules.

Purpose OID Description

GNUTLS_KP_TLS_W3WW.SERVHR The certificate is to be used for TLS WWW authen-
tication. When in a CA certificate, it indicates that
the CA is allowed to sign certificates for TLS WWW
authentication.

GNUTLS_KP_TLS_W3MWW.ICLTEINT The certificate is to be used for TLS WWW client
authentication. When in a CA certificate, it indi-
cates that the CA is allowed to sign certificates for
TLS WWW client authentication.

GNUTLS_KP_CODH.$BMNING.3.3 The certificate is to be used for code signing. When
in a CA certificate, it indicates that the CA is al-
lowed to sign certificates for code signing.

GNUTLS_KP_EMAIL3BRGIETCIIONI he certificate is to be used for email protection.
When in a CA certificate, it indicates that the CA
is allowed to sign certificates for email users.

GNUTLS_KP_OCSPLBIGNINKT.3.9 The certificate is to be used for signing OCSP re-
sponses. When in a CA certificate, it indicates that
the CA is allowed to sign certificates which sign
OCSP reponses.

GNUTLS_KP_ANY 2.5.29.37.0 The certificate is to be used for any purpose. When

in a CA certificate, it indicates that the CA is al-
lowed to sign any kind of certificates.

Table 4.4: Key purpose object identifiers.

L see http://pll-glue.freedesktop.org/trust-module.html.

http://p11-glue.freedesktop.org/trust-module.html

Chapter 4: Authentication methods 37

With such modules, it is recommended to use the verification functions (un-
defined) [gnutls_x509_trust_list_verify_crt2], page (undefined), or (undefined)
[gnutls_certificate_verify_peers|, page (undefined), which allow to explicitly specify the key
purpose. The other verification functions which do not allow setting a purpose, would
operate as if GNUTLS_KP_TLS_WWW_SERVER was requested from the trusted authorities.

4.1.2 OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are
the same as a CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice
signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer.
For example in (undefined) [fig-openpgp], page (undefined), David trusts Alice to be an
introducer and Alice signed Bob’s key thus Dave trusts Bob’s key to be the real one.

XL

Trust
\{ }
~

{Tszt}
1

Bob Charlie

Figure 4.4: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

Chapter 4: Authentication methods 38

Field Description

version The field that indicates the version of the OpenPGP structure.

user ID An RFC 2822 string that identifies the owner of the key. There
may be multiple user identifiers in a key.

public key The main public key of the certificate.

expiration The expiration time of the main public key.

public subkey An additional public key of the certificate. There may be

multiple subkeys in a certificate.

public subkey The expiration time of the subkey.
expiration

Table 4.5: OpenPGP certificate fields.

4.1.2.1 OpenPGP certificate structure

In GnuTLS the OpenPGP certificate structures [RFC2440] are handled using the gnutls_
openpgp_crt_t type. A typical certificate contains the user ID, which is an RFC 2822
mail and name address, a public key, possibly a number of additional public keys (called
subkeys), and a number of signatures. The various fields are shown in Table 4.4.

The additional subkeys may provide key for various different purposes, e.g. one key to
encrypt mail, and another to sign a TLS key exchange. Each subkey is identified by a
unique key ID. The keys that are to be used in a TLS key exchange that requires signatures
are called authentication keys in the OpenPGP jargon. The mapping of TLS key exchange
methods to public keys is shown in Table 4.5.

Key exchange Public key requirements

RSA An RSA public key that allows encryption.
DHE_RSA An RSA public key that is marked for authentication.
ECDHE_RSA An RSA public key that is marked for authentication.
DHE_DSS A DSA public key that is marked for authentication.

Table 4.6: The types of (sub)keys required for the various TLS key exchange methods.

The corresponding private keys are stored in the gnutls_openpgp_privkey_t type. All the
prototypes for the key handling functions can be found in gnutls/openpgp.h.

Chapter 4: Authentication methods 39

4.1.2.2 Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do
not use the features of the “web of trust”. For that reason, if the verification needs are
complex, the assistance of external tools like GnuPG and GPGME? is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the
[gnutls_openpgp_crt_verify_ring], page 453. This checks an OpenPGP key against
a given set of public keys (keyring) and returns the key status. The key verification status
is the same as in X.509 certificates, although the meaning and interpretation are different.
For example an OpenPGP key may be valid, if the self signature is ok, even if no signers
were found. The meaning of verification status flags is the same as in the X.509 certificates
(see Figure 4.3).

int gnutls_openpgp_crt_verify_ring (gnutls_openpgp-crt_t key, [Function]
gnutls_openpgp_keyring_t keyring, unsigned int flags, unsigned int *
verify)

key: the structure that holds the key.

keyring: holds the keyring to check against

flags: unused (should be 0)

verify: will hold the certificate verification output.

Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

int gnutls_openpgp_crt_verify_self (gnutls_openpgp-crt_t key, [Function]
unsigned int flags, unsigned int * verify)
key: the structure that holds the key.

flags: unused (should be 0)
verify: will hold the key verification output.

Verifies the self signature in the key. The key verification output will be put in verify
and will be one or more of the gnutls_certificate_status_t enumerated elements bitwise
or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

4.1.2.3 Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring
file in the credentials structure. The certificates in this file will be used by
[gnutls_certificate_verify_peers3], page 289 to verify the signatures in the certificate sent
by the peer.

2 http://www.gnupg.org/related_software/gpgme/

http://www.gnupg.org/related_software/gpgme/

Chapter 4: Authentication methods 40

int gnutls_certificate_set_openpgp_keyring_file [Function]
(gnutls_certificate_credentials_t ¢, const char * file, gnutls_openpgp_crt_fmt_t
format)

c: A certificate credentials structure
file: filename of the keyring.
format: format of keyring.

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.1.3 Advanced certificate verification

The verification of X.509 certificates in the HTTPS and other Internet protocols is
typically done by loading a trusted list of commercial Certificate Authorities (see
[gnutls_certificate_set_x509_system_trust], page 286), and using them as trusted anchors.
However, there are several examples (eg. the Diginotar incident) where one of these
authorities was compromised. This risk can be mitigated by using in addition to CA
certificate verification, other verification methods. In this section we list the available in
GnuTLS methods.

4.1.3.1 Verifying a certificate using trust on first use
authentication

It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That
is the concept used by the SSH programs, where the public key of the peer is not verified,
or verified in an out-of-bound way, but subsequent connections to the same peer require
the public key to remain the same. Such a system in combination with the typical CA
verification of a certificate, and OCSP revocation checks, can help to provide multiple
factor verification, where a single point of failure is not enough to compromise the system.
For example a server compromise may be detected using OCSP, and a CA compromise can
be detected using the trust on first use method. Such a hybrid system with X.509 and trust
on first use authentication is shown in Section 7.1.2 [Simple client example with SSH-style
certificate verification|, page 147.

See Section 6.12.2 [Certificate verification], page 136 on how to use the available function-
ality.

4.1.3.2 Verifying a certificate using DANE (DNSSEC)

The DANE protocol is a protocol that can be used to verify TLS certificates using the
DNS (or better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide an
alternative public key infrastructure to the commercial CAs that are typically used to sign
TLS certificates. The DANE protocol takes advantage of the DNSSEC infrastructure to
verify TLS certificates. This can be in addition to the verification by CA infrastructure
or may even replace it where DNSSEC is fully deployed. Note however, that DNSSEC
deployment is fairly new and it would be better to use it as an additional verification
method rather than the only one.

Chapter 4: Authentication methods 41

The DANE functionality is provided by the libgnutls-dane library that is shipped with
GnuTLS and the function prototypes are in gnutls/dane.h. See Section 6.12.2 [Certificate
verification], page 136 for information on how to use the library.

Note however, that the DANE RFC mandates the verification methods one should use in
addition to the validation via DNSSEC TLSA entries. GnuTLS doesn’t follow that RFC
requirement, and the term DANE verification in this manual refers to the TLSA entry
verification. In GnuTLS any other verification methods can be used (e.g., PKIX or TOFU)
on top of DANE.

4.1.4 Digital signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature
could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 euro to Greenpeace and find out that they donated 1.000.000 euros to Bad Inc.

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(zx), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair z,y with y = H(x) it is
impossible to calculate an =’ such that y = H(z').

3. Collision resistance. That means that it is impossible to calculate random = and z’
such H(z') = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 gherations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 2%, but it
has been showed to have a collision strength well under 2°°. As of November 2005, it is
believed that SHA-1’s collision strength is around 2%3. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 2% can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

Chapter 4: Authentication methods 42

4.1.4.1 Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and
get a GNUTLS_CERT_INSECURE_ALGORITHM validation error (see Section 4.1.1.5 [Verifying
X.509 certificate paths], page 25), it means that somewhere in the certificate chain there is
a certificate signed using RSA-MD2 or RSA-MD5. These two digital signature algorithms are
considered broken, so GnuTLS fails verifying the certificate. In some situations, it may be
useful to be able to verify the certificate chain anyway, assuming an attacker did not utilize
the fact that these signatures algorithms are broken. This section will give help on how to
achieve that.

It is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The
certificates in the trusted list are considered trusted irrespective of the signature.

If you are using [gnutls_certificate_verify_peers3], page 289 to verify the certificate chain,
you can call [gnutls_certificate_set_verify_flags], page 281 with the flags:

e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

as in the following example:

gnutls_certificate_set_verify_flags (x509cred,
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

This will signal the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using [gnutls_x509_crt_verify], page 414 or [gnutls_x509_crt_list_verify], page 404,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags
parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself,
you can use [gnutls_certificate_get_peers|, page 278 to extract the raw server’s certificate
chain, [gnutls_x509_crt_list_import|, page 403 to parse each of the certificates, and then
[gnutls_x509_crt_get_signature_algorithm], page 400 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2
or GNUTLS_SIGN_RSA_MD5, you could present a warning.

4.2 More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several
other structures that are used for certificate requests, encrypted private keys, revocation
lists, GnuTLS abstract key structures, etc., are discussed in this chapter.

4.2.1 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986]. Other formats of certificate requests are not currently supported.

Chapter 4: Authentication methods 43

A certificate request can be generated by associating it with a private key, setting the
subject’s information and finally self signing it. The last step ensures that the requester is
in possession of the private key.

int [gnutls_x509_crq_set_version], page 382 (gnutls_x509_crq_t crq, unsigned
int version)

int [gnutls_x509_crq_set_dn], page 379 (gnutls_x509_crq_t crq, const char *
dn, const char *x err)

int [gnutls_x509_crq_set_dn_by_oid], page 380 (gnutls_x509_crq_t crg, const
char * oid, unsigned int raw_flag, const void * data, unsigned int sizeof_data)
int [gnutls_x509_crq_set_key_usagel], page 381 (gnutls_x509_crq_t crq,
unsigned int usage)

int [gnutls_x509_crq_set_key_purpose_oid], page 380 (gnutls_x509_crq_t crq,
const void * oid, unsigned int critical)

int [gnutls_x509_crq_set_basic_constraints], page 379 (gnutls_x509_crq_t

crq, unsigned int ca, int pathLenConstraint)

The [gnutls_x509_crq-set_key], page 380 and [gnutls_x509_crq_sign2|, page 382 functions
associate the request with a private key and sign it. If a request is to be signed with a
key residing in a PKCS #11 token it is recommended to use the signing functions shown in
Section 5.1 [Abstract key types|, page 79.

int gnutls_x509_crq_set_key (gnutls_x509_crq-t crq, [Function]
gnutls_x509_privkey_t key)
crq: should contain a gnutls_x509_crq_t structure
key: holds a private key
This function will set the public parameters from the given private key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int gnutls_x509_crq_sign2 (gnutls_x509_crq-t crq, [Function]
gnutls_x509_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)
crq: should contain a gnutls_x509_crq_t structure

key: holds a private key
dig: The message digest to use, i.e., GNUTLS_DIG_SHA1
flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

The following example is about generating a certificate request, and a private key. A
certificate request can be later be processed by a CA which should return a signed certificate.

Chapter 4: Authentication methods

/* This

example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include
#endif

#include
#include
#include
#include
#include
#include
#include

/* This
* reque

*/

int main

{

<config.h>

<stdio.h>
<stdlib.h>
<string.h>
<gnutls/gnutls.h>
<gnutls/x509.h>
<gnutls/abstract.h>
<time.h>

example will generate a private key and a certificate
st.

(void)

gnutls_x509_crq_t crq;
gnutls_x509_privkey_t key;

unsigned char buffer[10 * 1024];
size_t buffer_size = sizeof (buffer);
unsigned int bits;

gnutls_global_init();

/* Initialize an empty certificate request, and
* an empty private key.
*/

gnutls_x509_crq_init (&crq);

gnutls_x509_privkey_init (&key);

/* Generate an RSA key of moderate security.
*/
bits =
gnutls_sec_param_to_pk_bits(GNUTLS_PK_RSA,
GNUTLS_SEC_PARAM_MEDIUM) ;
gnutls_x509_privkey_generate(key, GNUTLS_PK_RSA, bits, 0);

/* Add stuff to the distinguished name
*/
gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_OID_X520_COUNTRY_NAME,
O, "GR" s 2) ;

Chapter 4: Authentication methods 45

gnutls_x509_crq_set_dn_by_oid(crq, GNUTLS_0ID_X520_COMMON_NAME,
0, "Nikos", strlen("Nikos"));

/* Set the request version.
*/

gnutls_x509_crq_set_version(crq, 1);

/* Set a challenge password.
*/
gnutls_x509_crq_set_challenge_password(crq,
"something to remember here");

/* Associate the request with the private key
*/
gnutls_x509_crq_set_key(crq, key);

/* Self sign the certificate request.
*/
gnutls_x509_crq_sign2(crq, key, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and
* display it.
*/
gnutls_x509_crq_export(crq, GNUTLS_X509_FMT_PEM, buffer,
&buffer_size);

printf ("Certificate Request: \n¥s", buffer);

/* Export the PEM encoded private key, and
* display it.
*/
buffer_size = sizeof (buffer);
gnutls_x509_privkey_export(key, GNUTLS_X509_FMT_PEM, buffer,
&buffer_size);

printf ("\n\nPrivate key: \n’%s", buffer);

gnutls_x509_crq_deinit(crq);
gnutls_x509_privkey_deinit (key) ;

return O;

Chapter 4: Authentication methods 46

4.2.2 PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically con-
taining a list of revoked certificates serial numbers. The CRL structure is signed with the
issuing authorities’” keys. A typical CRL contains the fields as shown in Table 4.6. Certifi-
cate revocation lists are used to complement the expiration date of a certificate, in order to
account for other reasons of revocation, such as compromised keys, etc.

Each CRL is valid for limited amount of time and is required to provide, except for the
current issuing time, also the issuing time of the next update.

Field Description

version The field that indicates the version of the CRL structure.

signature A signature by the issuing authority.

issuer Holds the issuer’s distinguished name.

thisUpdate The issuing time of the revocation list.

nextUpdate The issuing time of the revocation list that will update that
one.

revokedCertificates List of revoked certificates serial numbers.

extensions Optional CRL structure extensions.

Table 4.7: Certificate revocation list fields.
The basic CRL structure functions follow.

int [gnutls_x509_crl_init], page 365 (gnutls_x509_crl_t * crl)

int [gnutls_x509_crl_import], page 365 (gnutls_x509_crl_t crl, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_x509_crl_export], page 358 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)
int [gnutls_x509_crl_export], page 358 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

Reading a CRL

The most important function that extracts the certificate revocation information from a
CRL is [gnutls_x509_crl_get_crt_serial], page 360. Other functions that return other fields
of the CRL structure are also provided.

int gnutls_x509_crl_get_crt_serial (gnutls-x509-crl_-t crl, int [Function]
indx, unsigned char * serial, size_t * serial_size, time_t * t)
crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)

Chapter 4: Authentication methods 47

serial: where the serial number will be copied
serial_size: initially holds the size of serial
t: if non null, will hold the time this certificate was revoked

This function will retrieve the serial number of the specified, by the index, revoked
certificate.

Note that this function will have performance issues in large sequences of revoked
certificates. In that case use gnutls_x509_crl_iter_crt_serial() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int [gnutls_x509_crl_get_version], page 364 (gnutls_x509_crl_t crl)

int [gnutls_x509_crl_get_issuer_dn], page 362 (const gnutls_x509_crl_t crl,
char * buf, size_t * sizeof_buf)

int [gnutls_x509_crl_get_issuer_dn2], page 362 (gnutls_x509_crl_t crl,
gnutls_datum_t * dn)

time_t [gnutls_x509_crl_get_this_update], page 364 (gnutls_x509_crl_t crl)
time_t [gnutls_x509_crl_get_next_update], page 363 (gnutls_x509_crl_t crl)
int [gnutls_x509_crl_get_crt_count], page 360 (gnutls_x509_crl_t crl)

Generation of a CRL

The following functions can be used to generate a CRL.

int [gnutls_x509_crl_set_version], page 368 (gnutls_x509_crl_t crl, unsigned
int version)

int [gnutls_x509_crl_set_crt_seriall, page 367 (gnutls_x509_crl_t crl, const
void * serial, size_t serial_size, time_t revocation_time)

int [gnutls_x509_crl_set_crt], page 367 (gnutls_x509_crl_t crl,
gnutls_x509_crt_t crt, time_t revocation_time)

int [gnutls_x509_crl_set_next_update], page 367 (gnutls_x509_crl_t crl,
time_t exp_time)

int [gnutls_x509_crl_set_this_update], page 368 (gnutls_x509_crl_t crl,
time_t act_time)

The [gnutls_x509_crl_sign2|, page 368 and [gnutls_x509_crl_privkey_sign|, page 505 func-
tions sign the revocation list with a private key. The latter function can be used to sign
with a key residing in a PKCS #11 token.

int gnutls_x509_crl_sign2 (gnutls_x509_crl_-t crl, gnutls_x509_crt_t [Function]
issuer, gnutls_x509_privkey_t issuer_key, gnutls_digest_algorithm_t dig,
unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAL is the safe choice unless you
know what you're doing.

flags: must be 0

Chapter 4: Authentication methods 48

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int gnutls_x509_crl_privkey_sign (gnutls_x509_crl_-t crl, [Function]
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAT1 is the safe choice unless you
know what you're doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 2.12.0

Few extensions on the CRL structure are supported, including the CRL number extension
and the authority key identifier.

int [gnutls_x509_crl_set_number], page 367 (gnutls_x509_crl_t crl, const void
* nr, size_t nr_size)

int [gnutls_x509_crl_set_authority_key_id], page 366 (gnutls_x509_crl_t crl,
const void * id, size_t id_size)

4.2.3 0OCSP certificate status checking

Certificates may be revoked before their expiration time has been reached. There are several
reasons for revoking certificates, but a typical situation is when the private key associated
with a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs)
have been used by application to implement revocation checking, however, several problems
with CRLs have been identified [RIVESTCRL).

The Online Certificate Status Protocol, or OCSP [RFC2560], is a widely implemented pro-
tocol which performs certificate revocation status checking. An application that wish to
verify the identity of a peer will verify the certificate against a set of trusted certificates
and then check whether the certificate is listed in a CRL and/or perform an OCSP check
for the certificate.

Note that in the context of a TLS session the server may provide an OCSP response that
will be used during the TLS certificate verification (see [gnutls_certificate_verify_peers2],
page 289). You may obtain this response using [gnutls_ocsp_status_request_get|, page 311.

Chapter 4: Authentication methods 49

Before performing the OCSP query, the application will need to figure out the address of
the OCSP server. The OCSP server address can be provided by the local user in manual
configuration or may be stored in the certificate that is being checked. When stored in a
certificate the OCSP server is in the extension field called the Authority Information Access
(AIA). The following function extracts this information from a certificate.

int [gnutls_x509_crt_get_authority_info_access], page 385 (gnutls_x509_crt_t
crt, unsigned int seq, int what, gnutls_datum_t * data, unsigned int *
critical)

There are several functions in GnuTLS for creating and manipulating OCSP requests and
responses. The general idea is that a client application creates an OCSP request object,
stores some information about the certificate to check in the request, and then exports the
request in DER format. The request will then need to be sent to the OCSP responder, which
needs to be done by the application (GnuTLS does not send and receive OCSP packets).
Normally an OCSP response is received that the application will need to import into an
OCSP response object. The digital signature in the OCSP response needs to be verified
against a set of trust anchors before the information in the response can be trusted.

The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the
structures to get an understanding of which fields are modified by GnuTLS functions.

O0CSPRequest D= SEQUENCE {

tbsRequest TBSRequest,

optionalSignature [o] EXPLICIT Signature OPTIONAL }
TBSRequest 1= SEQUENCE {

version (o] EXPLICIT Version DEFAULT vl1,

requestorName [1] EXPLICIT GeneralName OPTIONAL,

requestList SEQUENCE OF Request,

requestExtensions [2] EXPLICIT Extensions OPTIONAL }
Request Di= SEQUENCE {

reqCert CertID,

singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }
CertID i:= SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

issuerNameHash OCTET STRING, —-- Hash of Issuer’s DN

issuerKeyHash OCTET STRING, -- Hash of Issuers public key

serialNumber CertificateSerialNumber }

The basic functions to initialize, import, export and deallocate OCSP requests are the
following.

Chapter 4: Authentication methods 50

int [gnutls_ocsp_req_init], page 435 (gnutls_ocsp_req_t * req)

void [gnutls_ocsp_req_deinit], page 433 (gnutls_ocsp_req_t req)

int [gnutls_ocsp_req_import], page 435 (gnutls_ocsp_req_t req, const
gnutls_datum_t * data)

int [gnutls_ocsp_req_export], page 433 (gnutls_ocsp_req_t req, gnutls_datum_t
* data)

int [gnutls_ocsp_req_print], page 435 (gnutls_ocsp_req_t req,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

To generate an OCSP request the issuer name hash, issuer key hash, and the checked
certificate’s serial number are required. There are two interfaces available for setting those
in an OCSP request. The is a low-level function when you have the issuer name hash, issuer
key hash, and certificate serial number in binary form. The second is more useful if you
have the certificate (and its issuer) in a gnutls_x509_crt_t type. There is also a function
to extract this information from existing an OCSP request.

int [gnutls_ocsp_req_add_cert_id], page 433 (gnutls_ocsp_req_t regq,
gnutls_digest_algorithm_t digest, const gnutls_datum_t * issuer_name_hash,
const gnutls_datum_t * issuer_key_hash, const gnutls_datum_t * serial_number)
int [gnutls_ocsp_req_add_cert], page 432 (gnutls_ocsp_req_t req,
gnutls_digest_algorithm_t digest, gnutls_x509_crt_t issuer,
gnutls_x509_crt_t cert)

int [gnutls_ocsp_req_get_cert_id], page 433 (gnutls_ocsp_req_t req, unsigned
indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t * issuer_name_hash,
gnutls_datum_t * issuer_key_hash, gnutls_datum_t * serial_number)

Each OCSP request may contain a number of extensions. Extensions are identified by an
Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied
by the OID. You can extract or set those extensions using the following functions.

int [gnutls_ocsp_req_get_extension], page 434 (gnutls_ocsp_req_t req,
unsigned indx, gnutls_datum_t * oid, unsigned int * critical, gnutls_datum_t *
data)

int [gnutls_ocsp_req_set_extension], page 436 (gnutls_ocsp_req_t req, const
char * oid, unsigned int critical, const gnutls_datum_t * data)

A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which
is used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension
carries a value that is intended to be sufficiently random and unique so that an attacker
will not be able to give a stale response for the same nonce.

int [gnutls_ocsp_req_get_noncel], page 434 (gnutls_ocsp_req_t req, unsigned
int * critical, gnutls_datum_t * nonce)

int [gnutls_ocsp_req_set_noncel], page 436 (gnutls_ocsp_req_t req, unsigned
int critical, const gnutls_datum_t * nonce)

int [gnutls_ocsp_req_randomize_nonce], page 436 (gnutls_ocsp_req_t req)

The OCSP response structures is a complex structure. A simplified overview of it is in
Table 4.7. Note that a response may contain information on multiple certificates.

Chapter 4: Authentication methods 51

Field Description

version The OCSP response version number (typically 1).

responder 1D An identifier of the responder (DN name or a hash of its key).
issue time The time the response was generated.

thisUpdate The issuing time of the revocation information.

nextUpdate The issuing time of the revocation information that will up-

date that one.

Revoked certificates
certificate status The status of the certificate.
certificate serial The certificate’s serial number.
revocationTime The time the certificate was revoked.

revocationReason The reason the certificate was revoked.

Table 4.8: The most important OCSP response fields.

We provide basic functions for initialization, importing, exporting and deallocating OCSP
responses.

int [gnutls_ocsp_resp_init], page 441 (gnutls_ocsp_resp_t * resp)

void [gnutls_ocsp_resp_deinit], page 437 (gnutls_ocsp_resp_t resp)

int [gnutls_ocsp_resp_import], page 440 (gnutls_ocsp_resp_t resp, const
gnutls_datum_t * data)

int [gnutls_ocsp_resp_export], page 437 (gnutls_ocsp_resp_t resp,
gnutls_datum_t * data)

int [gnutls_ocsp_resp_print], page 441 (gnutls_ocsp_resp_t resp,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

The utility function that extracts the revocation as well as other information from a response
is shown below.

int gnutls_ocsp_resp_get_single (gnutls_ocsp_resp_t resp, [Function]
unsigned indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t *
issuer_name_hash, gnutls_.datum_t * issuer_key_hash, gnutls_datum_t *
serial_number, unsigned int * cert_status, time_t * this_update,
time_t * next_update, time_t * revocation_time, unsigned int *
revocation_reason)
resp: should contain a gnutls_ocsp_resp_t structure

Chapter 4: Authentication methods 52

indx: Specifies response number to get. Use (0) to get the first one.

digest: output variable with gnutls_digest_algorithm_t hash algorithm

issuer_name_hash: output buffer with hash of issuer’s DN

issuer_key_hash: output buffer with hash of issuer’s public key

serial_number: output buffer with serial number of certificate to check

cert_status: a certificate status, a gnutls_ocsp_cert_status_t enum.

this_update: time at which the status is known to be correct.

next_update: when newer information will be available, or (time_t)-1 if unspecified

revocation_time: when cert_status is GNUTLS_OCSP_CERT_REVOKED , holds time of
revocation.

revocation_reason: revocation reason, a gnutls_x509_crl_reason_t enum.

This function will return the certificate information of the indx ’ed response in the
Basic OCSP Response resp . The information returned corresponds to the OCSP
SingleResponse structure except the final singleExtensions.

Each of the pointers to output variables may be NULL to indicate that the caller is
not interested in that value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned. If you have reached the last CertID available GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE will be returned.

The possible revocation reasons available in an OCSP response are shown below.

Chapter 4: Authentication methods 53

GNUTLS_X509_CRLREASON_UNSPECIFIED
Unspecified reason.

GNUTLS_X509_CRLREASON_KEYCOMPROMISE
Private key compromised.

GNUTLS_X509_CRLREASON_CACOMPROMISE
CA compromised.

GNUTLS_X509_CRLREASON_AFFILTATIONCHANGED
Affiliation has changed.

GNUTLS_X509_CRLREASON_SUPERSEDED
Certificate superseded.

GNUTLS_X509_CRLREASON_CESSATIONOFOPERATION
Operation has ceased.

GNUTLS_X509_CRLREASON_CERTIFICATEHOLD
Certificate is on hold.

GNUTLS_X509_CRLREASON_REMOVEFROMCRL
Will be removed from delta CRL.

GNUTLS_X509_CRLREASON_PRIVILEGEWITHDRAWN
Privilege withdrawn.

GNUTLS_X509_CRLREASON_AACOMPROMISE
AA compromised.

Figure 4.5: The revocation reasons

Note, that the OCSP response needs to be verified against some set of trust anchors before
it can be relied upon. It is also important to check whether the received OCSP response
corresponds to the certificate being checked.

int [gnutls_ocsp_resp_verify], page 441 (gnutls_ocsp_resp_t resp,
gnutls_x509_trust_list_t trustlist, unsigned int * verify, unsigned int flags)
int [gnutls_ocsp_resp_verify_direct], page 442 (gnutls_ocsp_resp_t resp,
gnutls_x509_crt_t issuer, unsigned int * verify, unsigned int flags)

int [gnutls_ocsp_resp_check_crt], page 436 (gnutls_ocsp_resp_t resp, unsigned
int indx, gnutls_x509_crt_t crt)

4.2.4 Managing encrypted keys

Transferring or storing private keys in plain may not be a good idea, since any compromise
is irreparable. Storing the keys in hardware security modules (see Section 5.2 [Smart cards
and HSMs|, page 85) could solve the storage problem but it is not always practical or
efficient enough. This section describes ways to store and transfer encrypted private keys.

There are methods for key encryption, namely the PKCS #8, PKCS #12 and OpenSSL’s
custom encrypted private key formats. The PKCS #8 and the OpenSSL’s method allow
encryption of the private key, while the PKCS #12 method allows, in addition, the bundling

Chapter 4: Authentication methods 54

of accompanying data into the structure. That is typically the corresponding certificate, as
well as a trusted CA certificate.

High level functionality

Generic and higher level private key import functions are available, that import plain or
encrypted keys and will auto-detect the encrypted key format.

int gnutls_privkey_import_x509_raw (gnutls_privkey_t pkey, const [Function]

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *
password, unsigned int flags)

pkey: The private key

data: The private key data to be imported

format: The format of the private key

password: A password (optional)

flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t

This function will import the given private key to the abstract gnutls_privkey_t
structure.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int gnutls_x509_privkey_import2 (gnutls_x509_privkey_t key, const [Function]
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *
password, unsigned int flags)
key: The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: A password (optional)

flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t

This function will import the given DER or PEM encoded key, to the native gnutls_
x509_privkey_t format, irrespective of the input format. The input format is auto-
detected.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

If the provided key is encrypted but no password was given, then GNUTLS_E_
DECRYPTION_FAILED is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Any keys imported using those functions can be imported to a certificate credentials struc-
ture using [gnutls_certificate_set_key|, page 482, or alternatively they can be directly im-
ported using [gnutls_certificate_set_x509_key _file2], page 284.

Chapter 4: Authentication methods 55

PKCS #8 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions
below. An addition to the normal import functions, are a password and a flags argument.
The flags can be any element of the gnutls_pkcs_encrypt_flags_t enumeration. Note
however, that GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys
encrypted with the obsolete PBES1 scheme cannot be decrypted.

int [gnutls_x509_privkey_import_pkcs8], page 424 (gnutls_x509_privkey_t key,
const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *
password, unsigned int flags)

int [gnutls_x509_privkey_export_pkcs8], page 420 (gnutls_x509_privkey_t key,
gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags, void *
output_data, size_t * output_data_size)

int [gnutls_x509_privkey_export2_pkcs8], page 418 (gnutls_x509_privkey_t
key, gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags,
gnutls_datum_t * out)

GNUTLS_PKCS_PLAIN
Unencrypted private key.

GNUTLS_PKCS_USE_PKCS12_3DES
PKCS-12 3DES.

GNUTLS_PKCS_USE_PKCS12_ARCFQOUR
PKCS-12 ARCFOUR.

GNUTLS_PKCS_USE_PKCS12_RC2_40
PKCS-12 RC2-40.

GNUTLS_PKCS_USE_PBES2_3DES
PBES2 3DES.

GNUTLS_PKCS_USE_PBES2_AES_128
PBES2 AES-128.

GNUTLS_PKCS_USE_PBES2_AES_192
PBES2 AES-192.

GNUTLS_PKCS_USE_PBES2_AES_256
PBES2 AES-256.

GNUTLS_PKCS_NULL_PASSWORD
Some schemas distinguish between an empty and a NULL password.

Figure 4.6: Encryption flags

PKCS #12 structures

A PKCS #12 structure [PKCS12] usually contains a user’s private keys and certificates.
It is commonly used in browsers to export and import the user’s identities. A file con-
taining such a key can be directly imported to a certificate credentials structure by using
[gnutls_certificate_set_x509_simple_pkes12_file], page 285.

Chapter 4: Authentication methods 56

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
A bag of type encrypted should be decrypted in order for its data to be accessed.

To reduce the complexity in parsing the structures the simple helper function
[gnutls_pkes12_simple_parse], page 467 is provided. For more advanced uses, manual
parsing of the structure is required using the functions below.

int [gnutls_pkcsl12_get_bagl, page 466 (gnutls_pkcsl12_t pkcs12, int indx,
gnutls_pkcsl12_bag_t bag)

int [gnutls_pkcsl2_verify_mac], page 468 (gnutls_pkcsl2_t pkcs12, const char
* pass)

int [gnutls_pkcsl12_bag_decrypt], page 462 (gnutls_pkcsl2_bag_t bag, const
char * pass)

int [gnutls_pkcsl2_bag_get_count], page 463 (gnutls_pkcsl2_bag_t bag)

int gnutls_pkcsl12_simple_parse (gnutls_pkcsl2_t p12, const char * [Function]

password, gnutls_x509_privkey_t * key, gnutls_x509_crt_t ** chain, unsigned
int * chain_len, gnutls_x509_crt_t ** extra_certs, unsigned int *
extra_certs_len, gnutls_x509_crl_t * crl, unsigned int flags)

pl2: should contain a gnutls_pkesl12_t structure

password: optional password used to decrypt the structure, bags and keys.

key: a structure to store the parsed private key.

chain: the corresponding to key certificate chain (may be NULL)

chain_len: will be updated with the number of additional (may be NULL)

extra_certs: optional pointer to receive an array of additional certificates found in the
PKCS12 structure (may be NULL).

extra_certs_len: will be updated with the number of additional certs (may be NULL).
crl: an optional structure to store the parsed CRL (may be NULL).

flags: should be zero or one of GNUTLS_PKCS12_SP_*

This function parses a PKCS12 structure in pkcs12 and extracts the private key, the
corresponding certificate chain, any additional certificates and a CRL.

The extra_certs and extra_certs_len parameters are optional and both may be
set to NULL . If either is non-NULL , then both must be set. The value for extra_certs
is allocated using gnutls_malloc() .

Encrypted PKCS12 bags and PKCS8 private keys are supported, but only with pass-
word based security and the same password for all operations.

Note that a PKCS12 structure may contain many keys and/or certificates, and there
is no way to identify which key/certificate pair you want. For this reason this function
is useful for PKCS12 files that contain only one key/certificate pair and/or one CRL.
If the provided structure has encrypted fields but no password is provided then this
function returns GNUTLS_E_DECRYPTION_FAILED .

Note that normally the chain constructed does not include self signed certificates, to
comply with TLS’ requirements. If, however, the flag GNUTLS_PKCS12_SP_INCLUDE_
SELF_SIGNED is specified then self signed certificates will be included in the chain.

Chapter 4: Authentication methods 57

Prior to using this function the PKCS 12 structure integrity must be verified using
gnutls_pkcsl2_verify_mac() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_pkcsl12_bag_get_datal, page 463 (gnutls_pkcsl2_bag_t bag, int
indx, gnutls_datum_t * data)

int [gnutls_pkcsl2_bag_get_key_id], page 463 (gnutls_pkcsl2_bag_t bag, int
indx, gnutls_datum_t * id)

int [gnutls_pkcsl12_bag_get_friendly_name], page 463 (gnutls_pkcsl2_bag_t

bag, int indx, char ** name)

The functions below are used to generate a PKCS #12 structure. An example of their usage
is shown at Section 7.4.4 [PKCS12 structure generation example], page 219.

int [gnutls_pkcsl12_set_bagl, page 467 (gnutls_pkcsl2_t pkcs12,
gnutls_pkcsl12_bag_t bag)

int [gnutls_pkcsl2_bag_encrypt], page 462 (gnutls_pkcsl2_bag_t bag, const
char * pass, unsigned int flags)

int [gnutls_pkcsl2_generate_mac], page 466 (gnutls_pkcsl2_t pkcsl12, const
char * pass)

int [gnutls_pkcsl2_bag_set_datal, page 464 (gnutls_pkcsl2_bag_t bag,
gnutls_pkcs12_bag_type_t type, const gnutls_datum_t * data)

int [gnutls_pkcsl12_bag_set_crl], page 464 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crl_t crl)

int [gnutls_pkcsl2_bag_set_crt], page 464 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crt_t crt)

int [gnutls_pkcs12_bag_set_key_id], page 465 (gnutls_pkcsl2_bag_t bag, int
indx, const gnutls_datum_t * id)

int [gnutls_pkcsl12_bag_set_friendly_name], page 465 (gnutls_pkcsl2_bag_t
bag, int indx, const char * name)

OpenSSL encrypted keys

Unfortunately the structures discussed in the previous sections are not the only struc-
tures that may hold an encrypted private key. For example the OpenSSL library offers
a custom key encryption method. Those structures are also supported in GnuTLS with
[gnutls_x509_privkey_import_openssl|, page 424.

int gnutls_x509_privkey_import_openssl (gnutls_x509_privkey_t [Function]
key, const gnutls_datum_t * data, const char * password)
key: The structure to store the parsed key

data: The DER or PEM encoded key.

password: the password to decrypt the key (if it is encrypted).

This function will convert the given PEM encrypted to the mnative
gnutls_x509_privkey_t format. The output will be stored in key .

The password should be in ASCII. If the password is not provided or wrong then
GNUTLS_E_DECRYPTION_FAILED will be returned.

Chapter 4: Authentication methods 58

If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and
the "DEK-Info" header.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.2.5 Invoking certtool

Tool to parse and generate X.509 certificates, requests and private keys. It can be used
interactively or non interactively by specifying the template command line option.

The tool accepts files or URLs supported by GnuTLS. In case PIN is required for the
URL access you can provide it using the environment variables GNUTLS_PIN and
GNUTLS_SO_PIN.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the certtool program. This software is released under the GNU General
Public License, version 3 or later.

certtool help/usage (--help)
This is the automatically generated usage text for certtool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

certtool is unavailable - no --help

debug option (-d)
This is the “enable debugging” option. This option takes a number argument. Specifies the

debug level.

generate-request option (-q)
This is the “generate a pkcs #10 certificate request” option.
This option has some usage constraints. It:

e must not appear in combination with any of the following options: infile.

Will generate a PKCS #10 certificate request. To specify a private key use —load-privkey.

verify-chain option (-e)

This is the “verify a pem encoded certificate chain” option. The last certificate in the chain
must be a self signed one.

verify option

This is the “verify a pem encoded certificate chain using a trusted list” option. The trusted
certificate list can be loaded with —load-ca-certificate. If no certificate list is provided, then
the system’s certificate list is used.

Chapter 4: Authentication methods 59

verify-crl option
This is the “verify a crl using a trusted list” option.
This option has some usage constraints. It:

e must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with —load-ca-certificate.

get-dh-params option

This is the “get the included pkes #3 encoded diffie-hellman parameters” option. Returns
stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The
parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.

load-privkey option

This is the “loads a private key file” option. This option takes a string argument. This can
be either a file or a PKCS #11 URL

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can
be either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This can
be either a file or a PKCS #11 URL

load-ca-privkey option

This is the “loads the certificate authority’s private key file” option. This option takes a
string argument. This can be either a file or a PKCS #11 URL

load-ca-certificate option

This is the “loads the certificate authority’s certificate file” option. This option takes a
string argument. This can be either a file or a PKCS #11 URL

password option

This is the “password to use” option. This option takes a string argument. You can use this
option to specify the password in the command line instead of reading it from the tty. Note,
that the command line arguments are available for view in others in the system. Specifying

i

password as ” is the same as specifying no password.

null-password option

This is the “enforce a null password” option. This option enforces a NULL password. This
is different than the empty or no password in schemas like PKCS #8.

Chapter 4: Authentication methods 60

empty-password option

This is the “enforce an empty password” option. This option enforces an empty password.
This is different than the NULL or no password in schemas like PKCS #8.

cprint option

This is the “in certain operations it prints the information in c-friendly format” option. In
certain operations it prints the information in C-friendly format, suitable for including into
C programs.

pl2-name option

This is the “the pkes #12 friendly name to use” option. This option takes a string argument.
The name to be used for the primary certificate and private key in a PKCS #12 file.
pubkey-info option

This is the “print information on a public key” option. The option combined with —load-
request, —load-pubkey, —load-privkey and —load-certificate will extract the public key of the
object in question.

to-pl12 option
This is the “generate a pkcs #12 structure” option.

This option has some usage constraints. It:

e must appear in combination with the following options: load-certificate.
It requires a certificate, a private key and possibly a CA certificate to be specified.

rsa option

)

This is the “generate rsa key” option. When combined with —generate-privkey generates

an RSA private key.

dsa option

This is the “generate dsa key” option. When combined with —generate-privkey generates a
DSA private key.

ecc option

This is the “generate ecc (ecdsa) key” option. When combined with —generate-privkey
generates an elliptic curve private key to be used with ECDSA.

ecdsa option

This is an alias for the ecc option, see [certtool ecc|, page 57.

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.
Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

Chapter 4: Authentication methods 61

inder option

9

This is the “use der format for input certificates, private keys, and dh parameters ” option.

This option has some usage constraints. It:

e can be disabled with —no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM
input would allow multiple input data (e.g. multiple certificates), when reading in DER
format a single data structure is read.

inraw option

This is an alias for the inder option, see [certtool inder|, page 57.

outder option

This is the “use der format for output certificates, private keys, and dh parameters” option.
This option has some usage constraints. It:
e can be disabled with —no-outder.

The output will be in DER or RAW format.

outraw option

This is an alias for the outder option, see [certtool outder], page 57.

curve option

This is the “specify the curve used for ec key generation” option. This option takes a string
argument. Supported values are secp192rl, secp224rl, secp256r1, secp384rl and secp521rl.

sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra]” option. This option
takes a string argument Security parameter. This is alternative to the bits option.
ask-pass option

This is the “enable interaction for entering password when in batch mode.” option. This
option will enable interaction to enter password when in batch mode. That is useful when
the template option has been specified.

pkcs-cipher option

This is the “cipher to use for pkcs #8 and #12 operations” option. This option takes a
string argument Cipher. Cipher may be one of 3des, 3des-pkcsl2, aes-128, aes-192, aes-256,
rc2-40, arcfour.

provider option

This is the “specify the pkcs #11 provider library” option. This option takes a string
argument. This will override the default options in /etc/gnutls/pkesll.conf

Chapter 4: Authentication methods 62

certtool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

certtool See Also
plltool (1)

certtool Examples

Generating private keys

To create an RSA private key, run:
$ certtool --generate-privkey --outfile key.pem --rsa

To create a DSA or elliptic curves (ECDSA) private key use the above command combined
with ’dsa’ or ’ecc’ options.

Generating certificate requests

To create a certificate request (needed when the certificate is issued by another party), run:

certtool --generate-request --load-privkey key.pem \
--outfile request.pem

If the private key is stored in a smart card you can generate a request by specifying the
private key object URL.

$./certtool --generate-request --load-privkey "pkcsll:..." \
--load-pubkey "pkcsll:..." --outfile request.pem

Generating a self-signed certificate

To create a self signed certificate, use the command:

$ certtool --generate-privkey --outfile ca-key.pem
$ certtool --generate-self-signed --load-privkey ca-key.pem \
--outfile ca-cert.pem
Note that a self-signed certificate usually belongs to a certificate authority, that signs other
certificates.

Generating a certificate

To generate a certificate using the previous request, use the command:
$ certtool --generate-certificate --load-request request.pem \
—--outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem
To generate a certificate using the private key only, use the command:
$ certtool --generate-certificate --load-privkey key.pem \
—--outfile cert.pem --load-ca-certificate ca-cert.pem \
--load-ca-privkey ca-key.pem

Chapter 4: Authentication methods 63

Certificate information
To view the certificate information, use:

$ certtool --certificate-info --infile cert.pem

PKCS #12 structure generation

To generate a PKCS #12 structure using the previous key and certificate, use the command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \
--to-pl2 --outder --outfile key.pl2

Some tools (reportedly web browsers) have problems with that file because it does not
contain the CA certificate for the certificate. To work around that problem in the tool, you
can use the —load-ca-certificate parameter as follows:

$ certtool --load-ca-certificate ca.pem \
--load-certificate cert.pem --load-privkey key.pem \
--to-pl2 --outder --outfile key.pl2

Diffie-Hellman parameter generation

To generate parameters for Diffie-Hellman key exchange, use the command:

$ certtool --generate-dh-params --outfile dh.pem --sec-param medium

Proxy certificate generation

Proxy certificate can be used to delegate your credential to a temporary, typically short-
lived, certificate. To create one from the previously created certificate, first create a tem-
porary key and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem

$ certtool --generate-proxy --load-ca-privkey key.pem \
--load-privkey proxy-key.pem --load-certificate cert.pem \
--outfile proxy-cert.pem

Certificate revocation list generation
To create an empty Certificate Revocation List (CRL) do:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
--load-ca-certificate x509-ca.pem

To create a CRL that contains some revoked certificates, place the certificates in a file and
use ——load-certificate as follows:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \
--load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

To verify a Certificate Revocation List (CRL) do:

$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

certtool Files

Chapter 4: Authentication methods 64

Certtool’s template file format

A template file can be used to avoid the interactive questions of certtool. Initially create a
file named ’cert.cfg’ that contains the information about the certificate. The template can
be used as below:

$ certtool --generate-certificate --load-privkey key.pem \
--template cert.cfg --outfile cert.pem \
--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file that can be used to generate a certificate request or a self
signed certificate follows.

X.509 Certificate options
#
DN options

The organization of the subject.
organization = "Koko inc."

The organizational unit of the subject.
unit = "sleeping dept."

The locality of the subject.
locality =

The state of the certificate owner.
state = "Attiki"

The country of the subject. Two letter code.
country = GR

The common name of the certificate owner.
cn = "Cindy Lauper"

A user id of the certificate owner.
#uid = "clauper"

Set domain components
#dc = "name"
#dc = "domain"

If the supported DN OIDs are not adequate you can set

any OID here.

For example set the X.520 Title and the X.520 Pseudonym
by using OID and string pairs.

#dn_oid = 2.5.4.12 Dr.

#dn_oid = 2.5.4.65 jackal

This is deprecated and should not be used in new

Chapter 4: Authentication methods 65

certificates.
pkcs9_email = "noneCnone.org"

**

An alternative way to set the certificate’s distinguished name directly
is with the "dn" option. The attribute names allowed are:

C (country), street, 0 (organization), OU (unit), title, CN (common name),
L (locality), ST (state), placeOfBirth, gender, country0fCitizenship,
country0OfResidence, serialNumber, telephoneNumber, surName, initials,
generationQualifier, givenName, pseudonym, dnQualifier, postalCode, name,
businessCategory, DC, UID, jurisdictionOfIncorporationLocalityName,
jurisdictionOfIncorporationStateOrProvinceName,
jurisdictionOfIncorporationCountryName, XmppAddr, and numeric OIDs.

H O H HF HE K R HH

#dn = "cn=Nik,st=Attiki,C=GR,surName=Mavrogiannopoulos,2.5.4.9=Arkadias"

The serial number of the certificate
Comment the field for a time-based serial number.
serial = 007

In how many days, counting from today, this certificate will expire.
Use -1 if there is no expiration date.
expiration_days = 700

Alternatively you may set concrete dates and time. The GNU date string
formats are accepted. See:
http://www.gnu.org/software/tar/manual/html_node/Date-input-formats.html

"2004-02-29 16:21:42"
"2025-02-29 16:24:41"

#activation_date
#expiration_date

X.509 v3 extensions

A dnsname in case of a WWW server.
#dns_name = "www.none.org"
#dns_name "www.morethanone.org"

A subject alternative name URI
#uri = "http://www.example.com"

An IP address in case of a server.
#ip_address = "192.168.1.1"

An email in case of a person
email = '"none@none.org"

Challenge password used in certificate requests
challenge_password = 123456

Chapter 4: Authentication methods 66

Password when encrypting a private key
#password = secret

An URL that has CRLs (certificate revocation lists)
available. Needed in CA certificates.
#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not
#ca

for microsoft smart card logon
key_purpose_oid = 1.3.6.1.4.1.311.20.2.2

Other predefined key purpose 0IDs

Whether this certificate will be used for a TLS client
#tls_www_client

Whether this certificate will be used for a TLS server
#tls_www_server

Whether this certificate will be used to sign data (needed
in TLS DHE ciphersuites).
signing_key

Whether this certificate will be used to encrypt data (needed

in TLS RSA ciphersuites). Note that it is preferred to use different
keys for encryption and signing.

encryption_key

Whether this key will be used to sign other certificates.
#cert_signing key

Whether this key will be used to sign CRLs.
#crl_signing_key

Whether this key will be used to sign code.
#code_signing_key

Whether this key will be used to sign 0OCSP data.
#ocsp_signing_key

Whether this key will be used for time stamping.
#time_stamping_key

Whether this key will be used for IPsec IKE operatioms.

Chapter 4: Authentication methods

#ipsec_ike_key
end of key purpose 0IDs

When generating a certificate from a certificate

request, then honor the extensions stored in the request
and store them in the real certificate.
#honor_crq_extensions

Path length contraint. Sets the maximum number of

certificates that can be used to certify this certificate.
(i.e. the certificate chain length)

#path_len = -1

#path_len = 2

0OCSP URI
ocsp_uri = http://my.ocsp.server/ocsp

CA issuers URI
ca_issuers_uri = http://my.ca.issuer

Certificate policies

#policyl = 1.3.6.1.4.1.5484.1.10.99.1.0

#policyl_txt = "This is a long policy to summarize"
#policyl_url = http://www.example.com/a-policy-to-read

#policy2 = 1.3.6.1.4.1.56484.1.10.99.1.1
#policy2_txt = "This is a short policy"
#policy2_url = http://www.example.com/another-policy-to-read

Name constraints

DNS
#nc_permit_dns = example.com
#nc_exclude_dns = test.example.com

EMAIL
#nc_permit_email = "nmav@ex.net"

Exclude subdomains of example.com
#nc_exclude_email = .example.com

Exclude all e-mail addresses of example.com
#nc_exclude_email = example.com

Options for proxy certificates

67

Chapter 4: Authentication methods 68

#proxy_policy_language = 1.3.6.1.5.5.7.21.1

Options for generating a CRL

The number of days the next CRL update will be due.
next CRL update will be in 43 days
#crl_next_update = 43

this is the 5th CRL by this CA
Comment the field for a time-based number.
#crl_number = 5

4.2.6 Invoking ocsptool

Ocsptool is a program that can parse and print information about OCSP requests/responses,
generate requests and verify responses.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the ocsptool program. This software is released under the GNU General
Public License, version 3 or later.

ocsptool help/usage (--help)
This is the automatically generated usage text for ocsptool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

ocsptool is unavailable - no --help

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

ask option

This is the “ask an ocsp/http server on a certificate validity” option. This option takes an
optional string argument server name|url.

This option has some usage constraints. It:

e must appear in combination with the following options: load-cert, load-issuer.
Connects to the specified HTTP OCSP server and queries on the validity of the loaded

certificate.

ocsptool exit status

One of the following exit values will be returned:

Chapter 4: Authentication methods 69

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

ocsptool See Also
certtool (1)

ocsptool Examples

Print information about an OCSP request

To parse an OCSP request and print information about the content, the -i or —~-request-
info parameter may be used as follows. The -Q parameter specify the name of the file
containing the OCSP request, and it should contain the OCSP request in binary DER
format.

$ ocsptool -i -Q ocsp-request.der
The input file may also be sent to standard input like this:

$ cat ocsp-request.der | ocsptool --request-info

Print information about an OCSP response

Similar to parsing OCSP requests, OCSP responses can be parsed using the -j or --
response-info as follows.

$ ocsptool -j -Q ocsp-response.der
$ cat ocsp-response.der | ocsptool --response-info

Generate an OCSP request

The -q or --generate-request parameters are used to generate an OCSP request. By
default the OCSP request is written to standard output in binary DER format, but can be
stored in a file using —-outfile. To generate an OCSP request the issuer of the certificate
to check needs to be specified with --load-issuer and the certificate to check with —-
load-cert. By default PEM format is used for these files, although --inder can be used
to specify that the input files are in DER format.

$ ocsptool -q --load-issuer issuer.pem --load-cert client.pem \
--outfile ocsp-request.der

When generating OCSP requests, the tool will add an OCSP extension containing a nonce.
This behaviour can be disabled by specifying --no-nonce.

Verify signature in OCSP response

To verify the signature in an OCSP response the —-e or --verify-response parameter is
used. The tool will read an OCSP response in DER format from standard input, or from
the file specified by --load-response. The OCSP response is verified against a set of
trust anchors, which are specified using —-load-trust. The trust anchors are concatenated
certificates in PEM format. The certificate that signed the OCSP response needs to be in
the set of trust anchors, or the issuer of the signer certificate needs to be in the set of trust
anchors and the OCSP Extended Key Usage bit has to be asserted in the signer certificate.

Chapter 4: Authentication methods 70

$ ocsptool -e --load-trust issuer.pem \
--load-response ocsp-response.der

The tool will print status of verification.

Verify signature in OCSP response against given certificate

It is possible to override the normal trust logic if you know that a certain certificate is
supposed to have signed the OCSP response, and you want to use it to check the signature.
This is achieved using --load-signer instead of -—load-trust. This will load one certifi-
cate and it will be used to verify the signature in the OCSP response. It will not check the
Extended Key Usage bit.

$ ocsptool -e --load-signer ocsp-signer.pem \
--load-response ocsp-response.der
This approach is normally only relevant in two situations. The first is when the OCSP
response does not contain a copy of the signer certificate, so the --load-trust code would
fail. The second is if you want to avoid the indirect mode where the OCSP response signer
certificate is signed by a trust anchor.

Real-world example

Here is an example of how to generate an OCSP request for a certificate and to verify the
response. For illustration we’ll use the blog.josefsson.org host, which (as of writing)
uses a certificate from CACert. First we’ll use gnutls-cli to get a copy of the server
certificate chain. The server is not required to send this information, but this particular
one is configured to do so.

$ echo | gnutls-cli -p 443 blog.josefsson.org —--print-cert > chain.pem
Use a text editor on chain.pem to create three files for each separate certificates, called

cert.pen for the first certificate for the domain itself, secondly issuer.pem for the inter-
mediate certificate and root.pem for the final root certificate.

The domain certificate normally contains a pointer to where the OCSP responder is located,
in the Authority Information Access Information extension. For example, from certtool
-i < cert.pem there is this information:

Authority Information Access Information (not critical):

Access Method: 1.3.6.1.5.5.7.48.1 (id-ad-ocsp)

Access Location URI: http://ocsp.CAcert.org/
This means the CA support OCSP queries over HTTP. We are now ready to create a OCSP
request for the certificate.

$ ocsptool --ask ocsp.CAcert.org --load-issuer issuer.pem \

--load-cert cert.pem --outfile ocsp-response.der

The request is sent via HTTP to the OCSP server address specified. If the address is
ommited ocsptool will use the address stored in the certificate.

4.2.7 Invoking danetool

Tool to generate and check DNS resource records for the DANE protocol.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the danetool program. This software is released under the GNU General
Public License, version 3 or later.

Chapter 4: Authentication methods 71

danetool help/usage (--help)
This is the automatically generated usage text for danetool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

danetool is unavailable - no --help

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

load-pubkey option

This is the “loads a public key file” option. This option takes a string argument. This can
be either a file or a PKCS #11 URL

load-certificate option

This is the “loads a certificate file” option. This option takes a string argument. This can
be either a file or a PKCS #11 URL

dlv option

This is the “sets a dlv file” option. This option takes a string argument. This sets a DLV
file to be used for DNSSEC verification.

hash option

This is the “hash algorithm to use for signing” option. This option takes a string argument.
Available hash functions are SHA1, RMD160, SHA256, SHA384, SHA512.

check option

This is the “check a host’s dane tlsa entry” option. This option takes a string argument.
Obtains the DANE TLSA entry from the given hostname and prints information. Note that
the actual certificate of the host can be provided using —load-certificate, otherwise danetool
will connect to the server to obtain it. The exit code on verification success will be zero.

check-ee option

This is the “check only the end-entity’s certificate” option. Checks the end-entity’s certifi-
cate only. Trust anchors or CAs are not considered.

check-ca option

This is the “check only the ca’s certificate” option. Checks the trust anchor’s and CA’s
certificate only. End-entities are not considered.

Chapter 4: Authentication methods 72

tlsa-rr option

This is the “print the dane rr data on a certificate or public key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: host.

This command prints the DANE RR data needed to enable DANE on a DNS server.

host option

This is the “specify the hostname to be used in the dane rr” option. This option takes a
string argument Hostname. This command sets the hostname for the DANE RR.

proto option

This is the “the protocol set for dane data (tcp, udp etc.)” option. This option takes a
string argument Protocol. This command specifies the protocol for the service set in the
DANE data.

app-proto option

This is the “the application protocol to be used to obtain the server’s certificate (https, ftp,
smtp, imap)” option. This option takes a string argument. When the server’s certificate
isn’t provided danetool will connect to the server to obtain the certificate. In that case
it is required to known the protocol to talk with the server prior to initiating the TLS
handshake.

ca option

This is the “whether the provided certificate or public key is a certificate authority” option.
Marks the DANE RR as a CA certificate if specified.

x509 option

This is the “use the hash of the x.509 certificate, rather than the public key” option. This
option forces the generated record to contain the hash of the full X.509 certificate. By
default only the hash of the public key is used.

local option

This is an alias for the domain option, see [danetool domain], page 70.

domain option
This is the “the provided certificate or public key is issued by the local domain” option.
This option has some usage constraints. It:

e can be disabled with —no-domain.

e It is enabled by default.

DANE distinguishes certificates and public keys offered via the DNSSEC to trusted and
local entities. This flag indicates that this is a domain-issued certificate, meaning that
there could be no CA involved.

Chapter 4: Authentication methods 73

local-dns option

This is the “use the local dns server for dnssec resolving” option.
This option has some usage constraints. It:

e can be disabled with —no-local-dns.

This option will use the local DNS server for DNSSEC. This is disabled by default due to
many servers not allowing DNSSEC.

insecure option

This is the “do not verify any dnssec signature” option. Ignores any DNSSEC signature
verification results.

inder option

This is the “use der format for input certificates and private keys” option.

This option has some usage constraints. It:

e can be disabled with —no-inder.

The input files will be assumed to be in DER or RAW format. Unlike options that in PEM
input would allow multiple input data (e.g. multiple certificates), when reading in DER
format a single data structure is read.

inraw option

This is an alias for the inder option, see [danetool inder], page 69.

print-raw option

This is the “print the received dane data in raw format” option.

This option has some usage constraints. It:

e can be disabled with —no-print-raw.

This option will print the received DANE data.

quiet option

This is the “suppress several informational messages” option. In that case on the exit code
can be used as an indication of verification success

danetool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

danetool See Also

certtool (1)

Chapter 4: Authentication methods 74

danetool Examples

DANE TLSA RR generation

To create a DANE TLSA resource record for a certificate (or public key) that was issued
localy and may or may not be signed by a CA use the following command.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem

To create a DANE TLSA resource record for a CA signed certificate, which will be marked
as such use the following command.
$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--no-domain
The former is useful to add in your DNS entry even if your certificate is signed by a CA.
That way even users who do not trust your CA will be able to verify your certificate using
DANE.
In order to create a record for the CA signer of your certificate use the following.

$ danetool --tlsa-rr --host www.example.com --load-certificate cert.pem \
--ca —-no-domain

To read a server’s DANE TLSA entry, use:
$ danetool --check www.example.com --proto tcp —-port 443
To verify a server’s DANE TLSA entry, use:

$ danetool --check www.example.com --proto tcp —-port 443 --load-certificate chain.j

4.3 Shared-key and anonymous authentication

In addition to certificate authentication, the TLS protocol may be used with password,
shared-key and anonymous authentication methods. The rest of this chapter discusses
details of these methods.

4.3.1 SRP authentication

4.3.1.1 Authentication using SRP

GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see
[RFC2945, TOMSRP] for a description). The SRP key exchange is an extension to the
TLS protocol, and it provides an authenticated with a password key exchange. The peers
can be identified using a single password, or there can be combinations where the client is
authenticated using SRP and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does
not require the server to hold the user’s password. This kind of protection is similar to the
one used traditionally in the UNIX /etc/passwd file, where the contents of this file did not
cause harm to the system security if they were revealed. The SRP needs instead of the plain
password something called a verifier, which is calculated using the user’s password, and if
stolen cannot be used to impersonate the user.

Typical conventions in SRP are a password file, called tpasswd that holds the SRP verifiers
(encoded passwords) and another file, tpasswd.conf, which holds the allowed SRP pa-

Chapter 4: Authentication methods 75

rameters. The included in GnuTLS helper follow those conventions. The srptool program,
discussed in the next section is a tool to manipulate the SRP parameters.

The implementation in GnuTLS is based on [TLSSRP]. The supported key exchange meth-
ods are shown below.

SRP: Authentication using the SRP protocol.

SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using a
certificate with DSA parameters.

SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using a
certificate with RSA parameters.

int gnutls_srp_verifier (const char * username, const char * [Function]
password, const gnutls_datum_t * salt, const gnutls_datum_t * generator,
const gnutls_datum_t * prime, gnutls_datum_t * res)
username: is the user’s name

password: is the user’s password

salt: should be some randomly generated bytes
generator: is the generator of the group

prime: is the group’s prime

res: where the verifier will be stored.

This function will create an SRP verifier, as specified in RFC2945. The prime and
generator should be one of the static parameters defined in gnutls/gnutls.h or may
be generated.

The verifier will be allocated with gnutls_malloc () and will be stored in res using
binary format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

int [gnutls_srp_base64_encode_alloc], page 338 (const gnutls_datum_t * data,
gnutls_datum_t * result)

int [gnutls_srp_base64_decode_alloc], page 338 (const gnutls_datum_t *
b64_data, gnutls_datum_t * result)

4.3.1.2 Invoking srptool

Simple program that emulates the programs in the Stanford SRP (Secure Remote Pass-
word) libraries using GnuTLS. It is intended for use in places where you don’t expect SRP
authentication to be the used for system users.

In brief, to use SRP you need to create two files. These are the password file that holds
the users and the verifiers associated with them and the configuration file to hold the group
parameters (called tpasswd.conf).

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the srptool program. This software is released under the GNU General
Public License, version 3 or later.

Chapter 4: Authentication methods 76

srptool help/usage (--help)
This is the automatically generated usage text for srptool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

srptool is unavailable - no --help

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

verify option

This is the “just verify the password.” option. Verifies the password provided against the
password file.

passwd-conf option (-v)

This is the “specify a password conf file.” option. This option takes a string argument.
Specify a filename or a PKCS #11 URL to read the CAs from.

create-conf option

This is the “generate a password configuration file.” option. This option takes a string argu-
ment. This generates a password configuration file (tpasswd.conf) containing the required
for TLS parameters.

srptool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

srptool See Also
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), psktool (1), certtool (1)

srptool Examples

To create tpasswd. conf which holds the g and n values for SRP protocol (generator and a
large prime), run:

$ srptool --create-conf /etc/tpasswd.conf

This command will create /etc/tpasswd and will add user 'test’ (you will also be prompted
for a password). Verifiers are stored by default in the way libsrp expects.

Chapter 4: Authentication methods 7

$ srptool --passwd /etc/tpasswd --passwd-conf /etc/tpasswd.conf -u test
This command will check against a password. If the password matches the one in
/etc/tpasswd you will get an ok.

$ srptool --passwd /etc/tpasswd --passwd\-conf /etc/tpasswd.conf --verify -u test

4.3.2 PSK authentication

4.3.2.1 Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and
binary keys. This protocol avoids making use of public key infrastructure and expensive
calculations, thus it is suitable for constraint clients.

The implementation in GnuTLS is based on [TLSPSK]. The supported PSK key exchange
methods are:

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange. This
method offers perfect forward secrecy.

ECDHE-PSK:
Authentication using the PSK protocol and Elliptic curve Diffie-Hellman key
exchange. This method offers perfect forward secrecy.

RSA-PSK: Authentication using the PSK protocol for the client and an RSA certificate for
the server.

Helper functions to generate and maintain PSK keys are also included in GnuTLS.

int [gnutls_key_generate], page 308 (gnutls_datum_t * key, unsigned int
key_size)

int [gnutls_hex_encode], page 308 (const gnutls_datum_t * data, char * result,
size_t * result_size)

int [gnutls_hex_decode], page 307 (const gnutls_datum_t * hex_data, void *
result, size_t * result_size)

4.3.2.2 Invoking psktool

Program that generates random keys for use with TLS-PSK. The keys are stored in hex-
adecimal format in a key file.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the psktool program. This software is released under the GNU General
Public License, version 3 or later.

psktool help/usage (--help)

This is the automatically generated usage text for psktool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

psktool is unavailable - no --help

Chapter 4: Authentication methods 78

debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

psktool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

psktool See Also
gnutls-cli-debug (1), gnutls-serv (1), srptool (1), certtool (1)

psktool Examples
To add a user psk_identity’ in passwd.psk for use with GnuTLS run:

$./psktool -u psk_identity -p passwd.psk

Generating a random key for user ’psk_identity’

Key stored to passwd.psk

$ cat psks.txt
psk_identity:88£3824b3e5659£52d00e959bacab954b6540344
$

This command will create passwd.psk if it does not exist and will add user ’psk_identity’
(you will also be prompted for a password).

4.3.3 Anonymous authentication

The anonymous key exchange offers encryption without any indication of the peer’s identity.
This kind of authentication is vulnerable to a man in the middle attack, but can be used
even if there is no prior communication or shared trusted parties with the peer. It is useful
to establish a session over which certificate authentication will occur in order to hide the
indentities of the participants from passive eavesdroppers.

Unless in the above case, it is not recommended to use anonymous authentication. In the
cases where there is no prior communication with the peers, an alternative with better
properties, such as key continuity, is trust on first use (see Section 4.1.3.1 [Verifying a
certificate using trust on first use authentication|, page 35).

The available key exchange algorithms for anonymous authentication are shown below, but
note that few public servers support them, and they have to be explicitly enabled.
ANON_DH: This algorithm exchanges Diffie-Hellman parameters.

ANON_ECDH:
This algorithm exchanges elliptic curve Diffie-Hellman parameters. It is more
efficient than ANON_DH on equivalent security levels.

Chapter 4: Authentication methods 79

4.4 Selecting an appropriate authentication method

This section provides some guidance on how to use the available authentication methods in
GnuTLS in various scenarios.

4.4.1 Two peers with an out-of-band channel

Let’s consider two peers who need to communicate over an untrusted channel (the Internet),
but have an out-of-band channel available. The latter channel is considered safe from
eavesdropping and message modification and thus can be used for an initial bootstrapping
of the protocol. The options available are:

e Pre-shared keys (see Section 4.3.2 [PSK authentication], page 74). The server and a
client communicate a shared randomly generated key over the trusted channel and use
it to negotiate further sessions over the untrusted channel.

e Passwords (see Section 4.3.1 [SRP authentication], page 71). The client communicates
to the server its username and password of choice and uses it to negotiate further
sessions over the untrusted channel.

e Public keys (see Section 4.1 [Certificate authentication], page 18). The client and the
server exchange their public keys (or fingerprints of them) over the trusted channel. On
future sessions over the untrusted channel they verify the key being the same (similar to
Section 4.1.3.1 [Verifying a certificate using trust on first use authentication|, page 35).

Provided that the out-of-band channel is trusted all of the above provide a similar level
of protection. An out-of-band channel may be the initial bootstrapping of a user’s PC
in a corporate environment, in-person communication, communication over an alternative
network (e.g. the phone network), etc.

4.4.2 Two peers without an out-of-band channel

When an out-of-band channel is not available a peer cannot be reliably authenticated. What
can be done, however, is to allow some form of registration of users connecting for the first
time and ensure that their keys remain the same after that initial connection. This is termed
key continuity or trust on first use (TOFU).

The available option is to use public key authentication (see Section 4.1 [Certificate authen-
tication], page 18). The client and the server store each other’s public keys (or fingerprints
of them) and associate them with their identity. On future sessions over the untrusted chan-
nel they verify the keys being the same (see Section 4.1.3.1 [Verifying a certificate using
trust on first use authentication], page 35).

To mitigate the uncertainty of the information exchanged in the first connection other
channels over the Internet may be used, e.g., DNSSEC (see Section 4.1.3.2 [Verifying a
certificate using DANE], page 35).

4.4.3 Two peers and a trusted third party

When a trusted third party is available (or a certificate authority) the most suitable option is
to use certificate authentication (see Section 4.1 [Certificate authentication|, page 18). The
client and the server obtain certificates that associate their identity and public keys using a
digital signature by the trusted party and use them to on the subsequent communications
with each other. Each party verifies the peer’s certificate using the trusted third party’s

Chapter 4: Authentication methods 80

signature. The parameters of the third party’s signature are present in its certificate which
must be available to all communicating parties.

While the above is the typical authentication method for servers in the Internet by using the
commercial CAs, the users that act as clients in the protocol rarely possess such certificates.
In that case a hybrid method can be used where the server is authenticated by the client
using the commercial CAs and the client is authenticated based on some information the
client provided over the initial server-authenticated channel. The available options are:

e Passwords (see Section 4.3.1 [SRP authentication|, page 71). The client communicates
to the server its username and password of choice on the initial server-authenticated
connection and uses it to negotiate further sessions. This is possible because the SRP
protocol allows for the server to be authenticated using a certificate and the client using
the password.

e Public keys (see Section 4.1 [Certificate authentication], page 18). The client sends its
public key to the server (or a fingerprint of it) over the initial server-authenticated con-
nection. On future sessions the client verifies the server using the third party certificate
and the server verifies that the client’s public key remained the same (see Section 4.1.3.1
[Verifying a certificate using trust on first use authentication], page 35).

Chapter 5: Hardware security modules and abstract key types 81

5 Hardware security modules and abstract key
types

In several cases storing the long term cryptographic keys in a hard disk or even in memory
poses a significant risk. Once the system they are stored is compromised the keys must be
replaced as the secrecy of future sessions is no longer guarranteed. Moreover, past sessions
that were not protected by a perfect forward secrecy offering ciphersuite are also to be
assumed compromised.

If such threats need to be addressed, then it may be wise storing the keys in a security
module such as a smart card, an HSM or the TPM chip. Those modules ensure the pro-
tection of the cryptographic keys by only allowing operations on them and preventing their
extraction. The purpose of the abstract key API is to provide an API that will allow the
handle of keys in memory and files, as well as keys stored in such modules.

In GnuTLS the approach is to handle all keys transparently by the high level API, e.g.,
the API that loads a key or certificate from a file. The high-level API will accept URIs in
addition to files that specify keys on an HSM or in TPM, and a callback function will be used
to obtain any required keys. The URI format is defined in [TPMURI| and [PKCS11URI],
and is in the process of being standardized across systems.
More information on the API is provided in the next sections. Examples of a URI of a
certificate stored in an HSM, as well as a key stored in the TPM chip are shown below.
To discover the URIs of the objects the pl1tool (see Section 5.2.6 [plltool Invocation],
page 93), or tpmtool (see Section 5.3.4 [tpmtool Invocation], page 99) may be used.
pkcsll:token=Nikos;serial=307521161601031;model=PKCS%2315; \
manufacturer=EnterSafe;object=testl;objecttype=cert

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23adl;storage=user

5.1 Abstract key types

Since there are many forms of a public or private keys supported by GnuTLS such as X.509,
OpenPGP, PKCS #11 or TPM it is desirable to allow common operations on them. For
these reasons the abstract gnutls_privkey_t and gnutls_pubkey_t were introduced in
gnutls/abstract.h header. Those types are initialized using a specific type of key and
then can be used to perform operations in an abstract way. For example in order to sign
an X.509 certificate with a key that resides in a token the following steps can be used.

#inlude <gnutls/abstract.h>

void sign_cert(gnutls_x509_crt_t to_be_signed)
{

gnutls_x509_crt_t ca_cert;

gnutls_privkey_t abs_key;

/* initialize the abstract key */
gnutls_privkey_init (&abs_key) ;

/* keys stored in tokens are identified by URLs */
gnutls_privkey_import_url(abs_key, key_url);

Chapter 5: Hardware security modules and abstract key types 82

gnutls_x509_crt_init(&ca_cert);
gnutls_x509_crt_import_pkcsll_url(&ca_cert, cert_url);

/* sign the certificate to be signed */
gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, abs_key,
GNUTLS_DIG_SHA256, 0);
}

5.1.1 Public keys

An abstract gnutls_pubkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_crt_t, or through an ASN.1
encoding of the X.509 SubjectPublicKeyInfo sequence.

int [gnutls_pubkey_import_x509], page 501 (gnutls_pubkey_t key,
gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_openpgpl, page 498 (gnutls_pubkey_t key,
gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pubkey_import_pkcsil], page 499 (gnutls_pubkey_t key,
gnutls_pkcsll_obj_t obj, unsigned int flags)

int [gnutls_pubkey_import_url], page 501 (gnutls_pubkey_t key, const char *
url, unsigned int flags)

int [gnutls_pubkey_import_privkey], page 500 (gnutls_pubkey_t key,
gnutls_privkey_t pkey, unsigned int usage, unsigned int flags)

int [gnutls_pubkey_import], page 497 (gnutls_pubkey_t key, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_pubkey_export], page 493 (gnutls_pubkey_t key,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

int gnutls_pubkey_export2 (gnutls_pubkey.-t key, [Function]
gnutls_x509_crt_fmt_t format, gnutls_datum_t * out)
key: Holds the certificate

format: the format of output params. One of PEM or DER.
out: will contain a certificate PEM or DER encoded

This function will export the public key to DER or PEM format. The contents of the
exported data is the SubjectPublicKeyInfo X.509 structure.

The output buffer will be allocated using gnutls_malloc() .
If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".
Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 3.1.3

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below.

Chapter 5: Hardware security modules and abstract key types 83

int [gnutls_pubkey_import_x509_raw], page 502 (gnutls_pubkey_t pkey, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pubkey_import_openpgp_raw], page 499 (gnutls_pubkey_t pkey, const
gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const
gnutls_openpgp_keyid_t keyid, unsigned int flags)

An important function is [gnutls_pubkey_import_url], page 501 which will import public
keys from URLs that identify objects stored in tokens (see Section 5.2 [Smart cards and
HSMs]|, page 85 and Section 5.3 [Trusted Platform Module], page 96). A function to check
for a supported by GnuTLS URL is [gnutls_url_is_supported], page 350.

int gnutls_url_is_supported (const char * url) [Function]
url: A PKCS 11 url

Check whether url is supported. Depending on the system libraries GnuTLS may
support pkesll or tpmkey URLs.

Returns: return non-zero if the given URL is supported, and zero if it is not known.
Since: 3.1.0

Additional functions are available that will return information over a public key, such as
a unique key ID, as well as a function that given a public key fingerprint would provide a
memorable sketch.

Note that [gnutls_pubkey_get_key_id], page 493 calculates a SHA1 digest of the public key
as a DER-formatted, subjectPublicKeyInfo object. Other implementations use different
approaches, e.g., some use the “common method” described in section 4.2.1.2 of [RFC5280)
which calculates a digest on a part of the subjectPublicKeyInfo object.

int [gnutls_pubkey_get_pk_algorithm], page 495 (gnutls_pubkey_t key, unsigned
int * bits)

int [gnutls_pubkey_get_preferred_hash_algorithm], page 496 (gnutls_pubkey_t
key, gnutls_digest_algorithm_t * hash, unsigned int * mand)

int [gnutls_pubkey_get_key_id], page 493 (gnutls_pubkey_t key, unsigned int
flags, unsigned char * output_data, size_t * output_data_size)

int [gnutls_random_art], page 323 (gnutls_random_art_t type, const char *
key_type, unsigned int key_size, void * fpr, size_t fpr_size, gnutls_datum_t *
art)

To export the key-specific parameters, or obtain a unique key ID the following functions
are provided.

int (undefined) [gnutls_pubkey_export_rsa_raw], page (undefined)
(gnutls_pubkey_t key, gnutls_datum_t * m, gnutls_datum_t * e)

int (undefined) [gnutls_pubkey_export_dsa_raw], page (undefined)
(gnutls_pubkey_t key, gnutls_datum_t * p, gnutls_datum_t * g, gnutls_datum_t *
g, gnutls_datum_t * y)

int (undefined) [gnutls_pubkey_export_ecc_raw], page (undefined)
(gnutls_pubkey_t key, gnutls_ecc_curve_t * curve, gnutls_datum_t * x,
gnutls_datum_t * y)

int (undefined) [gnutls_pubkey_export_ecc_x962], page (undefined)
(gnutls_pubkey_t key, gnutls_datum_t * parameters, gnutls_datum_t * ecpoint)

Chapter 5: Hardware security modules and abstract key types 84

5.1.2 Private keys

An abstract gnutls_privkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_privkey_t, but unlike public
keys it cannot be exported. That is to allow abstraction over keys stored in hardware that
makes available only operations.

int [gnutls_privkey_import_x509], page 490 (gnutls_privkey_t pkey,
gnutls_x509_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_openpgp], page 487 (gnutls_privkey_t pkey,
gnutls_openpgp_privkey_t key, unsigned int flags)

int [gnutls_privkey_import_pkcsll], page 488 (gnutls_privkey_t pkey,
gnutls_pkcsll_privkey_t key, unsigned int flags)

Other helper functions that allow directly importing from raw X.509 or OpenPGP structures
are shown below. Again, as with public keys, private keys can be imported from a hardware
module using URLs.

int [gnutls_privkey_import_x509_raw], page 490 (gnutls_privkey_t pkey, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char * password,
unsigned int flags)

int [gnutls_privkey_import_openpgp_raw], page 488 (gnutls_privkey_t pkey,
const gnutls_datum_t * data, gnutls_openpgp_crt_fmt_t format, const
gnutls_openpgp_keyid_t keyid, const char * password)

int gnutls_privkey_import_url (gnutls_privkey_t key, const char * [Function]
url, unsigned int flags)
key: A key of type gnutls_privkey_t
url: A PKCS 11 url
flags: should be zero

This function will import a PKCS11 or TPM URL as a private key. The supported
URL types can be checked using gnutls_url_is_supported() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_privkey_get_pk_algorithm], page 486 (gnutls_privkey_t key,
unsigned int * bits)

gnutls_privkey_type_t [gnutls_privkey_get_typel, page 486 (gnutls_privkey_t
key)

int [gnutls_privkey_status], page 492 (gnutls_privkey_t key)

In order to support cryptographic operations using an external API, the following function
is provided. This allows for a simple extensibility API without resorting to PKCS #11.

int gnutls_privkey_import_ext2 (gnutls_privkey_t pkey, [Function]
gnutls_pk_algorithm_t pk, void * userdata, gnutls_privkey_sign_func
sign_func, gnutls_privkey_decrypt_func decrypt_func,
gnutls_privkey_deinit_func deinit_func, unsigned int flags)
pkey: The private key

Chapter 5: Hardware security modules and abstract key types 85

pk: The public key algorithm

userdata: private data to be provided to the callbacks
sign_func: callback for signature operations
decrypt_func: callback for decryption operations
deinit_func: a deinitialization function

flags: Flags for the import

This function will associate the given callbacks with the gnutls_privkey_t structure.
At least one of the two callbacks must be non-null. If a deinitialization function is
provided then flags is assumed to contain GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE .

Note that the signing function is supposed to "raw" sign data, i.e., without any
hashing or preprocessing. In case of RSA the DigestInfo will be provided, and the
signing function is expected to do the PKCS 1 1.5 padding and the exponentiation.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1

5.1.3 Operations

The abstract key types can be used to access signing and signature verification operations
with the underlying keys.

int gnutls_pubkey_verify_data2 (gnutls_pubkey_t pubkey, [Function]
gnutls_sign_algorithm_t algo, unsigned int flags, const gnutls_datum_t *
data, const gnutls_datum_t * signature)
pubkey: Holds the public key

algo: The signature algorithm used

flags: Zero or one of gnutls_pubkey_flags_t
data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

int gnutls_pubkey_verify_hash2 (gnutls_pubkey.t key, [Function]
gnutls_sign_algorithm_t algo, unsigned int flags, const gnutls_datum_t *
hash, const gnutls_datum_t * signature)
key: Holds the public key

algo: The signature algorithm used
flags: Zero or one of gnutls_pubkey_flags_t
hash: holds the hash digest to be verified

signature: contains the signature

Chapter 5: Hardware security modules and abstract key types 86

This function will verify the given signed digest, using the parameters from the public
key. Note that unlike gnutls_privkey_sign_hash() , this function accepts a signa-
ture algorithm instead of a digest algorithm. You can use gnutls_pk_to_sign() to
get the appropriate value.

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and zero or positive code on success.

Since: 3.0

int gnutls_pubkey_encrypt_data (gnutls_pubkey_t key, unsigned int [Function]
flags, const gnutls_datum_t * plaintext, gnutls_.datum_t * ciphertext)
key: Holds the public key

flags: should be 0 for now

plaintext: The data to be encrypted

ciphertext: contains the encrypted data

This function will encrypt the given data, using the public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_privkey_sign_data (gnutls_privkey_t signer, [Function]

gnutls_digest_algorithm_t hash, unsigned int flags, const gnutls_datum_t *
data, gnutls_datum-t * signature)
signer: Holds the key

hash: should be a digest algorithm

flags: Zero or one of gnutls_privkey_flags_t

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only the SHA
family for the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_privkey_sign_hash (gnutls_privkey_t signer, [Function]

gnutls_digest_algorithm_t hash_algo, unsigned int flags, const
gnutls_datum_t * hash_data, gnutls_datum_t * signature)
signer: Holds the signer’s key

hash_algo: The hash algorithm used
flags: Zero or one of gnutls_privkey_flags_t
hash_data: holds the data to be signed

Chapter 5: Hardware security modules and abstract key types 87

signature: will contain newly allocated signature

This function will sign the given hashed data using a signature algorithm supported by
the private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys.

You may use gnutls_pubkey_get_preferred_hash_algorithm() to determine the
hash algorithm.

Note that if GNUTLS_PRIVKEY_SIGN_FLAG_TLS1_RSA flag is specified this function will
ignore hash_algo and perform a raw PKCS1 signature.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

int gnutls_privkey_decrypt_data (gnutls_privkey_t key, unsigned [Function]

int flags, const gnutls_datum_t * ciphertext, gnutls_datum_t *
plaintext)

key: Holds the key

flags: zero for now

ciphertext: holds the data to be decrypted

plaintext: will contain the decrypted data, allocated with gnutls_malloc()

This function will decrypt the given data using the algorithm supported by the private

key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.

Since: 2.12.0

Signing existing structures, such as certificates, CRLs, or certificate requests, as well as
associating public keys with structures is also possible using the key abstractions.

int gnutls_x509_crq_set_pubkey (gnutls_x509_crq-t crq, [Function]
gnutls_pubkey_t key)
crq: should contain a gnutls_x509_crq_t structure

key: holds a public key
This function will set the public parameters from the given public key to the request.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 2.12.0
int gnutls_x509_crt_set_pubkey (gnutls_x509_crt_t crt, [Function]

gnutls_pubkey_t key)
crt: should contain a gnutls_x509_crt_t structure

key: holds a public key
This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Chapter 5: Hardware security modules and abstract key types 88

int [gnutls_x509_crt_privkey_sign], page 506 (gnutls_x509_crt_t crt,
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crl_privkey_sign], page 505 (gnutls_x509_crl_t crl,
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)

int [gnutls_x509_crq_privkey_sign], page 505 (gnutls_x509_crq_t crq,
gnutls_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)

5.2 Smart cards and HSMs

In this section we present the smart-card and hardware security module (HSM) support in
GnuTLS using PKCS #11 [PKCS11]. Hardware security modules and smart cards provide
a way to store private keys and perform operations on them without exposing them. This
decouples cryptographic keys from the applications that use them and provide an additional
security layer against cryptographic key extraction. Since this can also be achieved in
software components such as in Gnome keyring, we will use the term security module to
describe any cryptographic key separation subsystem.

PKCS #11 is plugin API allowing applications to access cryptographic operations on a
security module, as well as to objects residing on it. PKCS #11 modules exist for hardware
tokens such as smart cards', cryptographic tokens, as well as for software modules like
Gnome Keyring. The objects residing on a security module may be certificates, public keys,
private keys or secret keys. Of those certificates and public/private key pairs can be used
with GnuTLS. PKCS #11’s main advantage is that it allows operations on private key
objects such as decryption and signing without exposing the key. In GnuTLS the PKCS
#11 functionality is available in gnutls/pkcsi1.h.

Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system
to access shared cryptographic keys and certificates in a uniform way, as in (undefined) [fig-
pkesll-vision], page (undefined). That way applications could load their trusted certificate
list, as well as user certificates from a common PKCS #11 module. Such a provider is the
pl1-kit trust storage module?.

1 http://www.opensc-project.org
2 http://pli-glue.freedesktop.org/trust-module.html

http://www.opensc-project.org
http://p11-glue.freedesktop.org/trust-module.html

Chapter 5: Hardware security modules and abstract key types 89

Trusted Platform
Module

GnuTLS

Other crypto
package

Gnome Keyring
Daemon

X

User \
Application

Smart card

PKCS #11
Provider

Figure 5.1: PKCS #11 module usage.

5.2.1 Initialization

To allow all GnuTLS applications to transparently access smard cards and tokens, PKCS
#11 is automatically initialized during the global initialization (see [gnutls_global_init],
page 301). The initialization function, to select which modules to load reads certain module
configuration files. Those are stored in /etc/pkcsil/modules/ and are the configuration
files of pl1-kit®. For example a file that will load the OpenSC module, could be named
/etc/pkcsll/modules/opensc.module and contain the following:

module: /usr/lib/opensc-pkcsll.so

If you use these configuration files, then there is no need for other initialization in GnuTLS,
except for the PIN and token functions (see next section). In several cases, however, it is
desirable to limit badly behaving modules (e.g., modules that add an unacceptable delay
on initialization) to single applications. That can be done using the “enable-in:” option
followed by the base name of applications that this module should be used.

In all cases, you can also manually initialize the PKCS #11 subsystem if the default
settings are not desirable. To completely disable PKCS #11 support you need to
call [gnutls_pkesl1_init|, page 470 with the flag GNUTLS_PKCS11_FLAG_MANUAL prior to
[gnutls_global_init], page 301.

int gnutls_pkcsll_init (unsigned int flags, const char * [Function]
deprecated_config_file)
flags: An ORed sequence of GNUTLS_PKCS11_FLAG_ *

deprecated_config_file: either NULL or the location of a deprecated configuration file

This function will initialize the PKCS 11 subsystem in gnutls. It will read configu-
ration files if GNUTLS_PKCS11_FLAG_AUTO is used or allow you to independently load
PKCS 11 modules using gnutls_pkcsil_add_provider () if GNUTLS_PKCS11_FLAG_
MANUAL is specified.

Normally you don’t need to call this function since it is being called when the first
PKCS 11 operation is requested using the GNUTLS_PKCS11_FLAG_AUTO flag. If an-

3 http://pll-glue.freedesktop.org/

http://p11-glue.freedesktop.org/

Chapter 5: Hardware security modules and abstract key types 90

other flags are required then it must be called independently prior to any PKCS 11
operation.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Note that PKCS #11 modules must be reinitialized on the child processes after a fork. In
older versions of GnuTLS it was required to call [gnutls_pkes11_reinit], page 477; since 3.3.0
this is no longer required, as reinitialization occurs automatically.

5.2.2 Accessing objects that require a PIN

Objects stored in token such as a private keys are typically protected from access by a PIN
or password. This PIN may be required to either read the object (if allowed) or to perform
operations with it. To allow obtaining the PIN when accessing a protected object, as well
as probe the user to insert the token the following functions allow to set a callback.

void [gnutls_pkcsll_set_token_function], page 477
(gnutls_pkcs1l_token_callback_t fn, void * userdata)

void [gnutls_pkcsll_set_pin_function], page 477 (gnutls_pin_callback_t fn,
void * userdata)

int [gnutls_pkcsll_add_provider], page 468 (const char * name, const char *
params)

gnutls_pin_callback_t [gnutls_pkcsll_get_pin_function], page 470 (void **
userdata)

The callback is of type gnutls_pin_callback_t and will have as input the provided user-
data, the PIN attempt number, a URL describing the token, a label describing the object
and flags. The PIN must be at most of pin_max size and must be copied to pin variable.
The function must return 0 on success or a negative error code otherwise.

typedef int (*gnutls_pin_callback_t) (void *userdata, int attempt,
const char *token_url,
const char *token_label,
unsigned int flags,
char #*pin, size_t pin_max);

The flags are of gnutls_pin_flag_t type and are explained below.

Chapter 5: Hardware security modules and abstract key types 91

GNUTLS_PIN_USER
The PIN for the user.

GNUTLS_PIN_SO
The PIN for the security officer (admin).

GNUTLS_PIN_FINAL_TRY
This is the final try before blocking.

GNUTLS_PIN_COUNT_LOW
Few tries remain before token blocks.

GNUTLS_PIN_CONTEXT_SPECIFIC
The PIN is for a specific action and key like signing.

GNUTLS_PIN_WRONG
Last given PIN was not correct.

Figure 5.2: The gnutls_pin_flag_t enumeration.

Note that due to limitations of PKCS #11 there are issues when multiple libraries are
sharing a module. To avoid this problem GnuTLS uses p11-kit that provides a middleware
to control access to resources over the multiple users.

To avoid conflicts with multiple registered callbacks for PIN functions,
[gnutls_pkesl1_get_pin_function], page 470 may be used to check for any previ-
ously set functions. In addition context specific PIN functions are allowed, e.g., by using
functions below.

void [gnutls_certificate_set_pin_function], page 280
(gnutls_certificate_credentials_t cred, gnutls_pin_callback_t fn, void *
userdata)

void [gnutls_pubkey_set_pin_function], page 503 (gnutls_pubkey_t key,
gnutls_pin_callback_t fn, void * userdata)

void [gnutls_privkey_set_pin_function], page 491 (gnutls_privkey_t key,
gnutls_pin_callback_t fn, void * userdata)

void [gnutls_pkcsll_obj_set_pin_function], page 474 (gnutls_pkcsll_obj_t
obj, gnutls_pin_callback_t fn, void * userdata)

void [gnutls_x509_crt_set_pin_function], page 410 (gnutls_x509_crt_t crt,
gnutls_pin_callback_t fn, void * userdata)

5.2.3 Reading objects

All PKCS #11 objects are referenced by GnuTLS functions by URLs as described
in [PKCS11URI]. This allows for a consistent naming of objects across systems and
applications in the same system. For example a public key on a smart card may be
referenced as:

pkcsll:token=Nikos;serial=307521161601031;model=PKCS%2315; \
manufacturer=EnterSafe;object=testl;objecttype=public;\
1d=32f153£3e37990b08624141077cabdec2d15faed

while the smart card itself can be referenced as:

Chapter 5: Hardware security modules and abstract key types 92

pkcs1l:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive.
Usually only private keys are marked as sensitive and cannot be extracted, while certificates
and other data can be retrieved. The functions that can be used to access objects are shown
below.

int [gnutls_pkcsll_obj_import_url], page 472 (gnutls_pkcsll_obj_t obj, const
char * url, unsigned int flags)

int [gnutls_pkcsll_obj_export_url], page 472 (gnutls_pkcsll_obj_t obj,
gnutls_pkcsll_url_type_t detailed, char ** url)

int gnutls_pkcsll_obj_get_info (gnutls_pkesll_obj_t obj, [Function]
gnutls_pkesll_obj_info_t itype, void * output, size_t * output_size)
obj: should contain a gnutls_pkcsll_obj_t structure

itype: Denotes the type of information requested
output: where output will be stored

output_size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS11 certificate such as the label,
id as well as token information where the key is stored. When output is text it returns
null terminated string although output_size contains the size of the actual data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.
Since: 2.12.0

int [gnutls_x509_crt_import_pkcsll], page 479 (gnutls_x509_crt_t crt,
gnutls_pkcsll_obj_t pkcsll_crt)

int [gnutls_x509_crt_import_pkcsll_url], page 479 (gnutls_x509_crt_t crt,
const char * url, unsigned int flags)

int [gnutls_x509_crt_list_import_pkcsil], page 480 (gnutls_x509_crt_t *
certs, unsigned int cert_max, gnutls_pkcsll_obj_t * const objs, unsigned int
flags)

Properties of the physical token can also be accessed and altered with GnuTLS. For example
data in a token can be erased (initialized), PIN can be altered, etc.

int [gnutls_pkcsll_token_init], page 478 (const char * token_url, const char *
so_pin, const char * label)

int [gnutls_pkcsll_token_get_url], page 478 (unsigned int seq,
gnutls_pkcsll_url_type_t detailed, char ** url)

int [gnutls_pkcsll_token_get_infol], page 477 (const char * url,
gnutls_pkcsll_token_info_t ttype, void * output, size_t * output_size)

int [gnutls_pkcsll_token_get_flags], page 477 (const char * url, unsigned int
* flags)

int [gnutls_pkcsll_token_set_pin], page 479 (const char * token_url, const
char * oldpin, const char * newpin, unsigned int flags)

The following examples demonstrate the usage of the API. The first example will list all
available PKCS #11 tokens in a system and the latter will list all certificates in a token
that have a corresponding private key.

Chapter 5: Hardware security modules and abstract key types 93

int i;
char* url;

gnutls_global_init();

for (i=0;;i++)

{
ret = gnutls_pkcsll_token_get_url(i, &url);

if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)
break;

if (ret < 0)
exit(1);

fprintf(stdout, "Token[%d]: URL: %s\n", i, url);
gnutls_free(url);
}

gnutls_global_deinit();

/* This

#include
#include
#include
#include
#include

#define

example code is placed in the public domain. */

<config.h>
<gnutls/gnutls.h>
<gnutls/pkcsil.h>
<stdio.h>
<stdlib.h>

URL "pkcs11:URL"

int main(int argc, char **argv)

{

gnutls_pkcsll_obj_t *obj_list;
gnutls_xb09_crt_t xcrt;
unsigned int obj_list_size = O;
gnutls_datum_t cinfo;

int ret;

unsigned int 1i;

obj_list_size = 0;
ret = gnutls_pkcsll_obj_list_import_url(NULL, &obj_list_size, URL,
GNUTLS_PKCS11_0BJ_ATTR_CRT_WITH_PRIVKEY,
0);
if (ret < O && ret !'= GNUTLS_E_SHORT_MEMORY_BUFFER)
return -1;

/* no error checking from now on */

obj_list = malloc(sizeof (*obj_list) * obj_list_size);

Chapter 5: Hardware security modules and abstract key types 94

gnutls_pkcsll_obj_list_import_url(obj_list, &obj_list_size, URL,
GNUTLS_PKCS11_0BJ_ATTR_CRT_WITH_PRIVKEY,
0);

/* now all certificates are in obj_list */
for (i = 0; i < obj_list_size; i++) {

gnutls_x509_crt_init (&xcrt) ;
gnutls_x509_crt_import_pkcsll(xcrt, obj_list[i]);
gnutls_x509_crt_print(xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);
fprintf (stdout, "cert[%d]:\n %s\n\n", i, cinfo.data);

gnutls_free(cinfo.data);
gnutls_x509_crt_deinit(xcrt);

return O;

}

5.2.4 Writing objects

With GnuTLS you can copy existing private keys and certificates to a token. Note that
when copying private keys it is recommended to mark them as sensitive using the GNUTLS_
PKCS11_0BJ_FLAG_MARK_SENSITIVE to prevent its extraction. An object can be marked
as private using the flag GNUTLS_PKCS11_0BJ_FLAG_MARK_PRIVATE, to require PIN to be
entered before accessing the object (for operations or otherwise).

int gnutls_pkcsll_copy_x509_privkey (const char * token_url, [Function]
gnutls_x509_privkey_t key, const char * label, unsigned int key_usage,
unsigned int flags)
token_url: A PKCS 11 URL specifying a token

key: A private key

label: A name to be used for the stored data
key_usage: One of GNUTLS_KEY_*

flags: One of GNUTLS_PKCS11_OBJ_* flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_0BJ_FLAG_MARK_SENSITIVE
unless there is a strong reason not to.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Chapter 5: Hardware security modules and abstract key types 95

int gnutls_pkcsll_copy_x509_crt (const char * token_url, [Function]
gnutls_x509_crt_t crt, const char * label, unsigned int flags)
token_url: A PKCS 11 URL specifying a token

crt: A certificate
label: A name to be used for the stored data
flags: One of GNUTLS_PKCS11_OBJ_FLAG_*

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

int gnutls_pkcsll_delete_url (const char * object_url, unsigned [Function]
int flags)
object_url: The URL of the object to delete.
flags: One of GNUTLS_PKCS11_OBJ_* flags

This function will delete objects matching the given URL. Note that not all tokens
support the delete operation.

Returns: On success, the number of objects deleted is returned, otherwise a negative
error value.

Since: 2.12.0

5.2.5 Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in (undefined) [ex-pkes11-
client], page (undefined). In addition the following functions can be used to load PKCS
#11 key and certificates by specifying a PKCS #11 URL instead of a filename.

int [gnutls_certificate_set_x509_trust_file], page 287
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_key_file2], page 284
(gnutls_certificate_credentials_t res, const char * certfile, const char *
keyfile, gnutls_x509_crt_fmt_t type, const char * pass, unsigned int flags)

int gnutls_certificate_set_x509_system_trust [Function]
(gnutls_certificate_credentials_t cred)
cred: is a gnutls_certificate_credentials_t structure.

This function adds the system’s default trusted CAs in order to verify client or server
certificates.

In the case the system is currently unsupported GNUTLS_E_UNIMPLEMENTED_FEATURE
is returned.

Returns: the number of certificates processed or a negative error code on error.
Since: 3.0.20

Chapter 5: Hardware security modules and abstract key types 96

5.2.6 Invoking plltool

Program that allows operations on PKCS #11 smart cards and security modules.

To use PKCS #11 tokens with GnuTLS the pll-kit configuration files need to be
setup. That is create a .module file in /etc/pkesll/modules with the contents 'module:
/path/to/pkesll.so’. Alternatively the configuration file /etc/gnutls/pkesll.conf has to
exist and contain a number of lines of the form ’load=/usr/lib/opensc-pkesl1.so’.

You can provide the PIN to be used for the PKCS #11 operations with the environment
variables GNUTLS_PIN and GNUTLS_SO_PIN.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the plitool program. This software is released under the GNU General
Public License, version 3 or later.

5.2.7 plltool help/usage (--help)

This is the automatically generated usage text for plltool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

plltool is unavailable - no --help

5.2.8 debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

5.2.9 export-chain option

This is the “export the certificate specified by the url and its chain of trust” option. Exports
the certificate specified by the URL and generates its chain of trust based on the stored
certificates in the module.

5.2.10 list-all-privkeys option

This is the “list all available private keys in a token” option. Lists all the private keys in a
token that match the specified URL.

5.2.11 list-privkeys option

This is an alias for the 1list-all-privkeys option, see (undefined) [plltool
list-all-privkeys], page (undefined).

5.2.12 list-keys option

This is an alias for the list-all-privkeys option, see (undefined) [plltool
list-all-privkeys], page (undefined).

Chapter 5: Hardware security modules and abstract key types 97

5.2.13 write option

This is the “writes the loaded objects to a pkcs #11 token” option. It can be used to write
private keys, certificates or secret keys to a token.

5.2.14 generate-random option

This is the “generate random data” option. This option takes a number argument. Asks
the token to generate a number of bytes of random bytes.

5.2.15 generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair on the specified token.

5.2.16 generate-dsa option

This is the “generate a dsa private-public key pair” option. Generates a DSA private-public
key pair on the specified token.

5.2.17 generate-ecc option

This is the “generate an ecdsa private-public key pair” option. Generates an ECDSA
private-public key pair on the specified token.

5.2.18 export-pubkey option

This is the “export the public key for a private key” option. Exports the public key for the
specified private key

5.2.19 mark-wrap option

This is the “marks the generated key to be a wrapping key” option.
This option has some usage constraints. It:
e can be disabled with —no-mark-wrap.

Marks the generated key with the CKA_WRAP flag.

5.2.20 mark-trusted option

This is the “marks the object to be written as trusted” option.
This option has some usage constraints. It:
e can be disabled with —no-mark-trusted.

Marks the object to be generated/copied with the CKA_TRUST flag.

5.2.21 mark-ca option
This is the “marks the object to be written as a ca” option.
This option has some usage constraints. It:

e can be disabled with —no-mark-ca.

Marks the object to be generated/copied with the CKA_CERTIFICATE_CATEGORY as
CA.

Chapter 5: Hardware security modules and abstract key types 98

5.2.22 mark-private option

This is the “marks the object to be written as private” option.
This option has some usage constraints. It:

e can be disabled with —no-mark-private.

e It is enabled by default.

Marks the object to be generated/copied with the CKA_PRIVATE flag. The written object
will require a PIN to be used.
5.2.23 trusted option

This is an alias for the mark-trusted option, see (undefined) [plltool mark-trusted],
page (undefined).
5.2.24 ca option

This is an alias for the mark-ca option, see (undefined) [pl1tool mark-cal, page (undefined).

5.2.25 private option

This is an alias for the mark-private option, see (undefined) [plltool mark-private],
page (undefined).

5.2.26 so-login option

This is the “force security officer login to token” option.
This option has some usage constraints. It:
e can be disabled with —no-so-login.

Forces login to the token as security officer (admin).

5.2.27 admin-login option

This is an alias for the so-login option, see (undefined) [p11tool so-login], page (undefined).
5.2.28 curve option

This is the “specify the curve used for ec key generation” option. This option takes a string
argument. Supported values are secpl92rl, secp224rl, secp256rl, secp384rl and secp521rl.

5.2.29 sec-param option

This is the “specify the security level” option. This option takes a string argument Security
parameter. This is alternative to the bits option. Available options are [low, legacy,
medium, high, ultra].

5.2.30 inder option

This is the “use der/raw format for input” option.
This option has some usage constraints. It:
e can be disabled with —no-inder.

Use DER/RAW format for input certificates and private keys.

Chapter 5: Hardware security modules and abstract key types 99

5.2.31 inraw option

This is an alias for the inder option, see [plltool inder|, page 95.

5.2.32 outder option
This is the “use der format for output certificates, private keys, and dh parameters” option.
This option has some usage constraints. It:

e can be disabled with —no-outder.

The output will be in DER or RAW format.

5.2.33 outraw option

This is an alias for the outder option, see (undefined) [plltool outder|, page (undefined).

5.2.34 set-pin option

This is the “specify the pin to use on token initialization” option. This option takes a string
argument. Alternatively the GNUTLS_PIN environment variable may be used.

5.2.35 set-so-pin option

This is the “specify the security officer’s pin to use on token initialization” option. This
option takes a string argument. Alternatively the GNUTLS_SO_PIN environment variable
may be used.

5.2.36 provider option

This is the “specify the pkcs #11 provider library” option. This option takes a file argument.
This will override the default options in /etc/gnutls/pkesll.conf

5.2.37 plltool exit status

One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

5.2.38 plltool See Also
certtool (1)

5.2.39 plltool Examples
To view all tokens in your system use:
$ plitool --list-tokens
To view all objects in a token use:
$ plitool --login --list-all "pkcsl1l:TOKEN-URL"

To store a private key and a certificate in a token run:

Chapter 5: Hardware security modules and abstract key types 100

$ plitool --login --write "pkcsl1l:URL" --load-privkey key.pem \
--label "Mykey"

$ plitool --login --write "pkcs11:URL" --load-certificate cert.pem \
--label "Mykey"

Note that some tokens require the same label to be used for the certificate and its corre-
sponding private key.

To generate an RSA private key inside the token use:

$ plitool --login --generate-rsa --bits 1024 --label "MyNewKey" \
--outfile MyNewKey.pub "pkcsll:TOKEN-URL"

The bits parameter in the above example is explicitly set because some tokens only support
limited choices in the bit length. The output file is the corresponding public key. This key
can be used to general a certificate request with certtool.

certtool --generate-request --load-privkey "pkcsl1l:KEY-URL" \
--load-pubkey MyNewKey.pub --outfile request.pem

5.3 Trusted Platform Module (TPM)

In this section we present the Trusted Platform Module (TPM) support in GnuTLS.

There was a big hype when the TPM chip was introduced into computers. Briefly it is a
co-processor in your PC that allows it to perform calculations independently of the main
processor. This has good and bad side-effects. In this section we focus on the good ones;
these are the fact that you can use the TPM chip to perform cryptographic operations on
keys stored in it, without accessing them. That is very similar to the operation of a PKCS
#11 smart card. The chip allows for storage and usage of RSA keys, but has quite some
operational differences from PKCS #11 module, and thus require different handling. The
basic TPM operations supported and used by GnuTLS, are key generation and signing.

The next sections assume that the TPM chip in the system is already initialized and in a
operational state.

In GnuTLS the TPM functionality is available in gnutls/tpm.h.

5.3.1 Keys in TPM

The RSA keys in the TPM module may either be stored in a flash memory within TPM
or stored in a file in disk. In the former case the key can provide operations as with PKCS
#11 and is identified by a URL. The URL is described in [TPMURI] and is of the following
form.

tpmkey:uuid=42309df8-d101-11e1-a89a-97bb33c23adl;storage=user

It consists from a unique identifier of the key as well as the part of the flash memory the
key is stored at. The two options for the storage field are ‘user’ and ‘system’. The user keys
are typically only available to the generating user and the system keys to all users. The
stored in TPM keys are called registered keys.

The keys that are stored in the disk are exported from the TPM but in an encrypted form.
To access them two passwords are required. The first is the TPM Storage Root Key (SRK),
and the other is a key-specific password. Also those keys are identified by a URL of the
form:

Chapter 5: Hardware security modules and abstract key types 101

tpmkey:file=/path/to/file

When objects require a PIN to be accessed the same callbacks as with PKCS #11 objects
are expected (see Section 5.2.2 [Accessing objects that require a PIN], page 87). Note that
the PIN function may be called multiple times to unlock the SRK and the specific key in
use. The label in the key function will then be set to ‘SRK’ when unlocking the SRK key,
or to “TPM’ when unlocking any other key.

5.3.2 Key generation

All keys used by the TPM must be generated by the TPM. This can be done using
[gnutls_tpm_privkey_generate|, page 481.

int gnutls_tpm_privkey_generate (gnutls_pk_algorithm_t pk, [Function]
unsigned int bits, const char * srk_password, const char * key_password,
gnutls_tpmkey_fmt_t format, gnutls_x509_crt_fmt_t pub_format,
gnutls_datum_t * privkey, gnutls_datum_t * pubkey, unsigned int flags)
pk: the public key algorithm

bits: the security bits

srk_password: a password to protect the exported key (optional)
key_password: the password for the TPM (optional)

format: the format of the private key

pub_format: the format of the public key

privkey: the generated key

pubkey: the corresponding public key (may be null)

flags: should be a list of GNUTLS_TPM_* flags

This function will generate a private key in the TPM chip. The private key will be
generated within the chip and will be exported in a wrapped with TPM’s master key
form. Furthermore the wrapped key can be protected with the provided password .

Note that bits in TPM is quantized value. If the input value is not one of the allowed
values, then it will be quantized to one of 512, 1024, 2048, 4096, 8192 and 16384.
Allowed flags are:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int [gnutls_tpm_get_registered], page 480 (gnutls_tpm_key_list_t * list)
void [gnutls_tpm_key_list_deinit], page 480 (gnutls_tpm_key_list_t list)
int [gnutls_tpm_key_list_get_url], page 481 (gnutls_tpm_key_list_t list,
unsigned int idx, char ** url, unsigned int flags)

int gnutls_tpm_privkey_delete (const char * url, const char * [Function]
srk_password)
url: the URL describing the key

srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.

Chapter 5: Hardware security modules and abstract key types 102

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0
5.3.3 Using keys

Importing keys

The TPM keys can be used directly by the abstract key types and do not require any
special structures. Moreover functions like [gnutls_certificate_set_x509_key_file2], page 284
can access TPM URLs.

int [gnutls_privkey_import_tpm_raw], page 489 (gnutls_privkey_t pkey, const
gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,
const char * key_password, unsigned int flags)

int [gnutls_pubkey_import_tpm_raw], page 500 (gnutls_pubkey_t pkey, const
gnutls_datum_t * fdata, gnutls_tpmkey_fmt_t format, const char * srk_password,
unsigned int flags)

int gnutls_privkey_import_tpm_url (gnutls_privkey_t pkey, const [Function]

char * url, const char * srk_password, const char * key_password,
unsigned int flags)

pkey: The private key

url: The URL of the TPM key to be imported

srk_password: The password for the SRK key (optional)

key_password: A password for the key (optional)

flags: One of the GNUTLS_PRIVKEY _* flags

This function will import the given private key to the abstract gnutls_privkey_t
structure.

Note that unless GNUTLS_PRIVKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_
PASSWORD_ERROR is returned and if the key password is wrong or not provided then
GNUTLS_E_TPM_KEY_PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.1.0
int gnutls_pubkey_import_tpm_url (gnutls_pubkey_t pkey, const [Function]

char * url, const char * srk_password, unsigned int f1ags)
pkey: The public key

url: The URL of the TPM key to be imported
srk_password: The password for the SRK key (optional)
flags: should be zero

This function will import the given private key to the abstract gnutls_privkey_t
structure.

Chapter 5: Hardware security modules and abstract key types 103

Note that unless GNUTLS_PUBKEY_DISABLE_CALLBACKS is specified, if incorrect (or
NULL) passwords are given the PKCS11 callback functions will be used to obtain
the correct passwords. Otherwise if the SRK password is wrong GNUTLS_E_TPM_SRK_
PASSWORD_ERROR is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

Listing and deleting keys

The registered keys (that are stored in the TPM) can be listed using one of the following
functions. Those keys are unfortunately only identified by their UUID and have no label
or other human friendly identifier. Keys can be deleted from permament storage using
[gnutls_tpm_privkey_delete], page 481.
int [gnutls_tpm_get_registered], page 480 (gnutls_tpm_key_list_t * list)
void [gnutls_tpm_key_list_deinit], page 480 (gnutls_tpm_key_list_t list)
int [gnutls_tpm_key_list_get_url], page 481 (gnutls_tpm_key_list_t list,
unsigned int idx, char ** url, unsigned int flags)
int gnutls_tpm_privkey_delete (const char * url, const char * [Function]
srk_password)
url: the URL describing the key

srk_password: a password for the SRK key
This function will unregister the private key from the TPM chip.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

5.3.4 Invoking tpmtool
Program that allows handling cryptographic data from the TPM chip.

This section was generated by AutoGen, using the agtexi-cmd template and the option
descriptions for the tpmtool program. This software is released under the GNU General
Public License, version 3 or later.

5.3.5 tpmtool help/usage (--help)

This is the automatically generated usage text for tpmtool.

The text printed is the same whether selected with the help option (--help) or the more-
help option (--more-help). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to more. Both
will exit with a status code of 0.

tpmtool is unavailable - no --help

5.3.6 debug option (-d)

This is the “enable debugging” option. This option takes a number argument. Specifies the
debug level.

Chapter 5: Hardware security modules and abstract key types 104

5.3.7 generate-rsa option

This is the “generate an rsa private-public key pair” option. Generates an RSA private-
public key pair in the TPM chip. The key may be stored in filesystem and protected by a
PIN, or stored (registered) in the TPM chip flash.

5.3.8 user option
This is the “any registered key will be a user key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: register.

e must not appear in combination with any of the following options: system.

The generated key will be stored in a user specific persistent storage.

5.3.9 system option
This is the “any registred key will be a system key” option.
This option has some usage constraints. It:
e must appear in combination with the following options: register.

e must not appear in combination with any of the following options: user.

The generated key will be stored in system persistent storage.

5.3.10 sec-param option

This is the “specify the security level [low, legacy, medium, high, ultra].” option. This
option takes a string argument Security parameter. This is alternative to the bits option.
Note however that the values allowed by the TPM chip are quantized and given values may
be rounded up.

5.3.11 inder option
This is the “use the der format for keys.” option.
This option has some usage constraints. It:

e can be disabled with —no-inder.

The input files will be assumed to be in the portable DER format of TPM. The default
format is a custom format used by various TPM tools

5.3.12 outder option
This is the “use der format for output keys” option.
This option has some usage constraints. It:

e can be disabled with —no-outder.

The output will be in the TPM portable DER format.

Chapter 5: Hardware security modules and abstract key types 105

5.3.13 tpmtool exit status
One of the following exit values will be returned:

‘0 (EXIT_SUCCESS)’
Successful program execution.

‘1 (EXIT_FAILURE)’
The operation failed or the command syntax was not valid.

5.3.14 tpmtool See Also
plltool (1), certtool (1)

5.3.15 tpmtool Examples
To generate a key that is to be stored in filesystem use:

$ tpmtool --generate-rsa --bits 2048 --outfile tpmkey.pem
To generate a key that is to be stored in TPM’s flash use:

$ tpmtool --generate-rsa --bits 2048 --register --user
To get the public key of a TPM key use:

$ tpmtool --pubkey tpmkey:uuid=58ad734b-bde6-45c7-89d8-756a55ad1891;storage=user \
--outfile pubkey.pem

or if the key is stored in the filesystem:

$ tpmtool --pubkey tpmkey:file=tmpkey.pem --outfile pubkey.pem
To list all keys stored in TPM use:

$ tpmtool --list

Chapter 6: How to use GnuTLS in applications 106

6 How to use GnuTLS in applications

6.1 Introduction

This chapter tries to explain the basic functionality of the current GnuTLS library. Note
that there may be additional functionality not discussed here but included in the library.
Checking the header files in /usr/include/gnutls/ and the manpages is recommended.

6.1.1 General idea

A brief description of how GnuTLS sessions operate is shown at (undefined) [fig-gnutls-
design|, page (undefined). This section will become more clear when it is completely read.
As shown in the figure, there is a read-only global state that is initialized once by the
global initialization function. This global structure, among others, contains the memory
allocation functions used, structures needed for the ASN.1 parser and depending on the
system’s CPU, pointers to hardware accelerated encryption functions. This structure is
never modified by any GnuTLS function, except for the deinitialization function which frees
all allocated memory and must be called after the program has permanently finished using
GnuTLS.

Global state Credentials

L

TLS Session TLS Session | 4

ol

Session Database
Backend

f

Transport Layer

Figure 6.1: High level design of GnuTLS.

The credentials structures are used by the authentication methods, such as certificate au-
thentication. They store certificates, privates keys, and other information that is needed
to prove the identity to the peer, and/or verify the indentity of the peer. The information
stored in the credentials structures is initialized once and then can be shared by many TLS
sessions.

A GnuTLS session contains all the required state and information to handle one secure
connection. The session communicates with the peers using the provided functions of the
transport layer. Every session has a unique session ID shared with the peer.

Chapter 6: How to use GnuTLS in applications 107

Since TLS sessions can be resumed, servers need a database back-end to hold the session’s
parameters. Every GnuTLS session after a successful handshake calls the appropriate back-
end function (see [resume|, page 10) to store the newly negotiated session. The session
database is examined by the server just after having received the client hello!, and if the
session ID sent by the client, matches a stored session, the stored session will be retrieved,
and the new session will be a resumed one, and will share the same session ID with the
previous one.

6.1.2 Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be
disallowed. Such an example is GNUTLS_E_DECRYPTION_FAILED. Non-fatal errors may
warn about something, i.e., a warning alert was received, or indicate the some action
has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE returned
by [gnutls_record_recv], page 325. This error code indicates that the server requests a re-
handshake. The client may ignore this request, or may reply with an alert. You can test if
an error code is a fatal one by using the [gnutls_error_is_fatal], page 300. All errors can be
converted to a descriptive string using [gnutls_strerror|, page 345.

If any non fatal errors, that require an action, are to be returned by a function, these
error codes will be documented in the function’s reference. For example the error codes
GNUTLS_E_WARNING_ALERT_RECEIVED and GNUTLS_E_FATAL_ALERT_RECEIVED that may re-
turned when receiving data, should be handled by notifying the user of the alert (as ex-
plained in Section 6.9 [Handling alerts], page 125). See Appendix C [Error codes|, page 258,
for a description of the available error codes.

6.1.3 Common types

All strings that are to provided as input to GnuTLS functions should be in UTF-8 unless
otherwise specified. Output strings are also in UTF-8 format unless otherwise specified.

When data of a fixed size are provided to GnuTLS functions then the helper structure
gnutls_datum_t is often used. Its definition is shown below.

typedef struct

{
unsigned char *data;
unsigned int size;

} gnutls_datum_t;

Other functions that require data for scattered read use a structure similar to struct iovec
typically used by readv. It is shown below.

typedef struct
{

void *iov_base; /* Starting address */

size_t iov_len; /* Number of bytes to transfer */
} giovec_t;

L The first message in a TLS handshake

Chapter 6: How to use GnuTLS in applications 108

6.1.4 Debugging and auditing

In many cases things may not go as expected and further information, to assist debug-
ging, from GnuTLS is desired. Those are the cases where the [gnutls_global_set_log_level],
page 302 and [gnutls_global_set_log_function], page 302 are to be used. Those will print
verbose information on the GnuTLS functions internal flow.

void [gnutls_global_set_log_levell, page 302 (int level)
void [gnutls_global_set_log_function], page 302 (gnutls_log_func log_func)

Alternatively the environment variable GNUTLS_DEBUG_LEVEL can be set to a logging level
and GnuTLS will output debugging output to standard error. Other available environment
variables are shown in (undefined) [tab:environment], page (undefined).

Variable Purpose

GNUTLS_DEBUG_LEVEL When set to a numeric value, it sets the default debugging
level for GnuTLS applications.

GNUTLS_CPUID_OVERRIDE That environment variable can be used to explicitly en-
able/disable the use of certain CPU capabilities. Note that
CPU detection cannot be overriden, i.e., VIA options cannot
be enabled on an Intel CPU. The currently available options
are:

e 0Ox1: Disable all run-time detected optimizations
e (0x2: Enable AES-NI

e 0x4: Enable SSSE3

e 0x8: Enable PCLMUL

e 0x100000: Enable VIA padlock

e (0x200000: Enable VIA PHE

e 0x400000: Enable VIA PHE SHA512

GNUTLS_FORCE_FIPS_MODE In setups where GnuTLS is compiled with support for
FIPS140-2 (see —enable-fips140-mode in configure), that op-
tion if set to one enforces the FIPS140 mode.

Table 6.1: Environment variables used by the library.

When debugging is not required, important issues, such as detected attacks on the
protocol still need to be logged. This is provided by the logging function set by
[gnutls_global _set_audit_log_function], page 301. The provided function will receive an
message and the corresponding TLS session. The session information might be used to
derive IP addresses or other information about the peer involved.

void gnutls_global_set_audit_log_function [Function]
(gnutls_audit_log_func log_func)
log_func: it is the audit log function

Chapter 6: How to use GnuTLS in applications 109

This is the function to set the audit logging function. This is a function to report im-
portant issues, such as possible attacks in the protocol. This is different from gnutls_
global_set_log_function() because it will report also session-specific events. The
session parameter will be null if there is no corresponding TLS session.

gnutls_audit_log_func is of the form, void (*gnutls_audit_log_func)(
gnutls_session_t, const char*);

Since: 3.0

6.1.5 Thread safety

The GnuTLS library is thread safe by design, meaning that objects of the library such as
TLS sessions, can be safely divided across threads as long as a single thread accesses a single
object. This is sufficient to support a server which handles several sessions per thread. If,
however, an object needs to be shared across threads then access must be protected with a
mutex. Read-only access to objects, for example the credentials holding structures, is also
thread-safe.

A gnutls_session_t object can be shared by two threads, one sending, the other receiving.
In that case rehandshakes, if required, must only be handled by a single thread being active.
The termination of a session should be handled, either by a single thread being active, or
by the sender thread using [gnutls_bye|, page 275 with GNUTLS_SHUT_WR and the receiving
thread waiting for a return value of zero.

The random generator of the cryptographic back-end, utilizes mutex locks (e.g., pthreads
on GNU /Linux and CriticalSection on Windows) which are setup by GnuTLS on library ini-
tialization. Prior to version 3.3.0 they were setup by calling [gnutls_global_init], page 301.
On special systems you could manually specify the locking system using the function
[gnutls_global_set_mutex|, page 302 before calling any other GnuTLS function. Setting
mutexes manually is not recommended. An example of non-native thread usage is shown
below.

#include <gnutls/gnutls.h>

int main()

{
/* When the system mutexes are not to be used
* gnutls_global_set_mutex() must be called explicitly
*/
gnutls_global_set_mutex (mutex_init, mutex_deinit,
mutex_lock, mutex_unlock);
b
void gnutls_global_set_mutex (mutex_init_func init, [Function]
mutex_deinit_func deinit, mutex_lock_func lock, mutex_unlock_func
unlock)

init: mutex initialization function
deinit: mutex deinitialization function
lock: mutex locking function

unlock: mutex unlocking function

Chapter 6: How to use GnuTLS in applications 110

With this function you are allowed to override the default mutex locks used in some
parts of gnutls and dependent libraries. This function should be used if you have
complete control of your program and libraries. Do not call this function from a
library, or preferrably from any application unless really needed to. GnuTLS will use
the appropriate locks for the running system.

This function must be called prior to any other gnutls function.
Since: 2.12.0

6.1.6 Sessions and fork

A gnutls_session_t object can be shared by two processes after a fork, one sending,
the other receiving. In that case rehandshakes, cannot and must not be performed. As
with threads, the termination of a session should be handled by the sender process using
[gnutls_bye], page 275 with GNUTLS_SHUT_WR and the receiving process waiting for a return
value of zero.

6.1.7 Callback functions

There are several cases where GnuTLS may need out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.

An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.

void [gnutls_transport_set_push_function], page 350 (gnutls_session_t
session, gnutls_push_func push_func)
void [gnutls_transport_set_pull_function], page 349 (gnutls_session_t
session, gnutls_pull_func pull_func)

Other callback functions may require more complicated input and data to be allocated.
Such an example is [gnutls_srp_set_server_credentials_function]|, page 341. All callbacks
should allocate and free memory using gnutls_malloc and gnutls_free.

6.2 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

6.2.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
gnutls/gnutls.h. This must be included in all programs that make use of the GnuTLS
library.

6.2.2 Initialization

The GnuTLS library is initialized on load; prior to 3.3.0 was initialized by calling
[gnutls_global_init], page 3012 The initialization typically enables CPU-specific

)

The original behavior of requiring explicit initialization can obtained by setting the
GNUTLS_NO_EXPLICIT_INIT environment variable to 1, or by using the macro GNUTLS_SKIP_GLOBAL_INIT
in a global section of your program.

Chapter 6: How to use GnuTLS in applications 111

acceleration, performs any required precalculations needed, opens any required system
devices (e.g., /dev/urandom on Linux) and initializes subsystems that could be used later.

The resources allocated by the initialization process will be released on library deinitializa-
tion, or explictly by calling [gnutls_global_deinit|, page 301.

Note that during initialization file descriptors may be kept open by GnuTLS (e.g.
/dev/urandom) on library load. Applications closing all unknown file descriptors must
immediately call [gnutls_global_init], page 301, after that, to ensure they don’t disrupt
GnuTLS’ operation.

6.2.3 Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits
all requirements. Even with binary compatibility new features may have been introduced
but due to problem with the dynamic linker an old version is actually used. So you may
want to check that the version is okay right after program start-up. See the function
[gnutls_check_version], page 290.

On the other hand, it is often desirable to support more than one versions of the library.
In that case you could utilize compile-time feature checks using the the GNUTLS_VERSION_
NUMBER macro. For example, to conditionally add code for GnuTLS 3.2.1 or later, you may
use:

#if GNUTLS_VERSION_NUMBER >= 0x030201

#endif
6.2.4 Building the source
If you want to compile a source file including the gnutls/gnutls.h header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by

adding the path to the directory in which the header file is located to the compilers include
file search path (via the -I option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the --cflags option to pkg-config
gnutls. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config gnutls --cflags®

Adding the output of ‘pkg-config gnutls --cflags’ to the compilers command line will
ensure that the compiler can find the gnutls/gnutls.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added
to the library search path (via the -L option). For this, the option --1ibs to pkg-config
gnutls can be used. For convenience, this option also outputs all other options that are
required to link the program with the library (for instance, the ‘-1tasn1’ option). The
example shows how to link foo.o with the library to a program foo.

gcc -o foo foo.o ‘pkg-config gnutls --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

Chapter 6: How to use GnuTLS in applications 112

gcc -o foo foo.c ‘pkg-config gnutls --cflags --1libs®

When a program uses the GNU autoconf system, then the following line or similar can be
used to detect the presence of GnuTLS.

PKG_CHECK_MODULES ([LIBGNUTLS], [gnutls >= 3.3.0])

AC_SUBST([LIBGNUTLS_CFLAGS])
AC_SUBST([LIBGNUTLS_LIBS])

6.3 Session initialization

In the previous sections we have discussed the global initialization required for GnuTLS
as well as the initialization required for each authentication method’s credentials (see
Section 3.5.2 [Authentication], page 10). In this section we elaborate on the TLS or DTLS
session initiation. Fach session is initialized using [gnutls_init], page 308 which among
others is used to specify the type of the connection (server or client), and the underlying
protocol type, i.e., datagram (UDP) or reliable (TCP).

int gnutls_init (gnutls_session_t * session, unsigned int flags) [Function]
session: is a pointer to a gnutls_session_t structure.

flags: indicate if this session is to be used for server or client.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit() . Returns GNUTLS_E_SUCCESS
(0) on success.

flags can be one of GNUTLS_CLIENT and GNUTLS_SERVER . For a DTLS entity, the
flags GNUTLS_DATAGRAM and GNUTLS_NONBLOCK are also available. The latter flag will
enable a non-blocking operation of the DTLS timers.

The flag GNUTLS_NO_REPLAY_PROTECTION will disable any replay protection in DTLS
mode. That must only used when replay protection is achieved using other means.

Note that since version 3.1.2 this function enables some common TLS extensions such
as session tickets and OCSP certificate status request in client side by default. To
prevent that use the GNUTLS_NO_EXTENSIONS flag.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

After the session initialization details on the allowed ciphersuites and protocol versions
should be set using the priority functions such as [gnutls_priority_set_direct], page 318. We
elaborate on them in Section 6.10 [Priority Strings], page 127. The credentials used for
the key exchange method, such as certificates or usernames and passwords should also be
associated with the session current session using [gnutls_credentials_set], page 292.

int gnutls_credentials_set (gnutls_session_t session, [Function]
gnutls_credentials_type_t type, void * cred)
session: is a gnutls_session_t structure.

type: is the type of the credentials

cred: is a pointer to a structure.

Chapter 6: How to use GnuTLS in applications 113

Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The cred parameter is a structure that depends on the specified
type and on the current session (client or server).

In order to minimize memory usage, and share credentials between several threads
gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have
to keep the structure allocated until you call gnutls_deinit() .

For GNUTLS_CRD_ANON , cred should be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t .
For GNUTLS_CRD_SRP , cred should be gnutls_srp_client_credentials_t in case
of a client, and gnutls_srp_server_credentials_t , in case of a server.

For GNUTLS_CRD_CERTIFICATE, cred should be gnutls_certificate_credentials_
t.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

6.4 Associating the credentials

Each authentication method is associated with a key exchange method, and a credentials
type. The contents of the credentials is method-dependent, e.g. certificates for
certificate authentication and should be initialized and associated with a session (see
[gnutls_credentials_set], page 292). A mapping of the key exchange methods with the
credential types is shown in Table 6.1.

Authentication Key exchange Client Server creden-
method credentials tials
Certificate KX_RSA, KX_DHE_ CRD CRD

RSA, KX_DHE_DSS, CERTIFICATE CERTIFICATE
KX_ECDHE_RSA,

KX_ECDHE_ECDSA,

KX_RSA_EXPORT

Password and KX_SRP_RSA, CRD_SRP CRD_
certificate KX_SRP_DSS CERTIFICATE,
CRD_SRP

Password KX_SRP CRD_SRP CRD_SRP

Anonymous KX_ANON_DH, CRD_ANON CRD_ANON
KX_ANON_ECDH

Pre-shared key KX_PSK, KX_ CRD_PSK CRD_PSK
DHE_PSK,

KX_ECDHE_PSK
Table 6.2: Key exchange algorithms and the corresponding credential types.

6.4.1 Certificates

Chapter 6: How to use GnuTLS in applications 114

Server certificate authentication

When using certificates the server is required to have at least one certificate and private
key pair. Clients may not hold such a pair, but a server could require it. In this section we
discuss general issues applying to both client and server certificates. The next section will
elaborate on issues arising from client authentication only.

int [gnutls_certificate_allocate_credentials], page 276
(gnutls_certificate_credentials_t * res)

void [gnutls_certificate_free_credentials], page 277
(gnutls_certificate_credentials_t sc)

After the credentials structures are initialized, the certificate and key pair must be loaded.
This occurs before any TLS session is initialized, and the same structures are reused for
multiple sessions. Depending on the certificate type different loading functions are available,
as shown below. For X.509 certificates, the functions will accept and use a certificate chain
that leads to a trusted authority. The certificate chain must be ordered in such way that
every certificate certifies the one before it. The trusted authority’s certificate need not to
be included since the peer should possess it already.

int [gnutls_certificate_set_x509_key_mem2], page 285
(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const
gnutls_datum_t * key, gnutls_x509_crt_fmt_t type, const char * pass, unsigned
int flags)

int [gnutls_certificate_set_x509_key], page 283
(gnutls_certificate_credentials_t res, gnutls_x509_crt_t * cert_list, int
cert_list_size, gnutls_x509_privkey_t key)

int [gnutls_certificate_set_x509_key_file2], page 284
(gnutls_certificate_credentials_t res, const char * certfile, const char *
keyfile, gnutls_x509_crt_fmt_t type, const char * pass, unsigned int flags)

int [gnutls_certificate_set_openpgp_key_mem], page 443
(gnutls_certificate_credentials_t res, const gnutls_datum_t * cert, const
gnutls_datum_t * key, gnutls_openpgp_crt_fmt_t format)

int [gnutls_certificate_set_openpgp_keyl, page 442
(gnutls_certificate_credentials_t res, gnutls_openpgp_crt_t crt,
gnutls_openpgp_privkey_t pkey)

int [gnutls_certificate_set_openpgp_key_filel, page 443
(gnutls_certificate_credentials_t res, const char * certfile, const char *
keyfile, gnutls_openpgp_crt_fmt_t format)

Note however, that since functions like [gnutls_certificate_set_x509_key_file2], page 284
may accept URLs that specify objects stored in token, another important function is
[gnutls_certificate_set_pin_function|, page 280. That allows setting a callback function to
retrieve a PIN if the input keys are protected by PIN by the token.

void gnutls_certificate_set_pin_function [Function]
(gnutls_certificate_credentials_t cred, gnutls_pin_callback_t fn, void *
userdata)

cred: is a gnutls_certificate_credentials_t structure.

fn: A PIN callback

Chapter 6: How to use GnuTLS in applications 115

userdata: Data to be passed in the callback

This function will set a callback function to be used when required to access a pro-
tected object. This function overrides any other global PIN functions.

Note that this function must be called right after initialization to have effect.

Since: 3.1.0

If the imported keys and certificates need to be accessed before any TLS session is es-
tablished, it is convenient to use [gnutls_certificate_set_key], page 482 in combination with
[gnutls_pcert_import_x509_raw|, page 484 and [gnutls_privkey_import_x509_raw], page 490.

int gnutls_certificate_set_key (gnutls_certificate_credentials_t [Function]
res, const char ** names, int names_size, gnutls_pcert_st * pcert_list, int
pcert_list_size, gnutls_privkey_t key)
res: is a gnutls_certificate_credentials_t structure.

names: is an array of DNS name of the certificate (NULL if none)
names_size: holds the size of the names list

pcert_list: contains a certificate list (path) for the specified private key
pceert_list_size: holds the size of the certificate list

key: is a gnutls_privkey_t key

This function sets a certificate/private key pair in the gnutls_certificate_credentials_t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in pcert_list .

Note that the pcert_list and key will become part of the credentials structure
and must not be deallocated. They will be automatically deallocated when the res
structure is deinitialized.

If that function fails to load the res structure is at an undefined state, it must not
be reused to load other keys or certificates.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.
Since: 3.0

If multiple certificates are used with the functions above each client’s request will be served
with the certificate that matches the requested name (see Section 3.6.2 [Server name indi-
cation], page 11).

As an alternative to loading from files or buffers, a callback may be used for the server
or the client to specify the certificate and the key at the handshake time. In that case a
certificate should be selected according the peer’s signature algorithm preferences. To get
those preferences use [gnutls_sign_algorithm_get_requested], page 336. Both functions are
shown below.

Chapter 6: How to use GnuTLS in applications 116

void [gnutls_certificate_set_retrieve_function], page 280
(gnutls_certificate_credentials_t cred, gnutls_certificate_retrieve_function
* func)

void [gnutls_certificate_set_retrieve_function2], page 482
(gnutls_certificate_credentials_t cred,
gnutls_certificate_retrieve_function2 * func)

int [gnutls_sign_algorithm_get_requested], page 336 (gnutls_session_t
session, size_t indx, gnutls_sign_algorithm_t * algo)

¢ The functions above do not handle the requested server name automatically. A server
would need to check the name requested by the client using [gnutls_server_name_get],
page 329, and serve the appropriate certificate. Note that some of these functions require
the gnutls_pcert_st structure to be filled in. Helper functions to fill in the structure are
listed below.

typedef struct gnutls_pcert_st

{
gnutls_pubkey_t pubkey;
gnutls_datum_t cert;
gnutls_certificate_type_t type;

} gnutls_pcert_st;

int [gnutls_pcert_import_x509], page 484 (gnutls_pcert_st * pcert,
gnutls_x509_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_openpgpl, page 483 (gnutls_pcert_st * pcert,
gnutls_openpgp_crt_t crt, unsigned int flags)

int [gnutls_pcert_import_x509_raw], page 484 (gnutls_pcert_st * pcert, const
gnutls_datum_t * cert, gnutls_x509_crt_fmt_t format, unsigned int flags)

int [gnutls_pcert_import_openpgp_raw], page 484 (gnutls_pcert_st * pcert,
const gnutls_datum_t * cert, gnutls_openpgp_crt_fmt_t format,
gnutls_openpgp_keyid_t keyid, unsigned int flags)

void [gnutls_pcert_deinit], page 483 (gnutls_pcert_st * pcert)

In a handshake, the negotiated cipher suite depends on the certificate’s parameters, so some
key exchange methods might not be available with all certificates. GnuTLS will disable
ciphersuites that are not compatible with the key, or the enabled authentication methods.
For example keys marked as sign-only, will not be able to access the plain RSA ciphersuites,
that require decryption. It is not recommended to use RSA keys for both signing and
encryption. If possible use a different key for the DHE-RSA which uses signing and RSA that
requires decryption. All the key exchange methods shown in Table 4.1 are available in
certificate authentication.

Client certificate authentication

If a certificate is to be requested from the client during the handshake, the
server will send a certificate request message. This behavior is controlled
[gnutls_certificate_server_set_request], page 278. The request contains a list of the
acceptable by the server certificate signers. This list is constructed using the trusted
certificate authorities of the server. In cases where the server supports a large number of
certificate authorities it makes sense not to advertise all of the names to save bandwidth.
That can be controlled using the function [gnutls_certificate_send_x509_rdn_sequence],

Chapter 6: How to use GnuTLS in applications 117

page 278. This however will have the side-effect of not restricting the client to certificates
signed by server’s acceptable signers.

void gnutls_certificate_server_set_request (gnutls_session_t [Function]
session, gnutls_certificate_request_t req)
session: is a gnutls_session_t structure.

req: is one of GNUTLS_CERT_REQUEST, GNUTLS_CERT_REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If req is GNUTLS_CERT_REQUIRE then the server will
return an error if the peer does not provide a certificate. If you do not call this
function then the client will not be asked to send a certificate.

void gnutls_certificate_send_x509_rdn_sequence [Function]
(gnutls_session_t session, int status)
session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertise its trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertise the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

Client or server certificate verification

Certificate verification is possible by loading the trusted authorities into the credentials
structure by using the following functions, applicable to X.509 and OpenPGP certificates.

int [gnutls_certificate_set_x509_system_trust], page 286
(gnutls_certificate_credentials_t cred)

int [gnutls_certificate_set_x509_trust_file], page 287
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_openpgp_keyring file], page 444
(gnutls_certificate_credentials_t ¢, const char * file,
gnutls_openpgp_crt_fmt_t format)

The peer’s certificate is not automatically verified and one must call [gnutls_certificate_verify_peers3],
page 289 after a successful handshake to verify the certificate’s signature and the

owner of the certificate. The verification status returned can be printed using
[gnutls_certificate_verification_status_print], page 288.

Alternatively the verification can occur during the handshake by using
[gnutls_certificate_set _verify _function|, page 281.

The functions above provide a brief verification output. If a detailed output is required one
should call [gnutls_certificate_get_peers], page 278 to obtain the raw certificate of the peer
and verify it using the functions discussed in Section 4.1.1 [X.509 certificates]|, page 19.

Chapter 6: How to use GnuTLS in applications 118

int gnutls_certificate_verify_peers3 (gnutls_session_t session, [Function]
const char * hostname, unsigned int * status)
session: is a gnutls session

hostname: is the expected name of the peer; may be NULL
status: is the output of the verification

This function will verify the peer’s certificate and store the status in the status
variable as a bitwise or’d gnutls_certificate_status_t values or zero if the certificate
is trusted. Note that value in status is set only when the return value of this
function is success (i.e, failure to trust a certificate does not imply a negative return
value). The default verification flags used by this function can be overridden using
gnutls_certificate_set_verify_flags() . See the documentation of gnutls_
certificate_verify_peers2() for details in the verification process.

If the hostname provided is non-NULL then this function will compare the hostname
in the certificate against the given. The comparison will be accurate for ascii names;
non-ascii names are compared byte-by-byte. If names do not match the GNUTLS_
CERT_UNEXPECTED_OWNER status flag will be set.

In order to verify the purpose of the end-certificate (by checking the extended key
usage), use gnutls_certificate_verify_peers() .

Returns: a negative error code on error and GNUTLS_E_SUCCESS (0) when the peer’s
certificate was successfully parsed, irrespective of whether it was verified.

Since: 3.1.4

void gnutls_certificate_set_verify_function [Function]
(gnutls_certificate_credentials_t cred, gnutls_certificate_verify_function * func)
cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called when peer’s certificate has been received in
order to verify it on receipt rather than doing after the handshake is completed.

The callback’s function prototype is: int (*callback)(gnutls_session_t);

If the callback function is provided then gnutls will call it, in the handshake, just
after the certificate message has been received. To verify or obtain the certificate
the gnutls_certificate_verify_peers2() , gnutls_certificate_type_get() ,
gnutls_certificate_get_peers() functions can be used.

The callback function should return 0 for the handshake to continue or non-zero to
terminate.

Since: 2.10.0

6.4.2 SRP

The initialization functions in SRP credentials differ between client and server. Clients
supporting SRP should set the username and password prior to connection, to the credentials
structure. Alternatively [gnutls_srp_set_client_credentials_function], page 340 may be used
instead, to specify a callback function that should return the SRP username and password.
The callback is called once during the TLS handshake.

Chapter 6: How to use GnuTLS in applications 119

int [gnutls_srp_allocate_server_credentials], page 337
(gnutls_srp_server_credentials_t * sc)

int [gnutls_srp_allocate_client_credentials], page 337
(gnutls_srp_client_credentials_t * sc)

void [gnutls_srp_free_server_credentials], page 339
(gnutls_srp_server_credentials_t sc)

void [gnutls_srp_free_client_credentials], page 339
(gnutls_srp_client_credentials_t sc)

int [gnutls_srp_set_client_credentials], page 339
(gnutls_srp_client_credentials_t res, const char * username, const char *
password)

void gnutls_srp_set_client_credentials_function [Function]
(gnutls_srp_client_credentials_t cred, gnutls_srp_client_credentials_function *
func)

cred: is a gnutls_srp_server_credentials_t structure.
func: is the callback function

This function can be used to set a callback to retrieve the username and password for
client SRP authentication. The callback’s function form is:

int (*callback)(gnutls_session_t, char** username, char**password);

The username and password must be allocated using gnutls_malloc() . username
and password should be ASCII strings or UTF-8 strings prepared using the "SASL-
prep" profile of "stringprep".

The callback function will be called once per handshake before the initial hello message
is sent.

The callback should not return a negative error code the second time called, since the
handshake procedure will be aborted.

The callback function should return 0 on success. -1 indicates an error.

In server side the default behavior of GnuTLS is to read the usernames and SRP
verifiers from password files. These password file format is compatible the with
the Stanford srp libraries format. If a different password file format is to be used,
then [gnutls_srp_set_server_credentials_function|, page 341 should be called, to set an
appropriate callback.

int gnutls_srp_set_server_credentials_file [Function]
(gnutls_srp_server_credentials_t res, const char * password_file, const char
* password_conf_file)
res: is a gnutls_srp_server_credentials_t structure.

password_file: is the SRP password file (tpasswd)
password_conf_file: is the SRP password conf file (tpasswd.conf)

This function sets the password files, in a gnutls_srp_server_credentials_t struc-
ture. Those password files hold usernames and verifiers and will be used for SRP
authentication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Chapter 6: How to use GnuTLS in applications 120

void gnutls_srp_set_server_credentials_function [Function]
(gnutls_srp_server_credentials_t cred, gnutls_srp_server_credentials_function *
func)

cred: is a gnutls_srp_server_credentials_t structure.
func: is the callback function

This function can be used to set a callback to retrieve the user’s SRP credentials.
The callback’s function form is:

int (*callback)(gnutls_session_t, const char* username, gnutls_.datum_t *salt,
gnutls_datum_t *verifier, gnutls_datum_t *generator, gnutls_datum_t *prime);

username contains the actual username. The salt , verifier , generator and prime
must be filled in using the gnutls_malloc() . For convenience prime and generator
may also be one of the static parameters defined in gnutls.h.

Initially, the data field is NULL in every gnutls_datum_t structure that the callback
has to fill in. When the callback is done GnuTLS deallocates all of those buffers which
are non-NULL, regardless of the return value.

In order to prevent attackers from guessing valid usernames, if a user does not exist,
g and n values should be filled in using a random user’s parameters. In that case
the callback must return the special value (1). See gnutls_srp_set_server_fake_
salt_seed too. If this is not required for your application, return a negative number
from the callback to abort the handshake.

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

6.4.3 PSK
The initialization functions in PSK credentials differ between client and server.

int [gnutls_psk_allocate_server_credentials] , page 320
(gnutls_psk_server_credentials_t * sc)

int [gnutls_psk_allocate_client_credentials], page 320
(gnutls_psk_client_credentials_t * sc)

void [gnutls_psk_free_server_credentials], page 320
(gnutls_psk_server_credentials_t sc)

void [gnutls_psk_free_client_credentials], page 320
(gnutls_psk_client_credentials_t sc)

Clients supporting PSK should supply the username and key before a TLS session is estab-
lished. Alternatively [gnutls_psk_set_client_credentials_function|, page 321 can be used to
specify a callback function. This has the advantage that the callback will be called only if
PSK has been negotiated.

int [gnutls_psk_set_client_credentials], page 321
(gnutls_psk_client_credentials_t res, const char * username, const
gnutls_datum_t * key, gnutls_psk_key_flags flags)

void gnutls_psk_set_client_credentials_function [Function]
(gnutls_psk_client_credentials_t cred, gnutls_psk_client_credentials_function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

Chapter 6: How to use GnuTLS in applications 121

func: is the callback function

This function can be used to set a callback to retrieve the username and pass-
word for client PSK authentication. The callback’s function form is: int (*call-
back)(gnutls_session_t, char** username, gnutls_datum_t* key);

The username and key ->data must be allocated using gnutls_malloc() . username
should be ASCII strings or UTF-8 strings prepared using the "SASLprep" profile of
"stringprep".

The callback function will be called once per handshake.

The callback function should return 0 on success. -1 indicates an error.

In server side the default behavior of GnuTLS is to read the usernames and PSK keys
from a password file. The password file should contain usernames and keys in hexadecimal
format. The name of the password file can be stored to the credentials structure by calling
[gnutls_psk_set_server_credentials_file], page 322. If a different password file format is to be
used, then a callback should be set instead by [gnutls_psk_set_server_credentials_function],
page 322.

The server can help the client chose a suitable username and password, by sending a hint.
Note that there is no common profile for the PSK hint and applications are discouraged
to use it. A server, may specify the hint by calling [gnutls_psk_set_server_credentials_hint],
page 322. The client can retrieve the hint, for example in the callback function, using
[gnutls_psk_client_get_hint], page 320.

int gnutls_psk_set_server_credentials_file [Function]
(gnutls_psk_server_credentials_t res, const char * password_file)
res: is a gnutls_psk_server_credentials_t structure.

password_file: is the PSK password file (passwd.psk)

This function sets the password file, in a gnutls_psk_server_credentials_t struc-
ture. This password file holds usernames and keys and will be used for PSK authen-
tication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

void [gnutls_psk_set_server_credentials_function], page 322
(gnutls_psk_server_credentials_t cred,
gnutls_psk_server_credentials_function * func)

int [gnutls_psk_set_server_credentials_hint], page 322
(gnutls_psk_server_credentials_t res, const char * hint)

const char * [gnutls_psk_client_get_hint], page 320 (gnutls_session_t
session)

6.4.4 Anonymous

The key exchange methods for anonymous authentication might require Diffie-Hellman
parameters to be generated by the server and associated with an anonymous credentials
structure. Check Section 6.12.3 [Parameter generation], page 139 for more information.
The initialization functions for the credentials are shown below.

Chapter 6: How to use GnuTLS in applications 122

int [gnutls_anon_allocate_server_credentials], page 273
(gnutls_anon_server_credentials_t * sc)

int [gnutls_anon_allocate_client_credentials], page 273
(gnutls_anon_client_credentials_t * sc)

void [gnutls_anon_free_server_credentials], page 273
(gnutls_anon_server_credentials_t sc)

void [gnutls_anon_free_client_credentials], page 273
(gnutls_anon_client_credentials_t sc)

6.5 Setting up the transport layer

The next step is to setup the underlying transport layer details. The Berkeley sockets are
implicitly used by GnuTLS, thus a call to [gnutls_transport_set_int], page 348 would be
sufficient to specify the socket descriptor.

void [gnutls_transport_set_int], page 348 (gnutls_session_t session, int i)
void [gnutls_transport_set_int2], page 348 (gnutls_session_t session, int
recv_int, int send_int)

If however another transport layer than TCP is selected, then a pointer should be used
instead to express the parameter to be passed to custom functions. In that case the following
functions should be used instead.

void [gnutls_transport_set_ptr], page 349 (gnutls_session_t session,
gnutls_transport_ptr_t ptr)

void [gnutls_transport_set_ptr2], page 349 (gnutls_session_t session,
gnutls_transport_ptr_t recv_ptr, gnutls_transport_ptr_t send_ptr)

Moreover all of the following push and pull callbacks should be set.

void gnutls_transport_set_push_function (gnutls_session_t [Function]
session, gnutls_push_func push_func)
session: is a gnutls_session_t structure.

push_func: a callback function similar to write ()

This is the function where you set a push function for gnutls to use in order to send
data. If you are going to use berkeley style sockets, you do not need to use this
function since the default send(2) will probably be ok. Otherwise you should specify
this function for gnutls to be able to send data. The callback should return a positive
number indicating the bytes sent, and -1 on error.

push_func is of the form, ssize_t (*gnutls_push_func)(gnutls_transport_ptr_t, const
void*, size_t);

void gnutls_transport_set_vec_push_function (gnutls_session_t [Function]
session, gnutls_vec_push_func vec_func)
session: is a gnutls_session_t structure.

vec_func: a callback function similar to writev()

Using this function you can override the default writev(2) function for gnutls to send
data. Setting this callback instead of gnutls_transport_set_push_function() is
recommended since it introduces less overhead in the TLS handshake process.

Chapter 6: How to use GnuTLS in applications 123

vec_func is of the form, ssize_t (*gnutls_vec_push_func) (gnutls_transport_ptr_t,
const giovec_t * iov, int iovent);

Since: 2.12.0

void gnutls_transport_set_pull_function (gnutls_session_t [Function]
session, gnutls_pull_func pull_func)
session: is a gnutls_session_t structure.

pull_func: a callback function similar to read ()

This is the function where you set a function for gnutls to receive data. Normally,
if you use berkeley style sockets, do not need to use this function since the default
recv(2) will probably be ok. The callback should return 0 on connection termination,
a positive number indicating the number of bytes received, and -1 on error.

gnutls_pull_func is of the form, ssize_t (*gnutls_pull_func)(gnutls_transport_ptr_t,
void*, size_t);

void gnutls_transport_set_pull_timeout_function [Function]
(gnutls_session_t session, gnutls_pull_timeout_func func)
session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls.

As with select () , if the timeout value is zero the callback should return zero if no
data are immediately available.

gnutls_pull_timeout_func is of the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t,
unsigned int ms);

Since: 3.0

The functions above accept a callback function which should return the number of bytes
written, or -1 on error and should set errno appropriately. In some environments, setting
errno is unreliable. For example Windows have several errno variables in different CRTs,
or in other systems it may be a non thread-local variable. If this is a concern to you,
call [gnutls_transport_set_errnol, page 347 with the intended errno value instead of setting
errno directly.

void gnutls_transport_set_errno (gnutls_session_t session, int [Function]
err)

session: is a gnutls_session_t structure.
err: error value to store in session-specific errno variable.
Store err in the session-specific errno variable. Useful values for err are EINTR,
EAGAIN and EMSGSIZE, other values are treated will be treated as real errors in
the push/pull function.
This function is useful in replacement push and pull functions set by gnutls_
transport_set_push_function() and gnutls_transport_set_pull_function()

Chapter 6: How to use GnuTLS in applications 124

under Windows, where the replacements may not have access to the same errno
variable that is used by GnuTLS (e.g., the application is linked to msver71.dll and
gnutls is linked to msvert.dll).

GnuTLS currently only interprets the EINTR, EAGAIN and EMSGSIZE errno values and
returns the corresponding GnuTLS error codes:

e GNUTLS_E_INTERRUPTED
e GNUTLS_E_AGAIN
e GNUTLS_E_LARGE_PACKET

The EINTR and EAGAIN values are returned by interrupted system calls, or when non
blocking IO is used. All GnuTLS functions can be resumed (called again), if any of the
above error codes is returned. The EMSGSIZE value is returned when attempting to send
a large datagram.

In the case of DTLS it is also desirable to override the generic transport functions
with functions that emulate the operation of recvfrom and sendto. In addition
DTLS requires timers during the receive of a handshake message, set using the
[gnutls_transport_set_pull_timeout_function], page 349 function. To check the retransmis-
sion timers the function [gnutls_dtls_get_timeout|, page 353 is provided, which returns the
time remaining until the next retransmission, or better the time until [gnutls_handshake],
page 303 should be called again.

void gnutls_transport_set_pull_timeout_function [Function]
(gnutls_session_t session, gnutls_pull_timeout_func func)
session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You’ll need to override this function if select () is not suitable for the
provided transport calls.

As with select () , if the timeout value is zero the callback should return zero if no

data are immediately available.

gnutls_pull_timeout_func is of the form, int (*gnutls_pull_timeout_func)(gnutls_transport_ptr_t,
unsigned int ms);

Since: 3.0

unsigned int gnutls_dtls_get_timeout (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function will return the milliseconds remaining for a retransmission of the pre-
viously sent handshake message. This function is useful when DTLS is used in non-
blocking mode, to estimate when to call gnutls_handshake () if no packets have been
received.

Returns: the remaining time in milliseconds.
Since: 3.0

Chapter 6: How to use GnuTLS in applications 125

6.5.1 Asynchronous operation

GnuTLS can be used with asynchronous socket or event-driven programming. The approach
is similar to using Berkeley sockets under such an environment. The blocking, due to net-
work interaction, calls such as [gnutls_handshake], page 303, [gnutls_record_recv], page 325,
can be set to non-blocking by setting the underlying sockets to non-blocking. If other push
and pull functions are setup, then they should behave the same way as recv and send
when used in a non-blocking way, i.e., set errno to EAGAIN. Since, during a TLS protocol
session GnuTLS does not block except for network interaction, the non blocking EAGAIN
errno will be propagated and GnuTLS functions will return the GNUTLS_E_AGAIN error code.
Such calls can be resumed the same way as a system call would. The only exception is
[gnutls_record_send], page 326, which if interrupted subsequent calls need not to include
the data to be sent (can be called with NULL argument).

The select system call can also be used in combination with the GnuTLS functions. select
allows monitoring of sockets and notifies on them being ready for reading or writing data.
Note however that this system call cannot notify on data present in GnuTLS read buffers,
it is only applicable to the kernel sockets API. Thus if you are using it for reading from a
GnuTLS session, make sure that any cached data are read completely. That can be achieved
by checking there are no data waiting to be read (using [gnutls_record_check_pending],
page 324), either before the select system call, or after a call to [gnutls_record_recv],
page 325. GnuTLS does not keep a write buffer, thus when writing no additional actions
are required.

Although in the TLS protocol implementation each call to receive or send function implies
to restoring the same function that was interrupted, in the DTLS protocol this requirement
isn’t true. There are cases where a retransmission is required, which are indicated by a
received message and thus [gnutls_record_get_direction], page 325 must be called to decide
which direction to check prior to restoring a function call.

int gnutls_record_get_direction (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS_E_INTERRUPTED or GNUTLS_
E_AGAIN . In such a case, you might want to call select() or poll() before calling
the interrupted gnutls function again. To tell you whether a file descriptor should be
selected for either reading or writing, gnutls_record_get_direction() returns 0 if
the interrupted function was trying to read data, and 1 if it was trying to write data.

This function’s output is unreliable if you are using the session in different threads,
for sending and receiving.

Returns: 0 if trying to read data, 1 if trying to write data.

Moreover, to prevent blocking from DTLS’ retransmission timers to block a handshake, the
[gnutls_init], page 308 function should be called with the GNUTLS_NONBLOCK flag set (see
Section 6.3 [Session initialization], page 107). In that case, in order to be able to use the
DTLS handshake timers, the function [gnutls_dtls_get_timeout], page 353 should be used
to estimate when to call [gnutls_handshake], page 303 if no packets have been received.

Chapter 6: How to use GnuTLS in applications 126

6.5.2 DTLS sessions

Because datagram TLS can operate over connections where the client cannot be reliably
verified, functionality in the form of cookies, is available to prevent denial of service attacks
to servers. GnuTLS requires a server to generate a secret key that is used to sign a cookie®.
That cookie is sent to the client using [gnutls_dtls_cookie_send], page 351, and the client
must reply using the correct cookie. The server side should verify the initial message sent
by client using [gnutls_dtls_cookie_verify|, page 352. If successful the session should be
initialized and associated with the cookie using [gnutls_dtls_prestate_set], page 353, before
proceeding to the handshake.

int [gnutls_key_generate], page 308 (gnutls_datum_t * key, unsigned int
key_size)

int [gnutls_dtls_cookie_send], page 351 (gnutls_datum_t * key, void *
client_data, size_t client_data_size, gnutls_dtls_prestate_st * prestate,
gnutls_transport_ptr_t ptr, gnutls_push_func push_func)

int [gnutls_dtls_cookie_verify], page 352 (gnutls_datum_t * key, void *
client_data, size_t client_data_size, void * _msg, size_t msg_size,
gnutls_dtls_prestate_st * prestate)

void [gnutls_dtls_prestate_set], page 353 (gnutls_session_t session,
gnutls_dtls_prestate_st * prestate)

Note that the above apply to server side only and they are not mandatory to be used. Not
using them, however, allows denial of service attacks. The client side cookie handling is
part of [gnutls_handshake], page 303.

Datagrams are typically restricted by a maximum transfer unit (MTU). For that both client
and server side should set the correct maximum transfer unit for the layer underneath
GnuTLS. This will allow proper fragmentation of DTLS messages and prevent messages
from being silently discarded by the transport layer. The “correct” maximum transfer unit
can be obtained through a path MTU discovery mechanism [RFC4821].

void [gnutls_dtls_set_mtul, page 353 (gnutls_session_t session, unsigned int
mtu)

unsigned int [gnutls_dtls_get_mtul, page 352 (gnutls_session_t session)
unsigned int [gnutls_dtls_get_data_mtul, page 352 (gnutls_session_t session)

6.6 TLS handshake

Once a session has been initialized and a network connection has been set up, TLS and
DTLS protocols perform a handshake. The handshake is the actual key exchange.

int gnutls_handshake (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

3 A key of 128 bits or 16 bytes should be sufficient for this purpose.

Chapter 6: How to use GnuTLS in applications 127

The non-fatal errors expected by this function are: GNUTLS_E_INTERRUPTED , GNUTLS_
E_AGAIN , GNUTLS_E_WARNING_ALERT_RECEIVED , and GNUTLS_E_GOT_APPLICATION_
DATA |, the latter only in a case of rehandshake.

The former two interrupt the handshake procedure due to the lower layer being inter-
rupted, and the latter because of an alert that may be sent by a server (it is always a
good idea to check any received alerts). On these errors call this function again, until
it returns 0; cf. gnutls_record_get_direction() and gnutls_error_is_fatal()
. In DTLS sessions the non-fatal error GNUTLS_E_LARGE_PACKET is also possible, and
indicates that the MTU should be adjusted.

If this function is called by a server after a rehandshake request then GNUTLS_E_GOT_
APPLICATION_DATA or GNUTLS_E_WARNING_ALERT_RECEIVED may be returned. Note
that these are non fatal errors, only in the specific case of a rehandshake. Their
meaning is that the client rejected the rehandshake request or in the case of GNUTLS_
E_GOT_APPLICATION_DATA it could also mean that some data were pending.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

void gnutls_handshake_set_timeout (gnutls_session_t session, [Function]
unsigned int ms)
session: is a gnutls_session_t structure.

ms: is a timeout value in milliseconds

This function sets the timeout for the handshake process to the provided value. Use
an ms value of zero to disable timeout, or GNUTLS_DEFAULT_HANDSHAKE_TIMEOQUT for
a reasonable default value.

Since: 3.1.0

The handshake process doesn’t ensure the verification of the peer’s identity. When certifi-
cates are in use, this can be done, either after the handshake is complete, or during the
handshake if [gnutls_certificate_set_verify_function], page 281 has been used. In both cases
the [gnutls_certificate_verify_peers2], page 289 function can be used to verify the peer’s
certificate (see Section 4.1 [Certificate authentication|, page 18 for more information).

int [gnutls_certificate_verify_peers2], page 289 (gnutls_session_t session,
unsigned int * status)

6.7 Data transfer and termination

Once the handshake is complete and peer’s identity has been verified data can be exchanged.
The available functions resemble the POSIX recv and send functions. It is suggested to
use [gnutls_error_is_fatal], page 300 to check whether the error codes returned by these
functions are fatal for the protocol or can be ignored.

ssize_t gnutls_record_send (gnutls_session_t session, const void * [Function]
data, size-t data_size)
session: is a gnutls_session_t structure.

data: contains the data to send

data_size: is the length of the data

Chapter 6: How to use GnuTLS in applications 128

This function has the similar semantics with send() . The only difference is that
it accepts a GnuTLS session, and uses different error codes. Note that if the send
buffer is full, send () will block this function. See the send() documentation for more
information.

You can replace the default push function which is send() , by using gnutls_
transport_set_push_function() .

If the EINTR is returned by the internal push function then GNUTLS_E_INTERRUPTED
will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN is returned, you
must call this function again, with the exact same parameters; alternatively you could
provide a NULL pointer for data, and 0 for size. cf. gnutls_record_get_direction()

Note that in DTLS this function will return the GNUTLS_E_LARGE_PACKET error code
if the send data exceed the data MTU value - as returned by gnutls_dtls_get_
data_mtu() . The errno value EMSGSIZE also maps to GNUTLS_E_LARGE_PACKET .
Note that since 3.2.13 this function can be called under cork in DTLS mode, and will
refuse to send data over the MTU size by returning GNUTLS_E_LARGE_PACKET .

Returns: The number of bytes sent, or a negative error code. The number of bytes
sent might be less than data_size . The maximum number of bytes this function
can send in a single call depends on the negotiated maximum record size.

ssize_t gnutls_record_recv (gnutls_session_t session, void * data, [Function]
size_t data_size)
session: is a gnutls_session_t structure.

data: the buffer that the data will be read into
data_size: the number of requested bytes

This function has the similar semantics with recv() . The only difference is that it
accepts a GnuTLS session, and uses different error codes. In the special case that
a server requests a renegotiation, the client may receive an error code of GNUTLS_E_
REHANDSHAKE . This message may be simply ignored, replied with an alert GNUTLS_
A_NO_RENEGOTIATION , or replied with a new handshake, depending on the client’s
will. If EINTR is returned by the internal push function (the default is recv()) then
GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_
AGAIN is returned, you must call this function again to get the data. See also gnutls_
record_get_direction() . A server may also receive GNUTLS_E_REHANDSHAKE when
a client has initiated a handshake. In that case the server can only initiate a handshake
or terminate the connection.

Returns: The number of bytes received and zero on EOF (for stream connections).
A negative error code is returned in case of an error. The number of bytes received
might be less than the requested data_size .

int gnutls_error_is_fatal (int error) [Function]
error: is a GnuTLS error code, a negative error code

If a GnuTLS function returns a negative error code you may feed that value to this
function to see if the error condition is fatal to a TLS session (i.e., must be terminated).

Chapter 6: How to use GnuTLS in applications 129

Note that you may also want to check the error code manually, since some non-fatal
errors to the protocol (such as a warning alert or a rehandshake request) may be fatal
for your program.

This function is only useful if you are dealing with errors from functions that relate
to a TLS session (e.g., record layer or handshake layer handling functions).

Returns: Non-zero value on fatal errors or zero on non-fatal.

Although, in the TLS protocol the receive function can be called at any time, when DTLS is
used the GnuTLS receive functions must be called once a message is available for reading,
even if no data are expected. This is because in DTLS various (internal) actions may
be required due to retransmission timers. Moreover, an extended receive function is shown
below, which allows the extraction of the message’s sequence number. Due to the unreliable
nature of the protocol, this field allows distinguishing out-of-order messages.

ssize_t gnutls_record_recv_seq (gnutls_session_t session, void * [Function]
data, size-t data_size, unsigned char * seq)
session: is a gnutls_session_t structure.

data: the buffer that the data will be read into
data_size: the number of requested bytes
seq: is the packet’s 64-bit sequence number. Should have space for 8 bytes.

This function is the same as gnutls_record_recv() , except that it returns in addi-
tion to data, the sequence number of the data. This is useful in DTLS where record
packets might be received out-of-order. The returned 8-byte sequence number is an
integer in big-endian format and should be treated as a unique message identification.

Returns: The number of bytes received and zero on EOF. A negative error code
is returned in case of an error. The number of bytes received might be less than
data_size .

Since: 3.0

The [gnutls_record_check_pending], page 324 helper function is available to allow checking
whether data are available to be read in a GnuTLS session buffers. Note that this function
complements but does not replace select, i.e., [gnutls_record_check_pending|, page 324
reports no data to be read, select should be called to check for data in the network
buffers.

size_t gnutls_record_check_pending (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

This function checks if there are unread data in the gnutls buffers. If the return value
is non-zero the next call to gnutls_record_recv() is guaranteed not to block.

Returns: Returns the size of the data or zero.

int [gnutls_record_get_direction], page 325 (gnutls_session_t session)

Once a TLS or DTLS session is no longer needed, it is recommended to use [gnutls_bye],
page 275 to terminate the session. That way the peer is notified securely about the intention
of termination, which allows distinguishing it from a malicious connection termination. A
session can be deinitialized with the [gnutls_deinit|, page 295 function.

Chapter 6: How to use GnuTLS in applications 130

int gnutls_bye (gnutls_session_t session, gnutls_close_request_t how) [Function]
session: is a gnutls_session_t structure.

how: is an integer

Terminates the current TLS/SSL connection. The connection should have been initi-
ated using gnutls_handshake () . how should be one of GNUTLS_SHUT_RDWR , GNUTLS_
SHUT_WR .

In case of GNUTLS_SHUT_RDWR the TLS session gets terminated and further receives
and sends will be disallowed. If the return value is zero you may continue using
the underlying transport layer. GNUTLS_SHUT_RDWR sends an alert containing a close
request and waits for the peer to reply with the same message.

In case of GNUTLS_SHUT_WR the TLS session gets terminated and further sends will
be disallowed. In order to reuse the connection you should wait for an EOF from the
peer. GNUTLS_SHUT_WR sends an alert containing a close request.

Note that not all implementations will properly terminate a TLS connection. Some of
them, usually for performance reasons, will terminate only the underlying transport
layer, and thus not distinguishing between a malicious party prematurely terminating
the connection and normal termination.

This function may also return GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED ; cf.
gnutls_record_get_direction() .

Returns: GNUTLS_E_SUCCESS on success, or an error code, see function documentation
for entire semantics.

void gnutls_deinit (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.
This function clears all buffers associated with the session . This function will
also remove session data from the session database if the session was terminated
abnormally.

6.8 Buffered data transfer

Although [gnutls_record_send|, page 326 is sufficient to transmit data to the peer, when
many small chunks of data are to be transmitted it is inefficient and wastes bandwidth due
to the TLS record overhead. In that case it is preferrable to combine the small chunks
before transmission. The following functions provide that functionality.

void gnutls_record_cork (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

If called, gnutls_record_send () will no longer send any records. Any sent records
will be cached until gnutls_record_uncork() is called.

This function is safe to use with DTLS after GnuTLS 3.3.0.

Since: 3.1.9

int gnutls_record_uncork (gnutls_session_t session, unsigned int [Function]
flags)
session: is a gnutls_session_t structure.
flags: Could be zero or GNUTLS_RECORD_WAIT

Chapter 6: How to use GnuTLS in applications 131

This resets the effect of gnutls_record_cork() , and flushes any pending data. If
the GNUTLS_RECORD_WAIT flag is specified then this function will block until the data
is sent or a fatal error occurs (i.e., the function will retry on GNUTLS_E_AGAIN and
GNUTLS_E_INTERRUPTED).

If the flag GNUTLS_RECORD_WAIT is not specified and the function is interrupted then
the GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED errors will be returned. To obtain
the data left in the corked buffer use gnutls_record_check_corked() .

Returns: On success the number of transmitted data is returned, or otherwise a
negative error code.

Since: 3.1.9

6.9 Handling alerts

During a TLS connection alert messages may be exchanged by the two peers. Those mes-
sages may be fatal, meaning the connection must be terminated afterwards, or warning
when something needs to be reported to the peer, but without interrupting the session. The
error codes GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED sig-
nal those alerts when received, and may be returned by all GnuTLS functions that receive
data from the peer, being [gnutls_handshake], page 303 and [gnutls_record_recv], page 325.

If those error codes are received the alert and its level should be logged or reported to the
peer using the functions below.

gnutls_alert_description_t gnutls_alert_get (gnutls_session_t [Function]
session)
session: is a gnutls_session_t structure.

This function will return the last alert number received. This function should be called
when GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED er-
rors are returned by a gnutls function. The peer may send alerts if he encounters an
error. If no alert has been received the returned value is undefined.

Returns: the last alert received, a gnutls_alert_description_t value.

const char * gnutls_alert_get_name (gnutls_alert_description_t [Function]
alert)
alert: is an alert number.

This function will return a string that describes the given alert number, or NULL . See
gnutls_alert_get() .

Returns: string corresponding to gnutls_alert_description_t value.

The peer may also be warned or notified of a fatal issue by using one of the functions below.
All the available alerts are listed in [The Alert Protocol], page 8.

int gnutls_alert_send (gnutls_session_t session, gnutls_alert_level_t [Function]
level, gnutls_alert_description_t desc)
session: is a gnutls_session_t structure.

level: is the level of the alert

desc: is the alert description

Chapter 6: How to use GnuTLS in applications 132

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN as well.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

int gnutls_error_to_alert (int err, int * level) [Function]
err: is a negative integer

level: the alert level will be stored there

Get an alert depending on the error code returned by a gnutls function. All alerts
sent by this function should be considered fatal. The only exception is when err is
GNUTLS_E_REHANDSHAKE , where a warning alert should be sent to the peer indicating
that no renegotiation will be performed.

If there is no mapping to a valid alert the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

6.10 Priority strings

The GnuTLS priority strings specify the TLS session’s handshake algorithms and options
in a compact, easy-to-use format. That string may contain a single initial keyword such
as in Table 6.2 and may be followed by additional algorithm or special keywords. Note
that their description is intentionally avoiding specific algorithm details, as the priority
strings are not constant between gnutls versions (they are periodically updated to account
for cryptographic advances while providing compatibility with old clients and servers).

Chapter 6: How to use GnuTLS in applications 133

int [gnutls_priority_set_direct], page 318 (gnutls_session_t session, const
char * priorities, const char ** err_pos)

int [gnutls_priority_set], page 318 (gnutls_session_t session,
gnutls_priority_t priority)

Keyword Description

QKEYWORD Means that a compile-time specified system configuration file*
will be used to expand the provided keyword. That is used
to impose system-specific policies. It may be followed by ad-
ditional options that will be appended to the system string
(e.g., "@QSYSTEM:+SRP"). The system file should have the
format 'KEYWORD=VALUFE’, e.g., 'SYSTEM=NORMAL:-
ARCFOUR-128’.

PERFORMANCE All the known to be secure ciphersuites are enabled, lim-
ited to 128 bit ciphers and sorted by terms of speed per-
formance. The message authenticity security level is of 64
bits or more, and the certificate verification profile is set to

GNUTLS_PROFILE_LOW (80-bits).

NORMAL Means all the known to be secure ciphersuites. The ciphers
are sorted by security margin, although the 256-bit ciphers are
included as a fallback only. The message authenticity secu-
rity level is of 64 bits or more, and the certificate verification

profile is set to GNUTLS_PROFILE_LOW (80-bits).

This priority string implicitly enables ECDHE and DHE.
The ECDHE ciphersuites are placed first in the priority order,
but due to compatibility issues with the DHE ciphersuites
they are placed last in the priority order, after the plain RSA
ciphersuites.

LEGACY This sets the NORMAL settings that were used for GnuTLS
3.2.x or earlier. There is no verification profile set, and the
allowed DH primes are considered weak today (but are often
used by misconfigured servers).

PFS Means all the known to be secure ciphersuites that support
perfect forward secrecy (ECDHE and DHE). The ciphers are
sorted by security margin, although the 256-bit ciphers are
included as a fallback only. The message authenticity secu-
rity level is of 80 bits or more, and the certificate verification
profile is set to GNUTLS_PROFILE_LOW (80-bits). This
option is available since 3.2.4 or later.

SECURE128 Means all known to be secure ciphersuites that offer a security
level 128-bit or more. The message authenticity security level
is of 80 bits or more, and the certificate verification profile is
set to GNUTLS_PROFILE_LOW (80-bits).

SECURE192 Means all the known to be secure ciphersuites that offer a se-
curity level 192-bit or more. The message authenticity secu-
ritv level is of 128 bits or more. and the certificate verification

Chapter 6: How to use GnuTLS in applications 134

Unless the initial keyword is "NONE" the defaults (in preference order) are for TLS proto-
cols TLS 1.2, TLS1.1, TLS1.0, SSL3.0; for compression NULL; for certificate types X.509.
In key exchange algorithms when in NORMAL or SECURE levels the perfect forward se-
crecy algorithms take precedence of the other protocols. In all cases all the supported key
exchange algorithms are enabled.

Note that the SECURE levels distinguish between overall security level and message au-
thenticity security level. That is because the message authenticity security level requires the
adversary to break the algorithms at real-time during the protocol run, whilst the overall
security level refers to off-line adversaries (e.g. adversaries breaking the ciphertext years
after it was captured).

The NONE keyword, if used, must followed by keywords specifying the algorithms and
protocols to be enabled. The other initial keywords do not require, but may be followed
by such keywords. All level keywords can be combined, and for example a level of "SE-
CURE256:+SECURE128" is allowed.

The order with which every algorithm or protocol is specified is significant. Algorithms
specified before others will take precedence. The supported algorithms and protocols are
shown in Table 6.3. To avoid collisions in order to specify a compression algorithm in
the priority string you have to prefix it with "COMP-", protocol versions with "VERS-
" signature algorithms with "SIGN-" and certificate types with "CTYPE-". All other
algorithms don’t need a prefix. Each specified keyword can be prefixed with any of the
following characters.

" or Y appended with an algorithm will remove this algorithm.

"t appended with an algorithm will add this algorithm.

Chapter 6: How to use GnuTLS in applications 135

Type Keywords

Ciphers AES-128-CBC, AES-256-CBC, AES-128-GCM, CAMELLIA-
128-CBC, CAMELLIA-256-CBC, ARCFOUR-128, 3DES-
CBC ARCFOUR-40. Catch all name is CIPHER-ALL which
will add all the algorithms from NORMAL priority.

Key exchange RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS,
PSK, DHE-PSK, ECDHE-RSA, ANON-ECDH, ANON-DH.
The Catch all name is KX-ALL which will add all the algo-
rithms from NORMAL priority.
Add 'DHE-RSA:!DHE-DSS to the priority string to disable
DHE.

MAC MD5, SHA1, SHA256, SHA384, AEAD (used with GCM ci-
phers only). All algorithms from NORMAL priority can be
accessed with MAC-ALL.

Compression COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.
algorithms
TLS versions VERS-SSL3.0, VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2,

VERS-DTLS1.2;, VERS-DTLS1.0. Catch all is VERS-TLS-
ALL and VERS-DTLS-ALL.

Signature SIGN-RSA-SHA1, SIGN-RSA-SHA224, SIGN-RSA-SHA256,

algorithms SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHAT1,
SIGN-DSA-SHA224, SIGN-DSA-SHA256, SIGN-RSA-MD5.
Catch all is SIGN-ALL. This is only valid for TLS 1.2 and
later.

Elliptic curves CURVE-SECP192R1, CURVE-SECP224R1, CURVE-
SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1.
Catch all is CURVE-ALL.

Table 6.4: The supported algorithm keywords in priority strings.

Note that the DHE key exchange methods are generally slower® than their elliptic curves
counterpart (ECDHE). Moreover the plain Diffie-Hellman key exchange requires parameters
to be generated and associated with a credentials structure by the server (see Section 6.12.3
[Parameter generation|, page 139).

The available special keywords are shown in Table 6.4 and Table 6.5.

It depends on the group used. Primes with lesser bits are always faster, but also easier to break. See
Section 6.11 [Selecting cryptographic key sizes|, page 132 for the acceptable security levels.

Chapter 6: How to use GnuTLS in applications

Keyword

%COMPAT

%DUMBFW

%NO_EXTENSIONS

%SERVER_PRECEDENCE

%SSL3_RECORD_VERSION

%LATEST_RECORD_VERSION

Table 6.5: Special priority string keywords.

Description

will enable compatibility mode. It
might mean that violations of the pro-
tocols are allowed as long as maximum
compatibility with problematic clients
and servers is achieved. More specif-
ically this string would disable TLS
record random padding, tolerate pack-
ets over the maximum allowed TLS
record, and add a padding to TLS
Client Hello packet to prevent it being
in the 256-512 range which is known
to be causing issues with a commonly
used firewall.

will add a private extension with bo-
gus data that make the client hello ex-
ceed 512 bytes. This avoids a black
hole behavior in some firewalls. This
is a non-standard TLS extension, use
with care.

will prevent the sending of any TLS ex-
tensions in client side. Note that TLS
1.2 requires extensions to be used, as
well as safe renegotiation thus this op-
tion must be used with care.

The ciphersuite will be selected accord-
ing to server priorities and not the
client’s.

will use SSL3.0 record version in client
hello. This is the default.

will use the latest TLS version record
version in client hello.

136

Chapter 6: How to use GnuTLS in applications

Keyword

%STATELESS_.COMPRESSION

%DISABLE_WILDCARDS

%DISABLE_SAFE_RENEGOTIATION

%UNSAFE_RENEGOTIATION

%PARTIAL_RENEGOTIATION

%SAFE_RENEGOTIATION

%VERIFY_ALLOW_SIGN_RSA_MD5

%VERIFY_DISABLE_CRL_CHECKS

YVERIFY ATTOW X500 V1 CA CRT

Description

will disable keeping state across
records when compressing. This may
help to mitigate attacks when com-
pression is used but an attacker is in
control of input data. This has to
be used only when the data that are
possibly controlled by an attacker are
placed in separate records.

will disable matching wildcards when
comparing hostnames in certificates.

will completely disable safe renegotia-
tion completely. Do not use unless you
know what you are doing.

handshakes and
re-handshakes without the safe
renegotiation extension. Note that
for clients this mode is insecure
(you may be under attack), and for
servers it will allow insecure clients
to connect (which could be fooled by
an attacker). Do not use unless you
know what you are doing and want
maximum compatibility.

will allow

will allow initial handshakes to pro-
ceed, but not re-handshakes. This
leaves the client vulnerable to attack,
and servers will be compatible with
non-upgraded clients for initial hand-
shakes. This is currently the default
for clients and servers, for compatibil-
ity reasons.

will enforce safe renegotiation. Clients
and servers will refuse to talk to an
insecure peer. Currently this causes
interoperability problems, but is re-
quired for full protection.

will allow RSA-MD5 signatures in cer-
tificate chains.

will disable CRL or OCSP checks in
the verification of the certificate chain.

will allow V1 C'A< in chaine

137

Chapter 6: How to use GnuTLS in applications 138

Finally the ciphersuites enabled by any priority string can be listed using the gnutls-
cli application (see Section 9.1 [gnutls-cli Invocation], page 229), or by using the priority
functions as in Section 7.4.3 [Listing the ciphersuites in a priority string], page 217.

Example priority strings are:

The system imposed security level:
"SYSTEM"

The default priority without the HMAC-MD5:
"NORMAL: -MD5"

Specifying RSA with AES-128-CBC:
"NONE: +VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-ALL:+COMP-NULL"

Specifying the defaults except ARCFOUR-128:
"NORMAL : -ARCFOUR-128"

Enabling the 128-bit secure ciphers, while disabling SSL 3.0 and enabling compressic
"SECURE128:-VERS-SSL3.0:+COMP-DEFLATE"

Enabling the 128-bit and 192-bit secure ciphers, while disabling all TLS versions
except TLS 1.2:
"SECURE128:+SECURE192:-VERS-TLS-ALL:+VERS-TLS1.2"

6.11 Selecting cryptographic key sizes

Because many algorithms are involved in TLS, it is not easy to set a consistent security level.
For this reason in Table 6.6 we present some correspondence between key sizes of symmetric
algorithms and public key algorithms based on [ECRYPT]. Those can be used to generate
certificates with appropriate key sizes as well as select parameters for Diffie-Hellman and
SRP authentication.

Chapter 6: How to use GnuTLS in applications 139

Security RSA, ECC Security Description
bits DH and key parameter
SRP size
param-
eter
size
<64 <768 <128 INSECURE Considered to be insecure
64 768 128 VERY WEAK Short term protection

against individuals

72 1008 160 WEAK Short term protec-
tion against small
organizations

80 1024 160 Low Very short term protec-

tion against agencies (cor-
responds to ENISA legacy

level)
96 1776 192 LEGACY Legacy standard level
112 2048 224 MEDIUM Medium-term protection
128 3072 256 HIGH Long term protection
256 15424 512 ULTRA Foreseeable future

Table 6.7: Key sizes and security parameters.

The first column provides a security parameter in a number of bits. This gives an indication
of the number of combinations to be tried by an adversary to brute force a key. For example
to test all possible keys in a 112 bit security parameter 2'!? combinations have to be tried.
For today’s technology this is infeasible. The next two columns correlate the security
parameter with actual bit sizes of parameters for DH, RSA, SRP and ECC algorithms. A
mapping to gnutls_sec_param_t value is given for each security parameter, on the next
column, and finally a brief description of the level.

Note, however, that the values suggested here are nothing more than an educated guess
that is valid today. There are no guarantees that an algorithm will remain unbreakable or
that these values will remain constant in time. There could be scientific breakthroughs that
cannot be predicted or total failure of the current public key systems by quantum computers.
On the other hand though the cryptosystems used in TLS are selected in a conservative
way and such catastrophic breakthroughs or failures are believed to be unlikely. The NIST
publication SP 800-57 [NISTSP80057] contains a similar table.

Chapter 6: How to use GnuTLS in applications 140

When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use
of the following functions is recommended:

unsigned int gnutls_sec_param_to_pk_bits [Function]
(gnutls_pk_algorithm_t algo, gnutls_sec_param_t param)
algo: is a public key algorithm

param: is a security parameter

When generating private and public key pairs a difficult question is which size of
"bits" the modulus will be in RSA and the group size in DSA. The easy answer
is 1024, which is also wrong. This function will convert a human understandable
security parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or (0).
Since: 2.12.0

gnutls_sec_param_t gnutls_pk_bits_to_sec_param [Function]
(gnutls_pk_algorithm_t algo, unsigned int bits)
algo: is a public key algorithm
bits: is the number of bits

This is the inverse of gnutls_sec_param_to_pk_bits() . Given an algorithm and
the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.
Since: 2.12.0

Those functions will convert a human understandable security parameter of gnutls_sec_
param_t type, to a number of bits suitable for a public key algorithm.

const char * [gnutls_sec_param_get_name], page 329 (gnutls_sec_param_t param)

The following functions will set the minimum acceptable group size for Diffie-Hellman and
SRP authentication.

void [gnutls_dh_set_prime_bits], page 299 (gnutls_session_t session, unsigned
int bits)

void [gnutls_srp_set_prime_bits], page 340 (gnutls_session_t session,
unsigned int bits)

6.12 Advanced topics

6.12.1 Session resumption

Client side

To reduce time and roundtrips spent in a handshake the client can request session re-
sumption from a server that previously shared a session with the client. For that the
client has to retrieve and store the session parameters. Before establishing a new session
to the same server the parameters must be re-associated with the GnuTLS session using
[gnutls_session_set_data], page 333.

Chapter 6: How to use GnuTLS in applications 141

int [gnutls_session_get_data2], page 331 (gnutls_session_t session,
gnutls_datum_t * data)

int [gnutls_session_get_id2], page 332 (gnutls_session_t session,
gnutls_datum_t * session_id)

int [gnutls_session_set_datal, page 333 (gnutls_session_t session, const void
* session_data, size_t session_data_size)

Keep in mind that sessions will be expired after some time, depending on the server, and
a server may choose not to resume a session even when requested to. The expiration is to
prevent temporal session keys from becoming long-term keys. Also note that as a client you
must enable, using the priority functions, at least the algorithms used in the last session.

int gnutls_session_is_resumed (gnutls_session_t session) [Function]
session: is a gnutls_session_t structure.

Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

Server side

In order to support resumption a server can store the session security parameters in a local
database or by using session tickets (see Section 3.6.3 [Session tickets|, page 11) to delegate
storage to the client. Because session tickets might not be supported by all clients, servers
could combine the two methods.

A storing server needs to specify callback functions to store, retrieve and delete session data.
These can be registered with the functions below. The stored sessions in the database can
be checked using [gnutls_db_check_entry|, page 293 for expiration.

void [gnutls_db_set_retrieve_function], page 294 (gnutls_session_t session,
gnutls_db_retr_func retr_func)

void [gnutls_db_set_store_function], page 294 (gnutls_session_t session,
gnutls_db_store_func store_func)

void [gnutls_db_set_ptr], page 294 (gnutls_session_t session, void * ptr)
void [gnutls_db_set_remove_function], page 294 (gnutls_session_t session,
gnutls_db_remove_func rem_func)

int [gnutls_db_check_entry], page 293 (gnutls_session_t session,
gnutls_datum_t session_entry)

A server utilizing tickets should generate ticket encryption and authentication keys using
[gnutls_session_ticket_key_generate|, page 335. Those keys should be associated with the
GnuTLS session using [gnutls_session_ticket_enable_server|, page 334, and should be rotated
regularly (e.g., every few hours), to prevent them from becoming long-term keys which if
revealed could be used to decrypt all previous sessions.

int gnutls_session_ticket_enable_server (gnutls_session_t [Function]
session, const gnutls_datum_t * key)
session: is a gnutls_session_t structure.
key: key to encrypt session parameters.

Request that the server should attempt session resumption using SessionTicket. key
must be initialized with gnutls_session_ticket_key_generate() .

Chapter 6: How to use GnuTLS in applications 142

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.
Since: 2.10.0

int gnutls_session_ticket_key_generate (gnutls_datum-t * key) [Function]
key: is a pointer to a gnutls_datum_t which will contain a newly created key.

Generate a random key to encrypt security parameters within SessionTicket.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.
Since: 2.10.0

int gnutls_session_resumption_requested (gnutls_session_t [Function]
session)
session: is a gnutls_session_t structure.

Check whether the client has asked for session resumption. This function is valid only
on server side.

Returns: non zero if session resumption was asked, or a zero if not.

A server enabling both session tickets and a storage for session data would use session tickets
when clients support it and the storage otherwise.

6.12.2 Certificate verification

In this section the functionality for additional certificate verification methods is listed. These
methods are intended to be used in addition to normal PKI verification, in order to reduce
the risk of a compromised CA being undetected.

6.12.2.1 Trust on first use

The GnuTLS library includes functionlity to use an SSH-like trust on first use authentica-
tion. The available functions to store and verify public keys are listed below.

int gnutls_verify_stored_pubkey (const char * db_name, [Function]

gnutls_tdb_t tdb, const char * host, const char * service,
gnutls_certificate_type_t cert_type, const gnutls_datum_t * cert, unsigned
int flags)

db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert_type: The type of the certificate

cert: The raw (der) data of the certificate

flags: should be 0.

This function will try to verify the provided (raw or DER~encoded) certificate using
a list of stored public keys. The service field if non-NULL should be a port number.

The retrieve variable if non-null specifies a custom backend for the retrieval of
entries. If it is NULL then the default file backend will be used. In POSIX-like
systems the file backend uses the $SHOME/.gnutls/known_hosts file.

Chapter 6: How to use GnuTLS in applications 143

Note that if the custom storage backend is provided the retrieval function should
return GNUTLS_E_CERTIFICATE_KEY_MISMATCH if the host/service pair is found but
key doesn’t match, GNUTLS_E_NO_CERTIFICATE_FOUND if no such host/service with
the given key is found, and 0 if it was found. The storage function should return 0
on success.

Returns: If no associated public key is found then GNUTLS_E_NO_CERTIFICATE_FOUND
will be returned. If a key is found but does not match GNUTLS_E_CERTIFICATE_KEY_
MISMATCH is returned. On success, GNUTLS_E_SUCCESS (0) is returned, or a negative
error value on other errors.

Since: 3.0.13

int gnutls_store_pubkey (const char * db_name, gnutls_tdb_t tdb, [Function]
const char * host, const char * service, gnutls_certificate_type_t cert_type,
const gnutls_datum_t * cert, time_t expiration, unsigned int flags)
db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

cert_type: The type of the certificate

cert: The data of the certificate

expiration: The expiration time (use 0 to disable expiration)

flags: should be 0.

This function will store the provided (raw or DER-encoded) certificate to the list of
stored public keys. The key will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.13

In addition to the above the [gnutls_store_commitment], page 344 can be used to implement
a key-pinning architecture as in [KEYPIN]. This provides a way for web server to commit
on a public key that is not yet active.

int gnutls_store_commitment (const char * db_name, gnutls_tdb_t [Function]

tdb, const char * host, const char * service, gnutls_digest_algorithm_t
hash_algo, const gnutls_datum_t * hash, time_t expiration, unsigned int
flags)

db_name: A file specifying the stored keys (use NULL for the default)

tdb: A storage structure or NULL to use the default

host: The peer’s name

service: non-NULL if this key is specific to a service (e.g. http)

hash_algo: The hash algorithm type

Chapter 6: How to use GnuTLS in applications 144

hash: The raw hash
expiration: The expiration time (use 0 to disable expiration)
flags: should be 0.

This function will store the provided hash commitment to the list of stored public keys.
The key with the given hash will be considered valid until the provided expiration
time.

The store variable if non-null specifies a custom backend for the storage of entries.
If it is NULL then the default file backend will be used.

Note that this function is not thread safe with the default backend.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0

The storage and verification functions may be used with the default text file based back-end,
or another back-end may be specified. That should contain storage and retrieval functions
and specified as below.

int [gnutls_tdb_init], page 346 (gnutls_tdb_t * tdb)

void [gnutls_tdb_deinit], page 346 (gnutls_tdb_t tdb)

void [gnutls_tdb_set_verify_func], page 346 (gnutls_tdb_t tdb,
gnutls_tdb_verify_func verify)

void [gnutls_tdb_set_store_func], page 346 (gnutls_tdb_t tdb,
gnutls_tdb_store_func store)

void [gnutls_tdb_set_store_commitment_func], page 346 (gnutls_tdb_t tdb,
gnutls_tdb_store_commitment_func cstore)

6.12.2.2 DANE verification

Since the DANE library is not included in GnuTLS it requires programs to be linked against
it. This can be achieved with the following commands.

gcc -o foo foo.c ‘pkg-config gnutls-dane --cflags --libs‘

When a program uses the GNU autoconf system, then the following line or similar can be
used to detect the presence of the library.

PKG_CHECK_MODULES ([LIBDANE], [gnutls-dane >= 3.0.0])

AC_SUBST([LIBDANE_CFLAGS])
AC_SUBST([LIBDANE_LIBS])

The high level functionality provided by the DANE library is shown below.

int dane_verify_crt (dane_state_t s, const gnutls_.datum_t * chain, [Function]
unsigned chain_size, gnutls_certificate_type_t chain_type, const char *
hostname, const char * proto, unsigned int port, unsigned int sflags,
unsigned int vflags, unsigned int * verify)
s: A DANE state structure (may be NULL)

chain: A certificate chain

chain_size: The size of the chain

Chapter 6: How to use GnuTLS in applications 145

chain_type: The type of the certificate chain

hostname: The hostname associated with the chain

proto: The protocol of the service connecting (e.g. tcp)

port: The port of the service connecting (e.g. 443)

sflags: Flags for the the initialization of s (if NULL)

vflags: Verification flags; an OR’ed list of dane_verify_flags_t .
verify: An OR’ed list of dane_verify_status_t .

This function will verify the given certificate chain against the CA constrains and/or
the certificate available via DANE. If no information via DANE can be obtained the
flag DANE_VERIFY_NO_DANE_INFO is set. If a DNSSEC signature is not available for
the DANE record then the verify flag DANE_VERIFY_NO_DNSSEC_DATA is set.

Due to the many possible options of DANE, there is no single threat model countered.
When notifying the user about DANE verification results it may be better to mention:
DANE verification did not reject the certificate, rather than mentioning a successful
DANE verication.

Note that this function is designed to be run in addition to PKIX - certificate chain
- verification. To be run independently the DANE_VFLAG_ONLY_CHECK_EE_USAGE flag
should be specified; then the function will check whether the key of the peer matches
the key advertized in the DANE entry.

If the q parameter is provided it will be used for caching entries.

Returns: On success, DANE_E_SUCCESS (0) is returned, otherwise a negative error
value.

int [dane_verify_session_crt], page 510 (dane_state_t s, gnutls_session_t
session, const char * hostname, const char * proto, unsigned int port, unsigned
int sflags, unsigned int vflags, unsigned int * verify)

const char * [dane_strerror], page 509 (int error)

Note that the dane_state_t structure that is accepted by both verification functions is
optional. It is required when many queries are performed to facilitate caching. The following
flags are returned by the verify functions to indicate the status of the verification.

DANE_VERIFY_CA_CONSTRAINTS_VIOLATED
The CA constraints were violated.

DANE_VERIFY_CERT_DIFFERS
The certificate obtained via DNS differs.

DANE_VERIFY_UNKNOWN_DANE_INFO
No known DANE data was found in the DNS record.

Figure 6.2: The DANE verification status flags.

In order to generate a DANE TLSA entry to use in a DNS server you may use danetool
(see Section 4.2.7 [danetool Invocation], page 67).

Chapter 6: How to use GnuTLS in applications 146

6.12.3 Parameter generation

Several TLS ciphersuites require additional parameters that need to be generated
or provided by the application. The Diffie-Hellman based ciphersuites (ANON-DH
or DHE), require the group parameters to be provided. Those can either be be
generated on the fly using [gnutls_dh_params_generate2|, page 297 or imported from
pregenerated data using [gnutls_dh_params_import_pkes3|, page 298. The parameters
can be used in a TLS session by calling [gnutls_certificate_set_dh_params|, page 279 or
[gnutls_anon_set_server_dh_params], page 274 for anonymous sessions.

int [gnutls_dh_params_generate2], page 297 (gnutls_dh_params_t dparams,
unsigned int bits)

int [gnutls_dh_params_import_pkcs3], page 298 (gnutls_dh_params_t params,
const gnutls_datum_t * pkcs3_params, gnutls_x509_crt_fmt_t format)

void [gnutls_certificate_set_dh_params], page 279
(gnutls_certificate_credentials_t res, gnutls_dh_params_t dh_params)
void [gnutls_anon_set_server_dh_params], page 274
(gnutls_anon_server_credentials_t res, gnutls_dh_params_t dh_params)

Due to the time-consuming calculations required for the generation of Diffie-Hellman pa-
rameters we suggest against performing generation of them within an application. The
certtool tool can be used to generate or export known safe values that can be stored in
code or in a configuration file to provide the ability to replace. We also recommend the
usage of [gnutls_sec_param_to_pk_bits], page 329 (see Section 6.11 [Selecting cryptographic
key sizes|, page 132) to determine the bit size of the generated parameters.

Note that the information stored in the generated PKCS #3 structure changed with
GnuTLS 3.0.9. Since that version the privateValueLength member of the structure is
set, allowing the server utilizing the parameters to use keys of the size of the security
parameter. This provides better performance in key exchange.

To allow renewal of the parameters within an application without accessing the credentials,
which are a shared structure, an alternative interface is available using a callback function.

void gnutls_certificate_set_params_function [Function]
(gnutls_certificate_credentials_t res, gnutls_params_function * func)
res: is a gnutls_certificate_credentials_t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for certificate authentication. The callback should return GNUTLS_
E_SUCCESS (0) on success.

6.12.4 Deriving keys for other applications/protocols

In several cases, after a TLS connection is established, it is desirable to derive keys to be
used in another application or protocol (e.g., in an other TLS session using pre-shared keys).
The following describe GnuTLS’ implementation of RFC5705 to extract keys based on a
session’s master secret.

The API to use is [gnutls_prf], page 315. The function needs to be provided with a label,
and additional context data to mix in the extra parameter. Moreover, the API allows to
switch the mix of the client and server random nonces, using the server_random_first

Chapter 6: How to use GnuTLS in applications 147

parameter. In typical uses you don’t need it, so a zero value should be provided in server_
random_first.

For example, after establishing a TLS session using [gnutls_handshake], page 303, you can
obtain 32-bytes to be used as key, using this call:

#define MYLABEL "EXPORTER-My-protocol-name"
#define MYCONTEXT "my-protocol’s-1st-session"

char out[32];
rc = gnutls_prf (session, sizeof (MYLABEL)-1, MYLABEL, O,
sizeof (MYCONTEXT)-1, MYCONTEXT, 32, out);

The output key depends on TLS’ master secret, and is the same on both client and server.

If you don’t want to use the RFC5705 interface and not mix in the client and server random
nonces, there is a low-level TLS PRF interface called [gnutls_prf_raw|, page 315.

6.12.5 Channel bindings

In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a
unique string that identifies the secure channel that is used, to bind together the user
authentication with the secure channel. This can protect against man-in-the-middle attacks
in some situations. That unique string is called a “channel binding”. For background and
discussion see [RFC5056].

In GnuTLS you can extract a channel binding using the [gnutls_session_channel_binding],
page 330 function. Currently only the type GNUTLS_CB_TLS_UNIQUE is supported, which
corresponds to the tls-unique channel binding for TLS defined in [RFC5929].

The following example describes how to print the channel binding data. Note that it must
be run after a successful TLS handshake.

{
gnutls_datum_t cb;
int rc;

rc = gnutls_session_channel_binding (session,
GNUTLS_CB_TLS_UNIQUE,
&chb) ;
if (rc)
fprintf (stderr, "Channel binding error: %s\n",
gnutls_strerror (rc));
else
{
size_t 1i;
printf ("- Channel binding ’tls-unique’: ");
for (i = 0; i < cb.size; i++)
printf ("%02x", cb.datalil);
printf ("\n");

Chapter 6: How to use GnuTLS in applications 148

6.12.6 Interoperability

The TLS protocols support many ciphersuites, extensions and version numbers. As a result,
few implementations are not able to properly interoperate once faced with extensions or
version protocols they do not support and understand. The TLS protocol allows for a
graceful downgrade to the commonly supported options, but practice shows it is not always
implemented correctly.

Because there is no way to achieve maximum interoperability with broken peers without
sacrificing security, GnuTLS ignores such peers by default. This might not be acceptable
in cases where maximum compatibility is required. Thus we allow enabling compatibility
with broken peers using priority strings (see Section 6.10 [Priority Strings|, page 127). A
conservative priority string that would disable certain TLS protocol options that are known
to cause compatibility problems, is shown below.

NORMAL : %, COMPAT

For broken peers that do not tolerate TLS version numbers over TLS 1.0 another priority
string is:

NORMAL : -VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0: %COMPAT

This priority string will in addition to above, only enable SSL 3.0 and TLS 1.0 as protocols.

6.12.7 Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the
OpenSSL library is included in the gnutls-openssl library. This compatibility layer is
not complete and it is not intended to completely re-implement the OpenSSL API with
GnuTLS. It only provides limited source-level compatibility.

The prototypes for the compatibility functions are in the gnutls/openssl.h header file.
The limitations imposed by the compatibility layer include:

e Error handling is not thread safe.

Chapter 7: GnuTLS application examples 149

7 GnuTLS application examples

In this chapter several examples of real-world use cases are listed. The examples are sim-
plified to promote readability and contain little or no error checking.

7.1 Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that some of
the examples require functions implemented by another example.

7.1.1 Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers
that use X.509 or OpenPGP certificate authentication. The following client is a very simple
TLS client, which uses the high level verification functions for certificates, but does not
support session resumption.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include "examples.h"

/* A very basic TLS client, with X.509 authentication and server certificate
* verification. Note that error checking for missing files etc. 1is omitted
* for simplicity.

*/

#define MAX_BUF 1024
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect(void);
extern void tcp_close(int sd);
static int _verify_certificate_callback(gnutls_session_t session);

int main(void)

{
int ret, sd, ii;
gnutls_session_t session;
char buffer [MAX_BUF + 1];
const char *err;

Chapter 7: GnuTLS application examples 150

#if O

gnutls_certificate_credentials_t xcred;

if (gnutls_check_version("3.1.4") == NULL) {
fprintf (stderr, "GnuTILS 3.1.4 or later is required for this example\n");
exit(1);

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

/* X509 stuff *x/
gnutls_certificate_allocate_credentials(&xcred);

/* sets the trusted cas file
*/
gnutls_certificate_set_x509_trust_file(xcred, CAFILE,
GNUTLS_X509_FMT_PEM) ;
gnutls_certificate_set_verify_function(xcred,
_verify_certificate_callback);

/* If client holds a certificate it can be set using the following:
*

gnutls_certificate_set_x509_key_file (xcred,

"cert.pem", "key.pem",
GNUTLS_X509_FMT_PEM) ;
*/

/* Initialize TLS session
x/
gnutls_init(&session, GNUTLS_CLIENT);

gnutls_session_set_ptr(session, (void *) "my_host_name");

gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",
strlen("my_host_name"));

/* use default priorities */
gnutls_set_default_priority(session);

/* if more fine-graned control is required */
ret = gnutls_priority_set_direct(session,
"NORMAL", &err);

if (ret < 0) {

if (ret == GNUTLS_E_INVALID_REQUEST) {

fprintf (stderr, "Syntax error at: %s\n", err);
b
exit(1);

Chapter 7: GnuTLS application examples 151

#endif

/* put the x509 credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/

sd = tcp_connect();
gnutls_transport_set_int(session, sd);
gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEQOUT) ;

/* Perform the TLS handshake

*/
do {
ret = gnutls_handshake(session);
}
while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {
fprintf (stderr, "*** Handshake failed\n");
gnutls_perror(ret);
goto end;
} else {
char *desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: Y%s\n", desc);
gnutls_free(desc);

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {
fprintf (stderr, "**x Warning: Y%s\n", gnutls_strerror(ret));
} else if (ret < 0) {
fprintf (stderr, "**x Error: ¥%s\n", gnutls_strerror(ret));
goto end;

Chapter 7: GnuTLS application examples 152

if (ret > 0) {
printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);

end:

tcp_close(sd);

gnutls_deinit(session);
gnutls_certificate_free_credentials(xcred) ;
gnutls_global_deinit();

return O;

/* This function will verify the peer’s certificate, and check
* 1f the hostname matches, as well as the activation, expiration dates.

*/

static int _verify_certificate_callback(gnutls_session_t session)

{

#if 1

unsigned int status;
int ret, type;

const char *hostname;
gnutls_datum_t out;

/* read hostname */
hostname = gnutls_session_get_ptr(session);

/* This verification function uses the trusted CAs in the credentials
* structure. So you must have installed one or more CA certificates.

*/

/* The following demonstrate two different verification functionmns,
* the more flexible gnutls_certificate_verify_peers(), as well
* as the old gnutls_certificate_verify_peers3(). */

{
gnutls_typed_vdata_st datal[2];

Chapter 7: GnuTLS application examples 153

memset (data, 0, sizeof(data));

GNUTLS_DT_DNS_HOSTNAME;
(void*)hostname;

datal0] .type
datal[0] .data

datal[1].type
data[1] .data

GNUTLS_DT_KEY_PURPOSE_QOID;
(void*)GNUTLS_KP_TLS_WWW_SERVER;

ret = gnutls_certificate_verify_peers(session, data, 2,

&status) ;

#else

ret = gnutls_certificate_verify_peers3(session, hostname,
&status);
#endif
if (ret < 0) {
printf ("Error\n") ;

return GNUTLS_E_CERTIFICATE_ERROR;

type = gnutls_certificate_type_get(session);

ret =
gnutls_certificate_verification_status_print(status, type,
&out, 0);
if (ret < 0) {
printf ("Error\n") ;
return GNUTLS_E_CERTIFICATE_ERROR;

printf ("%s", out.data);
gnutls_free(out.data);

if (status != 0) /* Certificate is not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;

/* notify gnutls to continue handshake normally */
return O;

7.1.2 Simple client example with SSH-style certificate verification

This is an alternative verification function that will use the X.509 certificate authorities for
verification, but also assume an trust on first use (SSH-like) authentication system. That is
the user is prompted on unknown public keys and known public keys are considered trusted.

/* This example code is placed in the public domain. */

Chapter 7: GnuTLS application examples 154

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include "examples.h"

/* This function will verify the peer’s certificate, check

if the hostname matches. In addition it will perform an
SSH-style authentication, where ultimately trusted keys

are only the keys that have been seen before.

* * %

*/
int _ssh_verify_certificate_callback(gnutls_session_t session)
{

unsigned int status;

const gnutls_datum_t *cert_list;

unsigned int cert_list_size;

int ret, type;

gnutls_datum_t out;

const char *hostname;

/* read hostname */
hostname = gnutls_session_get_ptr(session);

/* This verification function uses the trusted CAs in the credentials
* structure. So you must have installed one or more CA certificates.
*/

ret = gnutls_certificate_verify_peers3(session, hostname, &status);

if (ret < 0) {

printf ("Error\n");
return GNUTLS_E_CERTIFICATE_ERROR;

type = gnutls_certificate_type_get(session);

ret =
gnutls_certificate_verification_status_print(status, type,
&out, 0);
if (ret < 0) {
printf ("Error\n");
return GNUTLS_E_CERTIFICATE_ERROR;

Chapter 7: GnuTLS application examples 155

printf("%s", out.data);
gnutls_free(out.data);

if (status != 0) /* Certificate is not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;

/* Do SSH verification */
cert_list = gnutls_certificate_get_peers(session, &cert_list_size);
if (cert_list == NULL) {

printf ("No certificate was found!\n");

return GNUTLS_E_CERTIFICATE_ERROR;

/* service may be obtained alternatively using getservbyport() */
ret = gnutls_verify_stored_pubkey(NULL, NULL, hostname, "https",
type, &cert_list[0], 0);

if (ret == GNUTLS_E_NO_CERTIFICATE_FOUND) {

printf ("Host %s is not known.", hostname);

if (status == 0)

printf("Its certificate is valid for %s.\n",
hostname) ;

/* the certificate must be printed and user must be asked on
* whether it is trustworthy. --see gnutls_x509_crt_print() */

/* if not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;
} else if (ret == GNUTLS_E_CERTIFICATE_KEY_MISMATCH) {

printf

("Warning: host %s is known but has another key associated.",

hostname) ;
printf

("It might be that the server has multiple keys, or you are under attac
if (status == 0)

printf ("Its certificate is valid for %s.\n",
hostname) ;

/* the certificate must be printed and user must be asked on
* whether it is trustworthy. --see gnutls_x509_crt_print() */

/* if not trusted */
return GNUTLS_E_CERTIFICATE_ERROR;
} else if (ret < 0) {
printf ("gnutls_verify_stored_pubkey: %s\n",
gnutls_strerror(ret));

Chapter 7: GnuTLS application examples 156

return ret;

/* user trusts the key -> store it */
if (ret !'= 0) {
ret = gnutls_store_pubkey(NULL, NULL, hostname, "https",
type, &cert_list[0], 0, 0);
if (ret < 0)
printf ("gnutls_store_pubkey: %s\n",
gnutls_strerror(ret));

/* notify gnutls to continue handshake normally */
return O;

}

7.1.3 Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means
no external certificates or passwords are needed to set up the connection. As could be
expected, the connection is vulnerable to man-in-the-middle (active or redirection) attacks.
However, the data are integrity protected and encrypted from passive eavesdroppers.

Note that due to the vulnerable nature of this method very few public servers support it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>

/* A very basic TLS client, with anonymous authentication.

*/

#define MAX_BUF 1024
#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect(void);
extern void tcp_close(int sd);

Chapter 7: GnuTLS application examples 157

int main(void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];
gnutls_anon_client_credentials_t anoncred;

/* Need to enable anonymous KX specifically. x*/

gnutls_global_init();
gnutls_anon_allocate_client_credentials(&anoncred) ;

/* Initialize TLS session
x/
gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set_direct(session,
"PERFORMANCE : +ANON-ECDH : +ANON-DH",
NULL) ;

/* put the anonymous credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_ANON, anoncred);

/* connect to the peer
*/

sd = tcp_connect();
gnutls_transport_set_int(session, sd);
gnutls_handshake_set_timeout(session,

GNUTLS_DEFAULT_HANDSHAKE_TIMEQUT) ;

/* Perform the TLS handshake

*/
do {
ret = gnutls_handshake(session);
}
while (ret < 0 && gnutls_error_is_fatal(ret) == 0);

if (ret < 0) {
fprintf (stderr, "**x Handshake failed\n");
gnutls_perror(ret);
goto end;
} else {
char *desc;

Chapter 7: GnuTLS application examples 158

desc = gnutls_session_get_desc(session);
printf ("- Session info: Y%s\n", desc);
gnutls_free(desc);

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {
fprintf (stderr, "**x Warning: Y%s\n", gnutls_strerror(ret));
} else if (ret < 0) {
fprintf (stderr, "**x Error: ¥%s\n", gnutls_strerror(ret));
goto end;

if (ret > 0) {
printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);
gnutls_bye(session, GNUTLS_SHUT_RDWR);
end:
tcp_close(sd);
gnutls_deinit(session);
gnutls_anon_free_client_credentials(anoncred) ;

gnutls_global_deinit();

return O;

7.1.4 Simple datagram TLS client example

This is a client that uses UDP to connect to a server. This is the DTLS equivalent to the
TLS example with X.509 certificates.

/* This example code is placed in the public domain. */

Chapter 7: GnuTLS application examples 159

#ifdef HAVE_CONFIG_H

#include
#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include

/* A ver

x/
#define
#define
#define

extern i

<config.h>

<stdio.h>
<stdlib.h>
<string.h>
<sys/types.h>
<sys/socket.h>
<arpa/inet.h>
<unistd.h>
<gnutls/gnutls.h>
<gnutls/dtls.h>

y basic Datagram TLS client, over UDP with X.509 authentication.
MAX_BUF 1024
CAFILE "/etc/ssl/certs/ca-certificates.crt"

MSG "GET / HTTP/1.0\r\n\r\n"

nt udp_connect(void);

extern void udp_close(int sd);

extern i

nt verify_certificate_callback(gnutls_session_t session);

int main(void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

const char *err;
gnutls_certificate_credentials_t xcred;

if (gnutls_check_version("3.1.4") == NULL) {
fprintf (stderr, "GnuTLS 3.1.4 or later is required for this example\n");
exit(1);

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

/* X509 stuff */
gnutls_certificate_allocate_credentials(&xcred);

/* sets the trusted cas file */
gnutls_certificate_set_x509_trust_file(xcred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

Chapter 7: GnuTLS application examples 160

gnutls_certificate_set_verify_function(xcred,
verify_certificate_callback);

/* Initialize TLS session */
gnutls_init(&session, GNUTLS_CLIENT | GNUTLS_DATAGRAM);

/* Use default priorities */
ret = gnutls_priority_set_direct(session,
"NORMAL", &err);

if (ret < 0) {

if (ret == GNUTLS_E_INVALID_REQUEST) {

fprintf (stderr, "Syntax error at: %s\n", err);
}
exit(1);

/* put the x509 credentials to the current session */

gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

gnutls_server_name_set(session, GNUTLS_NAME_DNS, "my_host_name",
strlen("my_host_name"));

/* connect to the peer */
sd = udp_connect();

gnutls_transport_set_int(session, sd);

/* set the connection MTU */
gnutls_dtls_set_mtu(session, 1000);
/* gnutls_dtls_set_timeouts(session, 1000, 60000); */

/* Perform the TLS handshake */
do {
ret = gnutls_handshake(session);
}
while (ret == GNUTLS_E_INTERRUPTED || ret == GNUTLS_E_AGAIN);
/* Note that DTLS may also receive GNUTLS_E_LARGE_PACKET x*/

if (ret < 0) {
fprintf (stderr, "**x Handshake failed\n");
gnutls_perror(ret);
goto end;
} else {
char *desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: Y%s\n", desc);
gnutls_free(desc);

Chapter 7: GnuTLS application examples 161

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < 0 && gnutls_error_is_fatal(ret) == 0) {
fprintf (stderr, "***x Warning: %s\n", gnutls_strerror(ret));
} else if (ret < 0) {
fprintf (stderr, "**x Error: ¥%s\n", gnutls_strerror(ret));
goto end;

if (ret > 0) {
printf("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);
}
fputs("\n", stdout);

/* It is suggested not to use GNUTLS_SHUT_RDWR in DTLS
* connections because the peer’s closure message might
* be lost */

gnutls_bye(session, GNUTLS_SHUT_WR) ;

end:

udp_close(sd);

gnutls_deinit(session);
gnutls_certificate_free_credentials(xcred);
gnutls_global_deinit();

return O;

7.1.5 Obtaining session information

Most of the times it is desirable to know the security properties of the current established

session.

This includes the underlying ciphers and the protocols involved. That is the

purpose of the following function. Note that this function will print meaningful values only
if called after a successful [gnutls_handshake], page 303.

Chapter 7: GnuTLS application examples 162

/* This

example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include
#endif

#include
#include
#include
#include

#include

/* This

<config.h>

<stdio.h>
<stdlib.h>
<gnutls/gnutls.h>
<gnutls/x509.h>

"examples.h"

function will print some details of the

* given session.

*/

int print_info(gnutls_session_t session)

{

#ifdef E

#endif

const char *tmp;
gnutls_credentials_type_t cred;
gnutls_kx_algorithm_t kx;

int dhe, ecdh;

dhe = ecdh = 0;

/* print the key exchange’s algorithm name
*/

kx = gnutls_kx_get(session);

tmp = gnutls_kx_get_name (kx) ;

printf ("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch
* to the appropriate.
*/
cred = gnutls_auth_get_type(session);
switch (cred) {
case GNUTLS_CRD_IA:
printf ("- TLS/IA session\n");
break;

NABLE_SRP
case GNUTLS_CRD_SRP:
printf("- SRP session with username %s\n",
gnutls_srp_server_get_username(session));
break;

Chapter 7: GnuTLS application examples 163

case GNUTLS_CRD_PSK:
/* This returns NULL in server side.
*/
if (gnutls_psk_client_get_hint(session) != NULL)
printf ("- PSK authentication. PSK hint ’%s’\n",
gnutls_psk_client_get_hint(session));
/* This returns NULL in client side.
*/
if (gnutls_psk_server_get_username(session) != NULL)
printf ("- PSK authentication. Connected as ’%s’\n",
gnutls_psk_server_get_username(session));

if (kx == GNUTLS_KX_ECDHE_PSK)

ecdh = 1;
else if (kx == GNUTLS_KX_DHE_PSK)
dhe = 1;

break;
case GNUTLS_CRD_ANON: /* anonymous authentication */

printf ("- Anonymous authentication.\n");
if (kx == GNUTLS_KX_ANON_ECDH)

ecdh = 1;
else if (kx == GNUTLS_KX_ANON_DH)
dhe = 1;

break;
case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

/* Check if we have been using ephemeral Diffie-Hellman.
*/
if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)
dhe = 1;
else if (kx == GNUTLS_KX_ECDHE_RSA
|| kx == GNUTLS_KX_ECDHE_ECDSA)
ecdh = 1;

/* if the certificate list is available, then
* print some information about it.
*/

print_x509_certificate_info(session);
} /* switch */

if (ecdh != 0)
printf ("- Ephemeral ECDH using curve %s\n",

Chapter 7: GnuTLS application examples 164

gnutls_ecc_curve_get_name(gnutls_ecc_curve_get
(session)));
else if (dhe != 0)
printf ("- Ephemeral DH using prime of %d bits\n",
gnutls_dh_get_prime_bits(session));

/* print the protocol’s name (ie TLS 1.0)
*/
tmp =
gnutls_protocol_get_name(gnutls_protocol_get_version(session));
printf ("- Protocol: ¥%s\n", tmp);

/* print the certificate type of the peer.
* ie X.509
*/
tmp =
gnutls_certificate_type_get_name(gnutls_certificate_type_get
(session));

printf("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)

*/
tmp = gnutls_compression_get_name(gnutls_compression_get(session));
printf ("- Compression: %s\n", tmp);

/* print the name of the cipher used.

* ie 3DES.

*/
tmp = gnutls_cipher_get_name(gnutls_cipher_get (session));
printf ("~ Cipher: %s\n", tmp);

/* Print the MAC algorithms name.

* ie SHA1

*/
tmp = gnutls_mac_get_name(gnutls_mac_get(session));
printf("- MAC: %s\n", tmp);

return O;

7.1.6 Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use
of the certificate selection callback.

/* This example code is placed in the public domain. */

Chapter 7: GnuTLS application examples

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <gnutls/abstract.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

/* A TLS client that loads the certificate and key.
*/

#define MAX_BUF 1024
#define MSG "GET / HTTP/1.0\r\n\r\n"

#define CERT_FILE "cert.pem"
#define KEY_FILE "key.pem"
#define CAFILE "/etc/ssl/certs/ca-certificates.crt"

extern int tcp_connect(void);
extern void tcp_close(int sd);

static int
cert_callback(gnutls_session_t session,
const gnutls_datum_t * req_ca_rdn, int nregs,
const gnutls_pk_algorithm_t * sign_algos,
int sign_algos_length, gnutls_pcert_st ** pcert,
unsigned int *pcert_length, gnutls_privkey_t * pkey);

gnutls_pcert_st pcrt;
gnutls_privkey_t key;

/* Load the certificate and the private key.
*/

static void load_keys(void)

{

int ret;

165

Chapter 7: GnuTLS application examples 166

gnutls_datum_t data;

ret = gnutls_load_file(CERT_FILE, &data);

if (ret < 0) {
fprintf (stderr, "***x Error loading certificate file.\n");
exit(1);

ret =
gnutls_pcert_import_x509_raw(&pcrt, &data, GNUTLS_X509_FMT_PEM,
0);
if (ret < 0) {
fprintf (stderr, "**x Error loading certificate file: Y%s\n",
gnutls_strerror(ret));
exit(1);

gnutls_free(data.data);

ret = gnutls_load_file(KEY_FILE, &data);

if (ret < 0) {
fprintf(stderr, "**x Error loading key file.\n");
exit(1);

gnutls_privkey_init (&key) ;

ret =
gnutls_privkey_import_x509_raw(key, &data, GNUTLS_X509_FMT_PEM,
NULL, 0);
if (ret < 0) {
fprintf (stderr, "**x Error loading key file: %s\n",
gnutls_strerror(ret));
exit(1);

gnutls_free(data.data);

int main(void)

{
int ret, sd, ii;
gnutls_session_t session;
gnutls_priority_t priorities_cache;
char buffer [MAX_BUF + 1];
gnutls_certificate_credentials_t xcred;

Chapter 7: GnuTLS application examples 167

if (gnutls_check_version("3.1.4") == NULL) {
fprintf (stderr, "GnuTLS 3.1.4 or later is required for this example\n");
exit(1);

/* for backwards compatibility with gnutls < 3.3.0 */
gnutls_global_init();

load_keys();

/* X509 stuff *x/
gnutls_certificate_allocate_credentials(&xcred);

/* priorities */
gnutls_priority_init(&priorities_cache,
"NORMAL", NULL);

/* sets the trusted cas file
x/
gnutls_certificate_set_x509_trust_file(xcred, CAFILE,
GNUTLS_X509_FMT_PEM) ;

gnutls_certificate_set_retrieve_function2(xcred, cert_callback);

/* Initialize TLS session
x/
gnutls_init(&session, GNUTLS_CLIENT);

/* Use default priorities */
gnutls_priority_set(session, priorities_cache);

/* put the x509 credentials to the current session
*/
gnutls_credentials_set(session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer
*/

sd = tcp_connect();
gnutls_transport_set_int(session, sd);
/* Perform the TLS handshake

*/

ret = gnutls_handshake(session);

if (ret < 0) {
fprintf (stderr, "**x Handshake failed\n");

Chapter 7: GnuTLS application examples 168

gnutls_perror(ret);
goto end;

} else {
char *desc;

desc = gnutls_session_get_desc(session);
printf ("- Session info: Y%s\n", desc);
gnutls_free(desc);

gnutls_record_send(session, MSG, strlen(MSG));

ret = gnutls_record_recv(session, buffer, MAX_BUF);
if (ret == 0) {
printf ("- Peer has closed the TLS connection\n");
goto end;
} else if (ret < 0) {
fprintf (stderr, "**x Error: ¥%s\n", gnutls_strerror(ret));
goto end;

printf ("- Received %d bytes: ", ret);
for (ii = 0; ii < ret; ii++) {
fputc(buffer[ii], stdout);

}

fputs("\n", stdout);

gnutls_bye(session, GNUTLS_SHUT_RDWR);
end:

tcp_close(sd);

gnutls_deinit(session);

gnutls_certificate_free_credentials(xcred) ;
gnutls_priority_deinit(priorities_cache);

gnutls_global_deinit();

return O;

/* This callback should be associated with a session by calling
* gnutls_certificate_client_set_retrieve_function(session, cert_callback),

Chapter 7: GnuTLS application examples 169

* before a handshake.

*/

static int
cert_callback(gnutls_session_t session,
const gnutls_datum_t * req_ca_rdn, int nregs,
const gnutls_pk_algorithm_t * sign_algos,
int sign_algos_length, gnutls_pcert_st ** pcert,
unsigned int *pcert_length, gnutls_privkey_t * pkey)

char issuer_dn[256];

int i, ret;

size_t len;
gnutls_certificate_type_t type;

/* Print the server’s trusted CAs
*/
if (nreqs > 0)
printf ("- Server’s trusted authorities:\n");
else
printf
("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */
for (i = 0; i < nregs; i++) {
len = sizeof(issuer_dn);
ret gnutls_x509_rdn_get(&req_ca_rdn[i], issuer_dn, &len);
if (ret >= 0) {
printf (" [%d]: ", 1);
printf ("%s\n", issuer_dn);

/* Select a certificate and return it.
* The certificate must be of any of the "sign algorithms"
* supported by the server.
*/
type = gnutls_certificate_type_get(session);
if (type == GNUTLS_CRT_X509) {
*pcert_length = 1;
*pcert = &pcrt;
*pkey = key;
} else {
return -1;

return O;

Chapter 7: GnuTLS application examples 170

7.1.7 Verifying a certificate

An example is listed below which uses the high level verification functions to verify a given
certificate list.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <gnutls/gnutls.h>
#include <gnutls/x509.h>

#include "examples.h"

/* All the available CRLs
*/

gnutls_x509_crl_t *crl_list;
int crl_list_size;

/* All the available trusted CAs
*/

gnutls_x509_crt_t *ca_list;

int ca_list_size;

static int print_details_func(gnutls_x509_crt_t cert,
gnutls_xb09_crt_t issuer,
gnutls_x509_crl_t crl,
unsigned int verification_output);

/* This function will try to verify the peer’s certificate chain, and
* also check if the hostname matches.
*/
void
verify_certificate_chain(const char *hostname,
const gnutls_datum_t * cert_chain,
int cert_chain_length)

int i;
gnutls_x509_trust_list_t tlist;
gnutls_x509_crt_t *cert;

Chapter 7: GnuTLS application examples 171

unsigned int output;

/* Initialize the trusted certificate list. This should be done
* once on initialization. gnutls_x509_crt_list_import2() and
* gnutls_x509_crl_list_import2() can be used to load them.
x/

gnutls_x509_trust_list_init(&tlist, 0);

gnutls_x509_trust_list_add_cas(tlist, ca_list, ca_list_size, 0);
gnutls_x509_trust_list_add_crls(tlist, crl_list, crl_list_size,
GNUTLS_TL_VERIFY_CRL, 0);

cert = malloc(sizeof (*cert) * cert_chain_length);

/* Import all the certificates in the chain to
* native certificate format.
*/
for (i = 0; i < cert_chain_length; i++) {
gnutls_x509_crt_init(&cert[i]);
gnutls_x509_crt_import(cert[i], &cert_chain[i],
GNUTLS_X509_FMT_DER) ;

gnutls_x509_trust_list_verify_named_crt(tlist, cert[0], hostname,
strlen(hostname),
GNUTLS_VERIFY_DISABLE_CRL_CHECKS,
&output,
print_details_func);

/* if this certificate is not explicitly trusted verify against CAs
*/
if (output '= 0) {
gnutls_x509_trust_list_verify_crt(tlist, cert,
cert_chain_length, O,
&output,
print_details_func);

if (output & GNUTLS_CERT_INVALID) {
fprintf (stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)

fprintf(stderr, ":