Creating Add-Ons

Klara Cihlafova <cihlarov@suse.cz>
Jakub Friedl <jfriedl@suse.cz>
Jiti Srain <jsrain@suse.cz>
Stanislav Visnovsky
Rebecca Walter

Creating Add-Ons
Version 1.0 RC2, 4.7.2006
Disclaimer

This document is licensed under the GNU Free Documentation Li-
cense, see http://www.gnu.org/copyleft/£fdl.html for
more details.

Novell, Inc. makes no representations or warranties with respect to
the contents or use of this document and specifically disclaims any
express or implied warranties of merchantability or fitness for any
particular purpose.

Copyright and Trademarks

*Linux is a registered trademark of Linus Torvalds. Novell and the
Novell logo are registered trademarks of Novell, Inc. in the United
States and other countries. SUSE and the SUSE logo are trademarks
of SUSE LINUX Products GmbH, a Novell business. Dell is a regis-
tered trademark of Dell Inc. All other third-party trademarks are the
property of their respective owners.

Contents

1 Creating an Add-On Product 3
2 Add-On Structureo 5
3 The content File 13
4 Package Descriptionso 17
5 Selections and Patterns 26
6 Signatures and Other Security Issues 36
7 Autorun L L L s s e e 38

This document describes add-on media preparation for SUSE Linux 10.1 and SUSE
Linux Enterprise 10 products. The add-on support was developed to support our cus-
tomers and partners and simplify third-party software distribution for all SUSE products.

1 Creating an Add-On Product

If you want to distribute your software or product for SUSE Linux 10.1, SUSE Linux
Enterprise Server 10, SUSE Linux Enterprise Desktop 10, and higher with support from
installation programs like YaST and rug, you can create add-on media.

0 Supported Versions
Including add-ons is supported for SUSE Linux Enterprise Server

10, SUSE Linux Enterprise Desktop 10, and higher. Add-ons cannot
be used in older products. SUSE Linux 10.1 does not supported
creation of an add-on workflow.

Software distribution as add-on products has the following advantages:

* Your software can be added to the list in YaST Software Management and to the
list of installation sources. Users can easily install and reinstall your software.

* You can create an installation workflow and configuration for the add-on product.

Creating Add-Ons 3

« TItis possible to influence the second stage of the installation if users add the product
during initial installation. This means that you can add new configuration dialogs
for your software directly to the installation procedure. You can omit this function-
ality if you think it is not useful for your software.

To create add-on media, do following;:

1

Outline the add-on media structure and create the content file with a basic
media description for YaST. See Section 2, “Add-On Structure” (page 5)

for an add-on media structure example and Section 3, “The content File”
(page 13) for information about the structure of the file.

Prepare signed RPM packages with your software and create package descrip-
tions. For details about creating package descriptions, see Section 4, “Package
Descriptions” (page 17).

Create the add-on license file and optional special information file. Find infor-
mation about placing and naming these files in Section “Special Files in the
media. 1 Directory” (page 10).

Create selections (for SUSE Linux 10.1) or patterns (SUSE Linux Enterprise).
This step is optional. For more information, see Section 5, “Selections and
Patterns” (page 26).

Create the installation workflow for the add-on product. This step is optional.

To give autorun functionality, create autorun files for your add-on as described
in Section 7, “Autorun” (page 38).

Create md5 checksums for all files in the directory and save them to the file
MD5SUMS. You cannot create md5 checksums for directories with subdirecto-
ries only. For more information, see Section 6.2, “MD5” (page 37).

Sign the add-on product as described in Section 6, “Signatures and Other Se-
curity Issues” (page 36).

Createadirectory.yast filein directories of the add-on that do not have
packages. For more information, see Section “The directory.yast Files”

(page 10).

10 Burn the add-on media as normal data CDs or DVDs. You can use any burning
software.

@ Testing the Add-On Media

YaST and zmd use a cache for the add-on media. The add-on media
are cached on disk and used even if the original source is removed.
To prevent problems with adding and removing the test media,
change the content file for each add-on preversion. It is not possible
to add two add-on media with same product name and vendor
name in the content file.

2 Add-On Structure

YaST can work with two formats of installation media: YaST and YUM. Only the
YaST format is described in this document, because it is recommended for local instal-
lation sources, such as add-on product CDs or DVDs. For information about the YUM
format, read the articles:

* http://en.opensuse.org/Installation_Sources
* http://en.opensuse.org/Secure_Installation_Sources
* http://en.opensuse.org/Libzypp

Before you start creating the add-on media, create a dedicated directory, for example,
/tmp/addon, to have better overview of included files and directories.

To have functional add-on media, first create a minimal skeleton of the media in your
dedicated directory. This minimal skeleton contains all parts to install a product with
YaST, but does not include any selections or patterns. The product will not be installed
automatically after the CD or DVD is inserted or display special notes.

You can create add-on with multiple media. The minimal skeleton for all media is same.
The media skeletons differ only in the number for the media-n directory.

Creating Add-Ons

ﬂ Using Minimal Media
If you want to test the minimal add-on functionality, you should:

* Sign metadata with your key

* Create an MD5SUMS file with the MD5 checksums of included
RPM files in all data subdirectories

+ Add the SHA1 digest of all MD5sUMS files, files in the descr
directory, and all used keys to the content file

* Provide all used keys

You should also create directory.yast as described in Sec-
tion 1, “Creating an Add-On Product” (page 3). For more informa-
tion about security issues and metadata signatures, see Section 6,
“Signatures and Other Security Issues” (page 36).

The skeleton of an add-on medium has three parts:

The content File
Information about the add-on product.

The media.n Directory
Files with information about the media. The directory is called media. 1 for the
first add-on medium. If you prepare an add-on with multiple media, the second
media should instead have a media. 2 directory, the third media a media. 3 di-
rectory, and so on.

The Data Directory
Directory with RPM packages.

This example is the first add-on medium, uses the data directory suse, and has packages
only for the 586 architecture:

—content
-gpg-pubkey-*.asc (* is a number of the key)
-media.l/ ——media

——products

-suse/ --i586/ -—---*.rpm (* is a name of the package)

—--setup/ ---descr/ ————packages
—-———-packages.en

A minimal add-on structure with signatures and all integrity check components:

—content
—content.asc
-content.key
—directory.yast
—gpg-pubkey-*.asc (* is a number of the key)
-media.l/ ——-directory.yast

—-media

——products

——products.asc

——products.key
-suse/ —--1586/ —-——MD5SUMS

———*.rpm (* is a name of the package)

——setup/ —-—-descr/ ————-directory.yast
————-MD5SUMS
—-———packages
—-———packages.en

2.1 The Data Directory

The data directory is defined with DATADIR in the content file, which is described
in Section 3, “The content File” (page 13). The name of the data directory may be

selected freely. Store all RPM packages of your add-on product in this directory sorted
into subdirectories by the architecture for which they were built. Name these subdirec-
tories by architecture:

i386
For the 32-bit 1386 Intel architecture (1486 with coprocessor and higher). Since
SuSE Linux 8.0 and SLESS, 32-bit SUSE Linux is optimized for the i586 architec-
ture and this directory is obsolete.

i586
For the 32-bit 1586 Intel architecture (Pentium 1 and higher). Since SuSE Linux
8.0 and SLESS, 32-bit SUSE Linux is optimized for this architecture.

1686
For the 32-bit 1686 Intel architecture.

Creating Add-Ons

x86 64
For the 64-bit AMD x86-64 and Intel EMT architectures.

ia64
For the 64-bit Intel Itanium architecture.

ppc
For the Power PC architecture.

ppc64
For the 64-bit Power PC architecture.

noarch
For architecture-independent packages.

src
For source packages.

nosrc
For proprietary software development packages without source packages. This di-
rectory does not contain the binary for installation, but only files needed for RPM
creation.

Some products are built only for some architectures. It is not necessary to prepare the
architecture-specific directories for unsupported architectures.

ﬂ SUSE Linux Optimization
From SUSE Linux 8.0 and SUSE Linux Enterprise 8, all packages for

32-bit Intel processors are optimized for the i586 architecture. The
last versions with i386 optimization are SuSE Linux 7.3 and SUSE
Linux Enterprise 7.

For SUSE Linux 10.1, x86_64, 1686, 1586, ppc, noarch, and src are supported. For
SUSE Linux Enterprise Desktop 10, x86_64, 1686, 1586, noarch, src, and nosrc are
supported. For SUSE Linux Enterprise Server 10, x86_64, ia64, 1686, 1586, ppc, ppc64,
noarch, src, and nosrc are supported.

2.2 The media.n Directory

The media. ndirectory includes basic information about the add-on media set. Replace
the n character with the number of the media. For example, if you create the first
medium of an add-on with multiple media, use media. 1. For the second medium, use
media. 2. The directory on all media should contain the files:

media
The mandatory med1i a file contains a media description for identification purposes.
It is not shown to the user but should contain human-readable data for debugging
purposes.

products
This file contains the directory names for each product contained on the media. If
this file is not present, a single product on the medium's root directory is assumed.

The media File

The media file contains a media description for identification purposes. It is not shown
to the user but should contain human-readable data for debugging purposes.

The file for the first medium of the add-on should contain three lines:
- Name of the vendor

* Media ID, which can be arbitrary unique number, such as the date of creation in
YYYYMMDDHHMMSS format

« Number of media in the product

Example for the first medium of an add-on with five media:

SUSE Linux Products GmbH
20060505000500
5

All other media can contain only lines with vendor and creation date.

Creating Add-Ons

10

The products File

This file contains the directory name for each product contained on the media. If this
file is not present, a single product on the root directory is assumed.

product is an ASCII file with one line per add-on product. Each line starts with the
directory name (relative to the root directory of the medium) followed by whitespace

(space or tab) and the product name and version. A leading slash in the directory name
is only needed to specify the root directory of the media.

In the following example, SUSE Linux Add-On Example 10.1 isin the root
directory. The other products (Add-On 2 and Add-On 3) have their own subdirectories:

/ SUSE Linux Add-On Example 10.1
addon?2 Add-On 2
addon3 Add-On 3

The directory.yast Files

YaST2 uses directory.yast files to obtain information about the media directory
structure. This file should be in every directory of the media except directories with
RPM packages. In the directories with packages, you need only an MD5SUMS file, be-
cause information about packages are provided by package description files, described
in Section 4, “Package Descriptions” (page 17).

To create it, enter the following command in each directory:

ls -Al -p > directory.yast

where —A1 is A and number one.

Special Files in the media.1 Directory

media.l can optionally host the files 1icense.zip and info.txt. These files
are included on the first medium only.

If you want to display information about the add-on product license as a window with
Agree and Disagree buttons before installation starts, include 1icense.zipinmedia
.1.license. zip caninclude the license in different languages, one file per language.
The filename should be in the format 1icense . LANG.t xt, where LANG is the ISO
code of the language. To differentiate variants of one language, you can use the

language—-code country—code combination. The files should use UTF-8 encod-
ing.

Example 1icense.zip content:

license.de.txt
license.es.txt
license.fr.txt
license.it.txt
license-ja_JP.txt
license.pt_BR.txt
license.txt
license.zh_CN.txt
license.zh TW.txt

The optional info. txt file gives information about the add-on that should be displayed
as a pop-up window with an OK button. The info. txt file is a simple text file in
UTF-8 encoding.

2.3 Optional Files

Optional files and directories are not needed for simple package installation, but can
extend the add-on functionality or provide useful information. You can, for example,
create files that make your add-on product visible as a pattern in YaST or include a
simple text file with instructions for how to install your add-on product.

The optional files aut orun . sh and aut orun. inf include information for automatic
start of the add-on media. For more information about creation, see Section 7, “Autorun”

(page 38).

The optional files INDEX.gz, ARCHIVES. gz, and 1s—-1R.gz include information
about files in the packages and descriptions of the packages. The optional files
COPYING, COPYRIGHT, and LICENSE . TXT include information about legal issues.
You can include localized version of these three files. The example below has German
versions in files with the . de extension.

The optional files README and README . DOS include information about how to install
the add-on product. README is for UNIX and UNIX-like systems and README . DOS
for Windows systems. You can include localized versions of the files. The example
below has a German version in the files LIESMICH and LIESMICH.DOS.

Creating Add-Ons

11

12

The optional files y2update.tgz,servicepack.tar.gz,and installation
.xml contain the configuration of the add-on installation workflow. It is normally only
on the first medium.

The optional /suse/setup/selection file and files with the . sel extension
define a SUSE Linux selection visible in YaST. The configuration file / suse/setup/
patterns and files with a . pat extension are the equivalent for patterns. See Sec-
tion 5, “Selections and Patterns” (page 26) for more information about patterns and
selections.

The optional file SuSEgo. ico is the icon for your add-on product.

The following is an example of the add-on media structure with optional files:

-ARCHIVES.gz
—autorun.inf
—autorun.sh
—content
—content.asc
—-content.key
—COPYING
—COPYING.de
—COPYRIGHT
—COPYRIGHT.de
—directory.yast
—-gpg-pubkey-*.asc (* is the number of the key)

—ChangeLog

—INDEX.gz

—LICENSE.TXT

—-LIESMICH

-LIESMICH.DOS

-1s-1R.gz

-media.l/ ——directory.yast
——info.txt
——license.zip
—--media
——products

——products.asc

——products.key
—-pubring.gpg
—README
—README.DOS
—-servicepack.tar.gz
—-y2update.tgz
—installation.xml
—-suse/ ——-1586/ ——-MD5SUMS

———*.rpm (* is the name of the package)

——noarch/ -—-MD5SUMS

—-——*.rpm (* is the name of the package)

——setup/ -——descr/ ————directory.yast

————-EXTRA_PROV
————-MD5SUMS
—-———packages
—-———packages.lan (lang=de,en,hu...)
————selection (only for sl)
————%*.sel (only for sl)
—--———patterns (only for sle)
————*.pat (only for sle)

———-LIESMICH

———MD5SUMS

———README

—-x86_64/ ———MD5SUMS
———*.rpm (* is the name of the package)
—-SuSEgo.ico

2.4 Add-On Products and AutoYaST

For AutoYaST, it is not necessary to create separate entries for all add-on products.
You can create only one for all add-ons and add the list of all the add-ons to the special
file addon_products in the root of the new add-on media.

The addon_products fileis a simple text file in ASCII encoding. Installation sources
are defined with their installation repository URL, one URL per line.

For example, to add SUSE Linux 10.1 add-on from www . opensuse. org, enter the
installation repository for it. The repository URLishttp://download. opensuse
.org/distribution/SL-10.1/inst-source/. The entry in addon
_products should be:

http://download.opensuse.org/distribution/SL-10.1/inst-source/

3 The content File

This file is stored in the product directory as specified by the products file on the
media. Without a products file, the product directory defaults to the root directory
of the media. The content file contains all product-specific data to describe and
identify the contents of the product.

Creating Add-Ons

13

14

Validity of the content File

Check your content file before you use it. Errors in keywords and
keywords without values cause rejection of the add-on media by
target systems.

If your content file is not valid, find the following error messages
in /var/log/YaST2/y2log:

Downloading metadata failed (is a susetags source?)
or user did not accept remote source. Aborting refresh.

[zypp] SourceFactory.cc(createFrom):183 Not SUSE tags source,
trying next type

The content file is encoded in UTF-8 and consists of keyword and value pairs sepa-
rated by spaces.

Table 1 Supported content Keywords

Keyword Required Description

PRODUCT Yes Product name.

VERSION Yes Product version and release as in RPM
major.minor-release.

DISTPRODUCT Yes Distribution ID (vendor specific). The value of the
keyword must not contain spaces. Only letters,
numbers, and the characters: .~ - are allowed.

DISTVERSION Yes Distribution version (vendor specific).

VENDOR Yes Vendor name (free form).

ARCH.base Yes Space-separated list of allowed architectures for
base.

DEFAULTBASE Yes Minimal architecture base supported by this product.

The default is the base architecture if no matching
ARCH.base is found.

Keyword

Required Description

REQUIRES

PREREQUIRES

PROVIDES

CONFLICTS

OBSOLETES

RECOMMENDS

SUGGESTS

SUPPLEMENTS

Yes

No

No

No

No

No

No

No

Resolvables that must be installed on the system to
meet the needs of this product. This is a space-sepa-
rated list of names or kind:name pairs optionally
followed by version constraints. Just a name denotes
a dependency to a package, such as
sles-releaseorsles-release-10. The
kind can be package, pattern, or product,
such as pattern:basesystem.

Resolvables that must be installed on the system
before installation of this product. The syntax is the
same as for REQUIRES.

Capabilities this resolvable provides. They can be
used to match REQUIRES from others. Every resolv-
able has a provide by default— its own name and
edition. For example, package bar-1.42-1 provides
the capability bar = 1.42-1.

This resolvable cannot be installed if the specified
resolvable or one that provides the capability is in-
stalled.

When this resolvable is installed, it uninstalls any
other resolvable with a name matching this keyword.

A weak version of REQUIRES. An attempt is made
to fulfill RECOMMENDS, but they are silently
dropped if no match is possible.

These are just hints for an application and not han-
dled during dependency resolution.

A reverse RECOMMENDS. This resolvable is in-
stalled if the specified capability is provided by an
installed resolvable. The dependency resolver installs
it. Uninstalling it is silently accepted.

Creating Add-Ons

15

16

Keyword Required Description

ENHANCES No A reverse SUGGESTS. This resolvable can be in-
stalled if this capability is provided by an installed
resolvable. It is just a hint for an application. For
example, SuSEplugger can suggest packages for
installation if specific hardware is found.

LINGUAS No ISO language code or language code country code.

LABEL No UTF-8 encoded label. Default label if LINGUAS is
omitted or no default language can be determined.

LABEL.lang No UTF-8-encoded LABEL. 1 anghas the same syntax
as the LINGUAS values. For each language in
LINGUAS, a matching LABEL.Iang is expected.

DESCRDIR Yes Package description directory (relative to product
directory).

DATADIR Yes Package data directory (relative to product directo-
ry).

LANGUAGE No Default language code.

RELNOTESURL No URL from which to fetch release notes.

FLAGS No Product-specific capabilities.

KEY Yes SHA1 of the keys used in the media.

META Yes Metadata.

UPDATEURLS No URL of the update source.

Example of the content file:

PRODUCT SUSE Linux Add-on

VERSION 10.1

DISTPRODUCT SUSE-Linux-10.l1-Add-on

DISTVERSION 10.1-0

VENDOR SUSE LINUX Products GmbH, Nuernberg, Germany

RELNOTESURL http://www.suse.com/relnotes/i386/SUSE-Linux/10.1/release—notes.rpm
ARCH.x86_ 64 x86 64 1686 1586 1486 1386 noarch

ARCH.1686 1686 1586 1486 1386 noarch

ARCH.1586 1586 1486 1386 noarch

ARCH.1486 1486 1386 noarch

ARCH.1386 1386 noarch

DEFAULTBASE 1586

REQUIRES distribution-release

LINGUAS de en

SHORTLABEL SL 10.1

LABEL SUSE Linux Add-on 10.1

LABEL.de SUSE Linux Add-on 10.1

DESCRDIR suse/setup/descr

DATADIR suse

FLAGS update

LANGUAGE en_US

TIMEZONE America/Los_Angeles

META SHAl 04ef39995b65f02d81ld6elcc22fffda5c3a2a40e EXTRA PROV
META SHAl b8b7146ce7ble957be54227aa74f79%9ac95ca4e85 MD5SUMS
META SHAl 12ee25db081bf57beaef32b798262a18£9242216 packages
META SHAl 05279413404e8del27b30082alce70049718b849 packages.DU
META SHA1l 4061102daldbeOcb22ff7cf3ab5c77a27cd0f7df packages.cs
META SHA1l acf5157177504747bbfa3638596d0afbd29¢c2762 packages.de
META SHA1l e2e479cl79f94cca95b4f2a22facd0bf8cdlbd3a packages.en
META SHA1l 6090dd6ae0343f2470ceab5ale8e92703d57db4e packages.es
META SHAl e2e479cl179f94cca95b4f2a22facd0bf8cdl0bd3a packages.fr
META SHAl e€7829946b48a8cc96b0ab5a187e05¢c58279b063¢c packages.hu
META SHA1l 4061102daldbeOcb22ff7cf3ab5c77a27cd0f7df packages.sk
KEY SHAl al08c6aabl9fe604fa98ef299cdcebeb6ba275£09
gpg-pubkey-0dfb3188-41ed929b.asc

KEY SHAl af6ee559b573628d89a11239f113f9%ece0839673
gpg-pubkey-1d06la62-427a396f.asc

KEY SHA1l b6a95b4cb3f3d0426ed25c0df350006915a803d3
gpg-pubkey-307e3d54-44201d5d.asc

KEY SHAl1l Oa4cffdcl9c5544bc48d22474dd42586be5ac59%e
gpg-pubkey-3d25d3d9-36e12d04.asc

KEY SHAl 30726e9a2959dbe9cace5765edd038e0538878ad
gpg-pubkey-9c800aca-40d8063e.asc

4 Package Descriptions

The package description files contain the dependencies, size, MD5 checksums, and
package descriptions of all packages in the installation source. The encoding of the files
is UTF-8. Files should be placed in setup/descr/ of the data directory defined in
the content file.

Creating Add-Ons 17

18

Special keywords are used in all description files. If a keyword starts with =, as in =Ver,
the system reads only one line. To access multiple line, use a pair of keywords. The
opening keyword starts with + and the closing keyword with —, as in +Ver and -Ver.
In the keyword tables, the keywords are provided in their most common form. If the
keyword normally has only a one line definition, it is shown with =. If the keyword is
normally used in the pair version, see the start and end keywords.

To generate basic description files, in the data directory run the
create_package_descr -C script, which is contained in the
autoyast2-utils package. The —C option creates package descriptions with MD5
checksums of packages. Referto create_package_descr —-help for directions.

The script creates the following files in setup/descr:

packages
A cache file for package data needed for package selection and dependency resolu-
tion. It contains pure package data and no user readable strings, such as translations.

packages. lang
Iangisreplaced with ISO code of the description language (or language country-
code). For each language defined in LINGUAS in content,apackages. Iang
file should exist in the package description directory. This file contains translated
strings (package summary, description, etc.) to be viewed by users. These files can
be omitted.

package.DU
This file contains disk usage information for each package and for directories used
by the packages. It it used to approximate file system requirements, especially when
multiple partitions (such as /usr, /var, and /opt) are used. Exact usage information
cannot be computed by YaST because it depends heavily on hard or symbolic links
(either in the package or in the file system) and the file system in use (such as ext2
or reiserfs).

4.1 The packages File

The package description directory must contain the packages file. This is basically
a cache file for package data needed for package selection and dependency resolution.
It contains pure package data and no user-readable strings. The file created by

create_package_descr is suitable for most add-on products, making it unneces-
sary to change it.

The keywords for this file are shown in Table 2, “List of Supported packages Key-
words” (page 19). Where keywords correspond to dependencies, these are explained

in terms of the keywords from Table 1, “Supported content Keywords” (page 14).
However, these dependencies only relate to packages.

Table 2 List of Supported packages Keywords

Keyword Value Comment

=Ver 2.0 Version of the file format. For SUSE Linux
10.1, SUSE Linux Enterprise Server 10,
and SUSE Linux Enterprise Desktop 10,
use version 2.0.

=Pkg name version These four values identify a package unam-
release biguously and are used as a key.
architecture

+Req library or REQUIRES.
executable

-Req

+Prq library or PREREQUIRES.
executable

-Prq

+Prv library or PROVIDES.
executable

-Prv

+Con library or CONFLICTS.
executable

-Con

+Obs library or OBSOLETES.
executable

-Obs

Creating Add-Ons

19

20

Keyword Value Comment
+Rec library or RECOMMENDS.
executable
-Rec
+Sug library or SUGGESTS.
executable
-Sug
+Fre library or This package is only considered if the re-
executable solvable specified here is already installed.
-Fre
+Sup -Sup library or SUPPLEMENTS.
executable
+Enh library or ENHANCES.
executable
-Enh
=Loc media_nr The path to the package is optional and
filename defaults to
DATADIR/architecture/filename
(see Section 3, “The content File”
(page 13) for DATADIR).
=Siz package—-size Size in bytes.
installed-size
=Tim buildtime Build time in time t format (seconds since
00:00:00 UTC on January 1, 1970).
=Src name version Information about the source package. The
release architecture must be src or nosrc. If the ar-
architecture chitecture in the Pkg line already is src or
nosrc, the Src value is discarded.
=Grp rpmgroup The RPM group from the package.

Keyword Value Comment

=Lic license License information.
=Cks type checksum The type can be SHA1 or MD5 followed
by the checksum.

+Aut authors List of authors.

-Aut

=Shr name version Identity of a package from which to re-
release trieve all values not explicitly set in this
architecture package entry. Useful, for example, for

optimized versions of the same package
(for example, if 1686 and 1486 versions
exists) or for source versions of a package.

+Key keywords Keywords from your package database, if

relevant.
-Key

4.2 The packages. lang File

For each language defined in LINGUAS in the content file, a packages. lang
file should exist in the package description directory. This file contains translated strings
(package summary, description, etc.) to be viewed by the user. These files can be
omitted.

The file is encoded in UTF-8 and is line based. Lines starting with # are ignored. The
packages. lang file starts with the =Ver tag followed by package entry keywords.

It contains the following information:

Package
The package identifier (name version revision architecture)

Summary
The package summary (label), a one line description of the package

Creating Add-Ons

21

22

Description
A description of the package, possibly multiline

Installation Notify
An informal message shown to the user if the package is selected, such as a test
version warning or a commercial license

EULA Notify
A EULA of the package that the user must accept to install the package

Deletion Notify
An informal message shown to the user if the package is selected for deletion, such
as a warning that the system is unusable without the package

Example of packages.en:

=Ver: 2.0

=Pkg: yast2-pkg-bindings 2.13.79 2 1586

=Sum: YaST2 Package Manager Access

+Des:

This package contains a namespace for accessing the package manager
library in YaST2.

Authors:

Arvin Schnell <arvin@suse.de>

Klaus Kaempf <kkaempf@suse.de>
Mathias Kettner <kettner@suse.de>
Stefan Hundhammer <sh@suse.de>
Stanislav Visnovsky <visnov(@suse.cz>
-Des:

=Pkg: yast2-theme-NLD 0.4.5 3 noarch
=Sum: YaST2 NLD Theme

+Des:

This package contains the YaST2 NLD theme.

Authors:

Ken Wimer <wimer@suse.de>

Tuomas Kuosmanen <tigert@ximian.com>
Jakub Steiner <jimmac@ximian.com>
—Des:

Table 3 List of Supported packages.lang Entry Keywords

Keyword Value Comment
=Ver 2.0 Version of the file format. For SUSE Linux
10.1, SUSE Linux Enterprise Server 10, and
SUSE Linux Enterprise Desktop 10, use version
2.0.
=Pkg name version These four values identify a package unambigu-
release ously and are used as a key.
architecture
=Sum summary One line summary.
+Des description Multiple line package description.
-Des
+Ins text Text for user notification when the package is
selected for installation.
-Ins
+Del text Text for user notification when the package is
selected for deletion.
-Del
=Shr name version Identity of the package from which to retrieve
release all values not explicitly set in the current pack-
architecture age entry. Useful, for example, for optimized
versions of the same package (for example, if
1686 and 1486 versions exists) or for source
packages.
+Eul: text Text of the EULA. This text is displayed before
package installation. If the user does not accept
-Eul:

the EULA, package is not installed

Creating Add-Ons

23

24

4.3 The packages.DU File

This file contains disk usage information for each package and for directories used by
the package. It is used to approximate file system requirements especially when multiple
partitions (such as for /usr, /var, or /opt) are used. Exact usage information cannot
be computed by YaST, because it depends heavily on hard or symbolic links (either in
the package or in the file system) and the file system in use (such as ext2 or reiserfs).
The file created by create_package_descr is suitable for most add-on products,
making it unnecessary to change it.

The packages . DU file is optional, but no size estimations can be given if it is omitted.
This also means that insufficient space warnings cannot be given until space runs out
during product installation.

The cache file starts with a header defining the version. The file should be encoded in
ASCII and is line based. Lines starting with # are ignored.

Example of the packages.DU:

=Ver: 2.0
-

=Pkg: MozillaFirefox-translations 1.5.0.4 1.7 i586
+Dir:

/ 0 18939 0 62

usr/ 0 18939 0 62

usr/1lib/ 0 18939 0 62
usr/lib/firefox/ 0 18939 0 62
usr/lib/firefox/chrome/ 18939 0 62 0

—Dir:
#H--—
=Pkg: zlib 1.2.3 15.2 src

+Dir:

/ 0 428 0 6

usr/ 0 428 0 6

usr/src/ 0 428 0 6
usr/src/packages/ 428 0 6 0
—Dir:

=Pkg: zmd 7.1.1.0 39.40 src
+Dir:

/ 0 1049 0 13

usr/ 0 1049 0 13

usr/src/ 0 1049 0 13
usr/src/packages/ 1049 0 13 0
—Dir:

Table 4 List of Supported packages.DU Entry Keywords

Key- Value Comment
word
=Ver 2.0 Version of the file format. For SUSE Linux

10.1, SUSE Linux Enterprise Server 10, and
SUSE Linux Enterprise Desktop 10, use version

2.0.
=Pkg name version These four values identify a package unambigu-
release ously and are used as a key.
architecture
+Dir directory The di rectoryshould be / for the root direc-
dir_size tory or a relative path to the root directory for
-Dir size subdirs others. For dir._size, enter the size of data
files in dir stored only in the main directory in Kb. For

files_in subdir size_subdirs, enter the size of data stored
in subdirectoriesin Kb. files in diristhe
number of files stored in the main directory.
files_1in_subdir isthe number of files
stored in subdirectories.

4.4 Pop-Up License Windows

For packages with a proprietary license, it is a good idea to display information about
the license. If the user agrees with the license, YaST installs the package. If the users
disagrees, YaST does not install the package.

The package license note is a part of package description but it is not created by the
create_package_descr script. A license note must be added manually.

To add package license information, open the description file packages. lang, find
the package description, and add the text of the license between the tags +Eul: and
—Eul: at the end of the entry for that package, for example:

=Pkg: test-package 7.0.63.0 6 1586
=Sum: Test Package

Creating Add-Ons

25

+Des:

This is test package.

-Des:

+Eul:

Test Package End User License Agreement

—-Eul:

Note

To display a license for the entire add-on product before its instal-
lation, use 1icense.zip. See Section “Special Files in the media
.1 Directory” (page 10).

5 Selections and Patterns

Both selections and patterns are designed to provide a group of packages for installation
in the YaST pattern or selection filter with one click. They have similar syntax, but
they are used for different products. Selection are used in SUSE Linux and patterns are
used in the SUSE Linux Enterprise products.

Figure 1 The Selection of the Add-On in the Package Manager

Eile Package Extras Help

Filter: [samm: ‘vl Package Summary =
| Selestion [m] 16 ger for the X-Window
Help and Support Documentation enlightenment16-debuginfo Debug information for package enl:

p PP gl gi g packag:

[Office Applications [faac C library and frontend for encoding
[Games [faad2 C library and frontend for decodin¢
[Multimedia 1| | O faad2-devel Development libraries the FAAD 2

Voice over IP faad 2-xmms-plugin faad 2 Xmms input plugin

plug put plug!

[XEN Virtualization [fame Fast Assembly MPEG Encoder

Simple Web Server with Apache? & fimpeg Hyper fast MPEG1/MPEG4/H263/R

p P peg ¥P
LDAP Server and Tools filelight Graphical disk usage display
El P ge display
[Network and Server [fluxbox fluxbox windowmanager
O Laptep [ftpeopy FTP mirror tool
[Mobile Computing [geompris GCompris /I Have Understood
[C/C++ Compiler and Tools compris-devel Development package for gcompris
p geomp pment package for gcomp

Kernel Development O ghe The Glasgow Haskell Compilation s;

KDE Development. hc-doc Documentation for GHC

P gl

[GNOME Development : Profiling libraries for GHC
[Tcl'Tk Development System k]
O Java
[Experienced User Description | Technical Data | Dependencies | Versions | F|¢ E

[LaTeX, SGML, and XML

W] Company REM

[Fonts

[Mono/CLR

[Non-Open Source Packages

ekiga-debuginfo - Debug information for package ekiga

This package provides debug information for package ekiga
Debug information is useful when developing applications that
use this package or when debugging this package.

€]

Name |DiskUsage | |Used Free | Total H
jeml [EML189% 291.3GB 359 GB 327.2G
kultura [EL188% 244.5GB 305 GB 275.0 G

Jkultura? []66% 236.7 GB 384 GB 275.1 G
R %) | | Check | Autocheck Cancel || Accept

26

ﬂ Patterns versus Selections
If you create an add-on product for SUSE Linux 10.1, create selec-
tions. If you create add-on product for SUSE Linux Enterprise
products, create patterns. SUSE Linux 10.1 might not work correctly

with patterns and SLE products might not work correctly work with
selections.

5.1 Selections

To have a functional selection visible in the YaST selection filter, prepare two files:

selections
File with the list of all selection files in the add-on media, each selection on separate
line.

selection-name-version.arch.sel
File with a selection definition. The name should resemble Multimedia-10
.1-3.1686.sel.

These files must be in the setup/descr directory in the add-on data directory. For
multiple selections, prepare more * . sel and include them in selections. The
keywords for descriptions are shown in Table 5, “List of Supported Selection Entry
Keywords” (page 28). Dependency-related keywords are defined in terms of correspond-
ing keywords from Table 2, “List of Supported packages Keywords” (page 19), but
only relate to selections.

Note

The packages in the list must be written without version numbers
and without any suffixes.

Creating Add-Ons

27

28

Table 5 List of Supported Selection Entry Keywords

Keyword Value Comment

=Ver: Syntax version Minimum parser version needed to
parse this file. Set to 4.0 for SUSE
Linux 10.1.

=Sel: name version All four values are mandatory. Support-

release ed architectures are i586, 1586, ppc,
architecture x86_64, and noarch.

=Sum: summary One line label in the default language.

=Sum.Ilang: summary One line language-specific label.

+Des: description Multiple line description in the default
language.

-Des:

+Des.lang: description Multiple line description, language
specific.

-Des.1ang:

=Cat: add-on Use the type add—-on for selections for
add-on products.

=Vis: true or false If set to true, the selection is shown
to the user. Selections setto false are
hidden from the user.

=Ord: ordering This three-digit integer value defines
the order of the selection when listing
multiple selections in the user interface.

+Req: selection REQUIRES.

-Req:

+Prv: selection PROVIDES.

Keyword Value Comment

-Prv:

+Con: selection CONFLICTS.

-Con:

+Obs: selection OBSOLETES.

-Obs:

+Rec: selection RECOMMENDS.

-Rec:

+Sug: selection SUGGESTS.

-Sug:

+Ins: package 1list List of packages to install.

-Ins:

+Ins.lang: package 1list List of language-specific packages to
install if Jangis used in the system.

-Ins.I1ang:

+Del: package 1list List of packages to delete.

-Del:

+Del.1ang: package list List of packages to delete if . 1ang is
used in the system.

-Del.lang:

Example of a selection file:

SuSE-Linux-Package-Selection 10.1-73.x86_64 —— (c) 2004 SuSE Linux AG

Needs parser version 4.0 or greater

=Ver: 4.0

Creating Add-Ons

29

30

=Sel:

=Sum: Mobile Computing
=Sum.bg: MofuUIEH KOMIIOTHP

=Sum.cs: Mobilni komunikace

Mobile 10.1 73 x86_64

=Sum.da: For barbare computere
=Sum.de: Mobile Computernutzung

=Sum.el:
=Sum.en: Mobile Computing

+Des:

Support for mobile devices
—Des:

+Des.bg:

Support for mobile devices
—-Des.bg:

+Des.cs:

Podpora mobilnich za¥izeni
-Des.cs:

+Des.da:

Support for mobile devices
-Des.da:

+Des.de:

like

like

jako

like

Unterstiitzung filir mobile Ger te

—-Des.de:
+Des.el:
Support for mobile devices
-Des.el:
+Des.en:
Support for mobile devices
-Des.en:

+Req:
X11
Laptop
-Req:

=Cat: addon
=Vis: true
=0rd: 50

+Ins:
bluez-cups
bluez-firmware
bluez-hcidump
bluez-1ibs
bluez-utils
gnokii
gnome-bluetooth

like

like

Palms, mobile phones.

Palms, mobile phones.

PDA a mobilnich telefont.

Palms, mobile phones.

wie Palms und Mobiltelefone.

Palms, mobile phones.

Palms, mobile phones.

ial

initial
kdenetwork3-wireless
kdepim3-mobile
kdepim3-sync
kdeutils3-laptop
lineak_defaultplugin
lineak_kde
lineak_xosdplugin
lineakd

multisync
multisync-backup
multisync-evolution
multisync—-irmc
multisync-irmc-bluetooth
multisync-kdepim
multisync-1ldap
multisync-opie
multisync-palm
multisync-syncml
ndiswrapper
netapplet

obexftp

openobex

pmtools

scpm

unison

usbview

viki

—Ins:

5.2 Patterns

To have a functional pattern visible in the YaST pattern filter, prepare two files:

patterns
File with the list of all pattern files in the add-on media, each pattern on a separate
line.

pattern—-name-version.arch.pat
File with a pattern definition. The name should resemble Multimedia-10.1-3
.1686 .pat.

These files must be in the setup/descr directory in the add-on data directory. For
multiple patterns, prepare more * . pat files and include them in patterns. The
keywords for descriptions are shown in Table 6, “List of Supported Pattern Entry

Creating Add-Ons

31

32

Keywords” (page 32). Dependency-related keywords are defined in terms of correspond-
ing keywords from Table 2, “List of Supported packages Keywords” (page 19), but
only relate to patterns.

0 Note
The packages in the list must be written without version numbers

and without all suffixes.

Table 6 List of Supported Pattern Entry Keywords

Keyword Value Comment
=Ver: Syntax version Minimum parser version needed to parse this
file. Should be set to 5.0 for SUSE Linux
Enterprise 10 products.
=Pat: name version All four values are mandatory. Supported ar-
release chitectures are 1586, 1586, ppc, ppc64,
architecture x86 64, 1ia64, and noarch.
=Sum: summary One line label in the default language.
=Sum.lang: summary One line language-specific label.
+Des: description Multiple line description in the default lan-
guage.
-Des:
+Des.lang: description Multiple line description, language specific.
-Des.1ang:
=Cat: category One line category in the default language to
group patterns. Categories are intended for
the user and can be specified freely.
=Cat.lang: summary Language-specific version of the category.

Keyword Value Comment

=[co: filename Icon filename. If unspecified, the pattern name
is used instead (with blanks in the name re-
placed by underscores). If the filename does
notincludea . pngor . jpg extension, .png
is appended. If no path is specified, icons are
searched for in the theme icon path (first
/usr/share/YaST2/theme/current/
icons/32x32/apps/ then /usr/
share/YasST2/theme/current/
icons/48x48/apps/). Absolute and rel-
ative paths (to the theme path /usr/share/
YaST2/theme/current/) are allowed.

=Vis: true or false Set whether the pattern should be visible in
the user interface.

=Ord: ordering This three-digit integer value defines the order
of the pattern when listing multiple patterns
in the user interface.

+Req: pattern REQUIRES.
-Req:

+Prv: pattern PROVIDES.

-Prv:

+Con: pattern CONFLICTS.
-Con:

+Obs: pattern OBSOLETES.
-Obs:

+Rec: pattern RECOMMENDS.

Creating Add-Ons

34

Keyword Value Comment

-Rec:

+Sup: pattern SUPPLEMENTS.

-Sup:

+Sug: pattern SUGGESTS.

-Sug:

+P1q: package list List of packages to install.

-Prq:

+Prc: package 1ist Recommended packages. These packages are
installed by default but can be removed with-

-Prc: out complaint.

+Fre: pattern The current pattern is only considered for in-
stallation is the pattern specified here is in-

-Fre: stalled.

Example of a pattern file:

Pattern for install Company

=Ver:

=Pat:

=Cat:

=Sum:

+Des:

1.0
Company 1.0 1 noarch
Add-on

Test add-on

One package pattern

—Des:

=Vis:

=0rd:

+Prqg:

true

8020

files

Novell-ricoh-fonts
-Prqg:

Preselecting the Pattern

If you want to preselect your pattern, add the pattern name to REQUIRES in the
content file. For example, to add a pattern with the name example-pattern,
add the following to the content file:

REQUIRES pattern:example-pattern

For more information about content creation, see Section 3, “The content File”
(page 13).

Creating Dependencies between Patterns

To create dependencies between patterns, use the pattern definition file and the keywords
+/-Req:,+/-Con:,+/-0bs:,+/-Fre:,and +/-Sup:.

Note

The patterns in the list must be written without version numbers
and without all suffixes.

The most common situation is a pattern that requires other patterns. To define patterns
that must be installed for your new pattern, use the keyword +/-Req:. For example,
if the pattern base must be installed for your pattern, use:

+Req:

base
-Req:

It sometimes happens that two patterns include the same or incompatible packages. In
this situation, only one of these patterns should be installed. If both patterns are installed,
the system can be unstable. To ensure this does not happen, use the keyword +/-Con:.
For example, if the pattern m1i nus should not be installed with with pattern p1us, add
the following to the definition file of the minus pattern:

+Con:

plus
—Con:

Include the following in the definition file of the p1us pattern:

Creating Add-Ons

35

36

+Con:
minus
—-Con:

If your new pattern replaces an older pattern that is already installed, the new pattern
can uninstall the old one. To do this, use the keyword +/-0bs : . You can also provide
all capabilities of the obsolete pattern in your new pattern with +/-Prv:.

To have your pattern only be considered for installation if something else is installed,
use the keyword +/-Fre :. If you use the keyword + /- Sup :, your pattern is installed
if this capability is provided by an installed pattern. The dependency resolver installs
it. Uninstalling it is silently accepted.

You can have multiple patterns with same capability. To install only one, define a pattern
group with the keyword +/-Prv: in all pattern definition files that provide the capa-
bility. If a pattern has the capability in +/-Req: and the system finds more than one
matching pattern, it asks which one the user wants to install.

For examples of the various keywords in patterns, refer to the SUSE Linux Enterprise
Desktop 10 patterns. For more information about content creation, see Section 3,
“The content File” (page 13).

6 Signatures and Other Security Issues

To provide more security and data evidence of integrity, SUSE Linux 10.1, SLES 10,
and SLED 10 come with signature support. This support has two levels: the package
level and the metadata level.

This means that if you want to provide an add-on media, you should sign your RPM
packages first then also the add-on media metadata. If you do not sign packages or
metadata, a warning about untrusted media appears during add-on installation. Part of
the security is MD5 checking of the files on the add-on media and the SHA1 message
digest of the package . lang files and keys used.

In this section, find information about the metadata level. If you need information about
signing RPM packages, read http://www.rpm.org/max—rpm/
sl-rpm-pgp-signing-packages.html.

6.1 Signing the Add-On Product

The add-on media metadata is stored in content and media.1l/products. To
sign them, do the following;:

1 Ifyou do not have a key, create one. To do so, use:

gpg -9 —-gen-key

2 Signthe filesmedia.1l/products and content and export the key used to
the directories of the files. To do so, you can use:

gpg —--detach-sign -u YOUR_KEY -a content

gpg ——export —-a —u YOUR_KEY > content.key

gpg —--detach-sign —u YOUR_KEY -a media.l/products
gpg --export —-a —u YOUR_KEY > media.l/products.key

3 Export your key. To do so, use:

gpg ——export —a YOUR_KEY > /add-on-media/gpg-pubkey-YOUR_KEY.asc

Replace YOUR_KEY with your key ID. To find it, use the command:

gpg ——list-secret-keys|grep "“sec"|sed -e 's/.*\///;s/ .*//g;'|ltail -n 1

Using Multiple Keys

You can sign RPM packages and add-on media with different keys.
In such a situation, you should include all keys and add pubring
.gpg to the media. This file is a public keyring and contains public
keys used for verifying the signature of the add-on media.

6.2 MD5

If a directory includes files, you should create an MD5SUMS file in the directory and
add MD5 checksums for all included files to it. To do so, use md5sum, for example:

md5sum FILENAME >> MD5SUMS

Replace FTLENAME with the names of your files from the add-on media.

Creating Add-Ons

37

38

You do not need to create md5 checksums for directories with subdirectories only and
for the add-on media root directory. For information about md 5 sum, use man md5sum
ormd5sum -h.

6.3 SHA1 and the content File

The SHA1 message digest of the package . lang files and keys should be included
in the content file with the keywords META and KEY. For normal digests, use META
with SHA1L. For keys use KEY with SHA1. To create the digest, use shalsum.

Example of META and KEY in the content file:

META SHAl 04ef39995b65f02d81ld6elcc22fffda5c3a2a40e EXTRA PROV
META SHAl b8b7146ce7ble957be54227aa74f79%9ac95ca4e85 MD5SUMS
META SHAl 12ee25db081bf57beaef32b798262a18£9242216 packages
META SHA1l 05279413404e8del27b30082alce70049718b849 packages.DU
META SHA1l 4061102dalédbeOcb22ff7cf3ab5c77a27cd0f7df packages.cs
META SHAl acf5157177504747bbfa3638596d0afbd29¢c2762 packages.de
META SHALl e2e479c179f94cca95b4f2a22facd0bf8cdlbd3a packages.en
META SHA1l 6090dd6ae0343f2470ceab5ale8e92703d57db4e packages.es
META SHALl e2e479cl79f94cca95b4f2a22facd0bf8cdlbd3a packages.fr
META SHALl e€7829946b48a8cc96b0ab5a187e05¢c58279b063¢c packages.hu
META SHA1l 4061102daldbeOcb22ff7cf3ab5c77a27cd0f7df packages.sk
KEY SHA1l al08c6aabl9fe604fa98ef299cdcebeb6ba275£09
gpg-pubkey-0dfb3188-41ed929b.asc

KEY SHAl af6ee559b573628d89a11239f113f9%ece0839673
gpg-pubkey-1d061a62-427a396f.asc

KEY SHA1l b6a95b4cb3f3d0426ed25c0df350006915a803d3
gpg-pubkey-307e3d54-44201d5d.asc

KEY SHAl Oa4cffdcl9c5544bc48d22474dd42586be5ac5%e
gpg-pubkey-3d25d3d9-36e12d04.asc

KEY SHA1l 30726e9a2959dbe9%cace5765edd038e0538878ad
gpg-pubkey-9c800aca-40d8063e.asc

7 Autorun

To maximize the comfort of the installation of the add-on, you can use the autorun
functionality. With this functionality, the system calls the YaST add-on module auto-
matically after an add-on medium is inserted into the CD or DVD drive.

For autorun functionality, create the following two files in the add-on's root directory:

* autorun.inf for Windows systems

* autorun.sh or setup. sh for SUSE Linux systems

For autorun.inf, prepare files with an icon first, such as add-on. ico. Then
create the file autorun. inf with the content:

[autorun]
icon = add-on.ico

autorun.sh and setup. sh have different functionality. Use autorun. shifyou
want to run the add-on product as a normal user. If you need privileges, for example,
for automatic installation with YaST or for starting the YaST2 add-on module, use
setup.sh. With setup. sh in the root directory of the add-on medium, the system
first asks for the r oot password then uses gnomesu or kdesu to run your script.

Add the following lines to the autorun. sh or setup. sh file:

#!/bin/sh
/sbin/yast2 add-on cd:///

For an add-on DVD, replace cd: /// withdvd:///.

Creating Add-Ons

39

