Structured Query Language/Standard Track Printkibdbks, open boo...

Structured Query Language/Standard Track Print

Introduction

Contents

1surl2l

abrhwNBE

Introduction
It's a Translation and a Guide
What this Wikibook is not
How to proceed
Conventions
m 5.1 Historical Context
= 5.2 What makes up a Database Management System?
» 5.3 Classification of DBMS Design
The Theory
The Data Model
Some more Basics
History

10 Characteristics

Fundamentals

12 Turing completeness

13 Benefit of Standardization

14 Limits

15 The Standardization Process

16 \erification of Conformance to the Standard
17 Implementations

18 Create Table

= 18.1 Data Types
= 18.2 Constraints
= 18.3 Foreign Key

m 19 Alter Table

20
21

22
23

Drop Table

Select

21.1 Basic Syntax
21.2 Case

21.3 Grouping
21.4 Join

21.5 Subquery
21.6 Set operations
21.7 Rollup/Cube
21.8 Window functions
= 21.9 Recursions
Insert

Update

24 Merge

25
26
27
28
29
30
31
32
33

Delete

Truncate

Standard Track

More than a Spreadsheet

Conceive the Structure

Fasten Decisions

The Result

Back to Start

Store new Data with INSERT Command

34 Retrieve Data with SELECT Command

35
36
37

Modify Data with UPDATE Command
Remove data with DELETE Command
Summary

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

2 sur 121

38
39
40
41
42
43
44
45
46
47
48

49
50

51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67

68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87

person
contact

hobby

person_hobby

Visualisation of the Structure
person

contact

hobby

person_hobby

Grow up

Projection

= 48.1 UNIQUE

m 48.2 Aliases for Columnnames
= 48.3 Functions

m 48.4 SELECT within SELECT
Table names

Restriction

= 50.1 Comparisons

= 50.2 Boolean logic

Grouping

Sorting

Combine the Language Elements
Further Information

Exercises

AUTOCOMMIT

COMMIT

ROLLBACK

Exercises

The Idea

The Basic Syntax

Four Join Types

m 62.1 Inner Join

m 62.2 Left (outer) Join

= 62.3 Right (outer) Join

m 62.4 Full (outer) Join
Cartesian Product

The n:m Situation

More Details

Exercises

Constitute Groups

® 67.1 Grouping over multiple columns
Inspect Groups

Focus on Desired Groups

The Overall Picture

Exercises

Extention of Boolean Logic
Retrieve the NULL Special Marker
Some Examples

Coalesce() and Similar Functions
Exercises

Aggregate functions

m 77.1 The NULL special marker
m 77.2 ALL vs. DISTINCT

= 77.3 Hint

Scalar functions

Exercises

UNION

INTERSECT

EXCEPT

Order By

Group By

Exercises

Two Examples

Syntax

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

3surl2l

88
89
90
91
92
93
94
95
96
97

98
99

Typical Use Cases

Exercises

Classification

Scalar Value Subquery

Row Subquery

Table Subquery

Another Example

Exercises

Create a View

Examples and Explanations

= 97.1 Example 1: Hide Columns

= 97.2 Example 2: Rename Columns
= 97.3 Example 3: Apply WHERE Condition
= 97.4 Example 4: Use Functions

= 97.5 Example 5: Join

Some more Hints

Write Access via Views

100 Clean up the Example Database
101 Exercises

102

Evaluate Values at Runtime

103 Evaluate Rows at Runtime
104 Clean up Your Database
105 Exercises

106 Evaluate Values at Runtime

107

Subqueries in WHERE Clause

108 Exercises
109 Description

110
111
112
113
114
115
116
117
118
119

Example
Use Case
Extentions
Caveat
Exercises
Example
Exercise
Example
An Analogy
Exercises

120 General Description
121 Column Definition

= 121.1 Data Type

= 121.2 Default Value

m 121.3 Identity Specification
m 121.4 Column Constraint

122 Table Constraint

= 122.1 Primary Key, UNIQUE and Foreign Key
m 122.2 NOT NULL and Simple Column Checks
m 122.3 General Column Checks

123 Column Constraints vs. Table Constraints
124 Clean Up

125 Exercises

126 Overview

127 Character

128 Binary

129 Exact Numeric

130 Approximate Numeric
131 Temporal

132 Boolean

133 XML

134 Domains

135 Clean Up

136 Exercises

137 Foreign Key vs. Join
138 Syntax

139 Example

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

4 sur 121

140 n:m Relationship

141 ON DELETE / ON UPDATE

142 IMMEDIATE / DEFERRED

143 The Chicken-Egg Problem

144 DROP TABLE / TRUNCATE TABLE
145 Exercises

146 Columns

= 146.1 Add a Column
m 146.2 Alter the Characteristic of a Column
m 146.2.1 Change the Data Type
m 146.2.2 Change the DEFAULT Clause
m 146.2.3 Change the NOT NULL Clause
» 146.3 Drop a Column

147 Table Constraints

m 147.1 Add a Table Constraint
m 147.2 Alter a Table Constraint
m 147.3 Drop a Table Constraint

148 Exercises

149 Global Temporary Tables (GTT)

150 Local Temporary Tables (LTT)

151 Declared Local Temporary Tables (DLTT)

152

Implementation Hints

153 The Concept of Indexes
154 Basic Index

155 Multiple Columns

156 Functional Index

157

Unique Index

158 Drop an Index
159 Privileges

160 Object Types
161 Roles / Public

162

Grant Option

163 IN

164 ALL

165 ANY/SOME
166 EXISTS

167

Example Table

168 ROLLUP

169 CUBE

170 Syntax

171 Overall Description

172

Example Table

173 A First Query

174 Basic Window Functions

175 Determine Partition and Sequence
176 Determine the Frame

177

176.1 Terminology
176.2 ROWS

176.3 GROUPS

176.4 RANGE

176.5 Defaults

176.6 A Word of Caution
Exercises

178 Syntax

179 Example Table
180 Basic Queries
181 Notice the Level

182

Create Paths

183 Depth First / Breads First
184 Exercises

185 The Problem

186 Step 1: Evaluation of NULLs

m 186.1 Comparision Predicates, IS NULL Predicate

m 186.2 Other Predicates

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

m 186.3 Predefined Functions
= 186.4 Grouping
m 187 Step 2: Boolean Operations within 3VL
= 187.1 Inspection
= 187.2 NOT
= 187.3 AND, OR
= 188 Some Examples
= 189 Transaction Boundaries
m 189.1 Savepoints
= 190 Atomicity
= 191 Consistency
= 192 [solation
m 192.1 Classification of Isolation Problems
= 192.2 Avoidance of Isolation Problems
193 Durability
194 Autocommit
195 References
196 Appendices
197 License
® 197.1 GNU Free Documentation License
198 0. PREAMBLE
199 1. APPLICABILITY AND DEFINITIONS
200 2. VERBATIM COPYING
201 3. COPYING IN QUANTITY
202 4. MODIFICATIONS
5
6
7
8

203 5. COMBINING DOCUMENTS

204 6. COLLECTIONS OF DOCUMENTS

205 7. AGGREGATION WITH INDEPENDENT WORKS
206 8. TRANSLATION

207 9. TERMINATION

208 10. FUTURE REVISIONS OF THIS LICENSE

209 11. RELICENSING

210 How to use this License for your documents

It's a Translation and a Guide

This Wikibook introduces the programming langua@t. %s defined by ISO/IEC. The standard — similamtwst standard publications
— is quite technical and neither easy to read ndetstand. There is therefore a demand for a tecardent explaining the key featu

of the language. That is what this wikibook striteslo: present a readable, understandable inttiodufor everyone interested in the
topic.

Manuals and white papers by database vendors andyrfecused on technical aspects of their prodAstthey want to set themselves
apart from each other, they tend to emphasize thspects which go beyond the SQL standard andrtidugts from other vendors.
This is contrary to the wikibooks approach: we wan¢mphasize the common aspects.

The main audience of this wikibook is, thereforegple who want to learn the language, either agaber or for someone with exist
knowledge and some degree of experience looking fecapitulation.

What this Wikibook is not

First of all, this wikibook is not a reference mahéor the syntax of standard SQL or any of its lengentations. Reference manuals
usually consist of definitions and explanations fieose definitions. By contrast, this wikibook f&i¢o present concepts and basic
commands through textual descriptions and exam@iesourse some syntax will be demonstrated. Orespages there are additc
hints about slightly differences between the stashdad special implementations.

This wikibook is also not a complete tutorial. Eirss focus is the standard and not any concre@ementation. When learning
computer language it is necessary to work witmd experience it personally. Hence, a concreteemephtation is needed. And mos
them differ more or less from the standard. Sectmisgl,wikibook is far away from reflecting the colee standard, e.g. the central part
of the standard consists of about 18 MB text inarttian 1,400 pages. But this wikibook can be useal @@mpanion for learning about
SQL.

How to proceed

5sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

For everyone new to SQL, it will be necessary talgtthe chapters and pages from beginning to eadpErsons who have some
experience with SQL or who are interested in aifipexspect, it is possible to navigate directhatny page.

Knowledge about any other computer language imeaogessary, but it will be helpful.

This wikibook consists of descriptions, definitipmsid examples. It should be read with care. Furtbee, it is absolutely necessary to
personally do some experiments with data and datetares. Henceaccess to a concrete database systemmere read-only ai
read-write tests can be done is necessary. Foe tlests, our example database or individually deffitmbles and data can be used.

Conventions

The elements of the language SQL are case-insensiig.: it makes no difference whether you weiERECT ..., Select ..., select ... or
any combination of upper and lower case charaditersSelLecT For readability reasons, this wikibook uses tbavention that s
language keywords are written in upper case lettedsall names of user objects e.g. table and colemes, are written in lower case
letters.

We will write short SQL commands within one row.

P TS T T T T T T T T TS ST T T T TSI E TS S S S S S S ss s s T

1

:SELECT street FROM address WHERE city = 'Duckburg’ ; :
1

L o e 4

JFROM address

.
ISELECT street i
1
1
MHERE city I N (‘Duckburg’ , ‘Gotham City' , 'HobbsLane’); '

1

Advice: Storing and retrievingxt data is case sensitive! If you store a cityname 'Ducgbyou cannot retrieve it as 'duckburg'.

Historical Context

One of the original scopes of computer applicatimas storing large amounts of data on mass stalagees and retrieving them ¢
later point in time. Over time user requirementyéased to include not only sequential accesslbatrandom access to data records,
concurrent access by parallel (writing) processasyvery after hardware and software failures, pigifformance, scalability, etc. In the
1970s and 1980s, the science and computer indudiieeloped techniques to fulfill those requests.

What makes up a Database Management System?

Basic bricks for efficient data storage - and fus reason for all Database Management Systems &BMre implementations of fast
read and write access algorithms to data locateerriral memory and mass storage devices likenesifior B-treesindex Sequenti
Access Method (ISAM), other indexing techniquesvad as buffering of dirty and non-dirty blocks. d%e algorithms are not unique to
DBMS. They also apply to file systems, some prognang languages, operating systems, applicatioresemd much more.

In addition to the appropriation of these routire§BMS guarantees compliance with #@ID paradigm. This compliance means, that
in a multi-user environment all changes to dathiwibne transaction are:

Atomic: all changes take place or none.

Consistent changes transform the database from one valid gteanother valid state.
Isolated: transactions of different users working at theedime will not affect each other.
Durable: the database retains committed changes evea #ytstem crashes afterwards.

Classification of DBMS Design

A distinction between the following generationdd@MS design and implementation can be made:

= Hierarchical DBMS: Data structures are designed imerarchical parent/child model where every chiéd exactlyone parent
(with the exception of the root structure, whicls e parent). The result is that the data is madated stored as a tree. C
rows are physically stored directly after the ovgnparent row. So there is no need to store thenparl® or something like it
within the child row (XML realizes a similar appidg. If an application processes dat@xactly this hierarchical way; it is very
fast and efficient. But if it's necessary to praceata in a sequence, which deviates from thisrpateess is less efficient.
Furthermore, hierarchical DBMSs do not provide thedeling of n:m relations. Another fault is thaeté is no possibility to

6 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

7 sur 121

navigate directly to data stored in lower levelsuYnust first navigate over the given hierarchyobefeaching that data.

The best-known hierarchical DBMS is IMS from IBM.

Network DBMS: The network model designs data stries as a complex network with links from one orengarent nodes to one
or more child nodes. Even cycles are possible.€Tfeeno need for a single root node. In generatéhmsparent node andchild
node lose their hierarchical meaning and may be refeaslink source andlink destination. Since those links are realized as
physical links within the database, applicationgciifollow the links show good performance.

= Relational DBMS: The relational model designs datactures as relations (tables) with attributesufons) and the relationship
between those relations. Definitions in this maatel expressed inure declarative waynot predetermining any implementai
issues like links from one relation to another areatain sequence of rows in the database. Redijos are based purely ug
content. At runtime all linking and joining is dondéy evaluating the actual data values, e.g.. WHERE
employee.department_id = department.id The consequence is that - with the exceptiorxpfi@t foreign keys - there is
no meaning of a parent/child or owner/member ddimstaRelationships in this model do not have aingation.

The relational model and SQL are based on the mattieal theory of relational algebra.
During the 1980s and 1990s proprietary and opercedDBMS's based on the relational design paraéigiablished themselves
as market leaders.

= Object oriented DBMSNowadays most applications are written in an dbf@iented programming language (OOP). If, in !
cases, the underlaying DBMS belongs to the claselafional DBMS, the so called object-relatiomapedance mismatch arises.
That is to say, in contrast to the application leage pure relational DBMS (prDBMS) does not supperttral concepts of OOP:

Type system OOPs do not only know primitive data types. Aseatral concept of their language they offer thalifg to
define classes with complex internal structure® @lasses are built on primitive types, systenselgsreferences to othel
the same class. prDBMS knows only predefined tyBesondary prDBMS insists in first normal form, athimeans that
attributes must be scalar. In OOPs they may be Ist¢sor arrays of the desired type.
Inheritance: Classes of OOPs may inherit attributes and metHoosm their superclass. This concept is not kndwn
prDBMS.
Polymorphism: The runtime system can decide via late bindinglvione of a group of methods with the same nand
parameter types will be called. This concept iskmatwn by prDBMS.
Encapsulation Data and access methods to data are stored viithirsame class. It is not possible to access dl
directly - the only way is using the access methafdke class. This concept is not known to prDBMS.
Object oriented DBMS are designed to overcome #pelgptween prDBMS and OOP. At their peak, theyhred@a weak market
position in the mid and late 1990s. Afterwards sahtheir concepts were incorporated into the S@indard as well as rDBN
implementations.

= NoSQL: The term NoSQL stands for the emerging gr@upBMS which differs from others in central copts

They do not necessarily support all aspects oABED paradigm.

The data must not necessarily be structured acaptdiany schema.

Their goal is the support for fault-tolerant, disited data with very huge volume, see also: CAfditam.

Implementations differ widely in storing techniqug®u can see key-value stores, document orientgdbdses, graph
oriented databases and more.

They do not offer an SQL interface. In 2011 aniatite started to define an alternative languddmestructured Query
Language as part of SQLite.

m NewSQL: This class of DBMS seeks to provide theesaoalable performance as NoSQL systems whilarsilitaining the ACID
paradigm, the relational model and the SQL intexfathey try to reach scalability by eschewing heaight recovery ¢
concurrency control.

The Theory

A relational DBMS is an implementation of data s®mccording to the design rules of the relationatlel. This approach allows
operations on the data according to the relatialyglbra like projections, selections, joins, setrafions (union, difference, intersection,
...) and more. Together with Boolean algetaad, or, not, exists, ...) and other mathematcaicepts, relational algebra builds L
complete mathematical system with basic operatioos)plex operations and transformation rules betwde operations. Neithe:
DBA nor an application programmer needs to knowrtHational algebra. But it is helpfull to know thgour rDBMS is based on this
mathematical foundation - and that it has the foaetb transform queries into several forms.

The Data Model

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

The relational model designs data structures asioab (tables) with attributes (columns) and thiationship between those relations.
The information about one entity of the real waddstored within one row of a table. However, thartone entity of the real world
must be used with care. It may be that our inteléentifies a machine like a single airplane iis tein. Depending on the informat
requirements it may be sufficient to put all of thiermation into one row of a tab&rplane. But in many cases it is necessary to b

up the entity into its pieces and model the pieggdliscrete entities including the relationshipthte whole thing. If, for example,
information about every single seat within the laing is needed, a second tasat and some way of joining seats to airplanes will be
required.

This way of breaking up information about real Besiinto a complex data model depends highly eniriformation requirements of the
business concept. Additionally there are some foreguirements, which are independent of any apgitia: the resulting data mor
should conform to a so-called normal forormally these data models consist of a greathaurof tables and relationships betw
them. Such models will not predetermine their ug@pplications; they are strictly descriptive anill mot restrict access to the dat
any way.

Some more Basics

Operations within databases must have the abditgct not only on single rows, but also on seteoufs. Relational algebra offers this
possibility. Therefore languages based on relakialgebra, e.g.: SQL, offer a powerful syntax tonipalate a great bunch of data wit
one single command.

As operations within relational algebra may be aeptl by different but logically equivalent operaipa language based on relati
algebra should not predetermine how its syntaxapped to operations (the execution plan). The laggwshould describghat shoulc
be done and ndtow to do it. Note: This choice of operations doesgwmtcern the use or neglect of indices.

As described before the relational model tendsréakb up objects into sub-objects. In this and Imeotcases it is often necessary to
collect associated information from a bunch of eéabhto one information unit. How is this possiblithout links between participati
tables and rows? The answer is: All joining is dbased on thealueswhich are actually stored in the attributes. TRBMS must make
its own decisions about how to reach all concermmds: whether to read all potentially affected rosved ignore those which are
irrelevant (full table scan) or, to use some kifidndex and read only those which match the cetefhis value-based approach allows
even the use of operators other than the equaktpee.g.:

L e T
ESELECT * FROM gift JO N box ON gift.extent < box.extent; E
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - a4

This command will join all "gift" records to all &x" records with a larger "extent" (whatever "extaneans).

History

As outlined above, rDBMS acts on the data with atiens of relational algebra like projections, stns, joins, set operations (union,
except and intersect) and more. The operationslafional algebra are denoted in a mathematicallage which is highly formal a
hard to understand for end users and - possibly -afsr many software engineers. Therefore rDBMf@rsfa layer above relatiol
algebra, which is easy to understand but nevegbalan be mapped to the underlying relational ¢jpesa Since the 1970s we have
seen some languages doing this job, one of themS@ds- another example was QUEL. In the early 1980r a rename from its
original nameSEQUEL due to trademark problems) SQL achieved marketirdiomee. And in 1986 SQL was standardized for thst fi
time. The current version is SQL 2011.

Characteristics

The tokens and syntax of SQL are orientedEmglish common speecho keep the access barrier as small as possilnieS@L
command likeUPDATE employee SET salary = 2000 WHERE id = 511; is not far away from the sentence "Change emplsyssdary
to 2000 for the employee with id 511."

The next simplification is that all key words of ISQan be expressed in any combination of upperd@mdr case characters. It makes no
difference whetheUPDATE, update, Update, UpDate or any other combination of upper and lower cdsaracters is written. The
keywords arease insensitive

Next SQL is i descriptive language, not a procedural one. It does not peidell aspects of the relational operations (Whiperation,
their order, ...) which are generated from the miBQL statement. The rDBMS has the freedom to geeenore than one execut
plan from a statement. It compares the generatedugion plans with each other and runs the orfarks is best in the given situation.
Additionally the end user is freed from all the ydetails of data access, e.g.: Which one of @S&fHERE criteria should be evalua
first if they are combined with AND?

Despite those simplifications SQL is very powerttpecially since it allows the manipulation ofet of datarecords with one single

8 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

statementUPDATE employee SET salary = salary * 1.1 WHERE sall ary < 2000; will affect all employee records with an ac
salary smaller than 2000. Potentially, there mayhmeisands of those records, only a few or eveo. 2emay also be noted that the
operation is not a fix manipulation. The word®gJr salary = salary * 1.1 leads to an increase of the salaries by 10%, whiai
be 120 for one employee and 500 for another one.

The designer of SQL tried to define the languagenehtsrthogonally to each other. Among other things this referqiofact that any
language element may be used in all positions stheement where the result of that element maysed directly. E.g.: If you have
function power() which takes two numbers and retuanother number, you can use this function irpaditions where numbers are
allowed. The following statements are syntacticatlyrect (if you have defined the function powgrf)and lead to the same resul
rows.

\SELECT salary FROM employee WHERE salary < 2048;
(SELECT salary ~FROV employee WHERE salary < power(2, 11);
:SELECT power(salary, 1) FROM employee WHERE salary < 2048;

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = 2

Another example of orthogonality is the use of sudyges within UPDATE, INSERT, DELETE or inside ahet SELECT statement.

However, SQL is not free eédundancy. Often there are several possible formulatioresqaress the same situation.

\SELECT salary FROM employee WHERE salary < 2048;

(SELECT salary ~FROM employee WHERE NOT salary >= 2048;

:SELECT salary FROM employee WHERE salary between O AND 2048; -- 'BETWEEN'includes edges
L e m e e e e m e e e e m e m e i)

This is a very simple example. In complex statemémtre may be the choice between joins, subquenig sheexists predicate.

Fundamentals

Core SQL consists of statements. Statements carfsisty words, operators, values, names of systamd- user-objects or functions.
Statements are concluded by a semicolon. In therstmtSELECT salary FROM employee WHERE id < 100; the tokens SELECT,
FROM and WHERE are key words. salary, employeeidade object names, the "<" sign is an operatdr"a00" is a value.

The SQL standard arranges statements into 9 groups:

"The main classes of SQL-statements are:
SQL-schema statements; these may have a pers$tecit on the set of schemas.
SQL-data statements; some of these, the SQL-datsgelstatements, may have a persistent effect brd8@.
SQL-transaction statements; except for the <comsratement>, these, and the following classes, hawffects that persist
when an SQL-session is terminated.
SQL-control statements.
SQL-connection statements.
SQL-session statements.
SQL-diagnostics statements.
SQL-dynamic statements.
SQL embedded exception declaration.”

This detailed grouping is unusual in common spedshally it is distinguish between three groups:

Data Definition Language (DDL): Managing the structure of database objects (CREALTER/DROP tables, views, columns,
)

ata Manipulation Language (DML): Managing and retrieval of data with the statetséNSERT, UPDATE, MERGE, DELETE,
SELECT, COMMIT, ROLLBACK and SAVEPOINT.
Data Control Language (DCL): Managing access rights (GRANT, REVOKE).

Hint: In some publications the SELECT statemensd® to build its own groufata Query Language. This group has no ott
statements than SELECT.

Turing completeness

Core SQL as described above is not Turing completaisses conditional branches, variables, sulmest But the standard as well as
most implementations offers an extension to fulfi¢ demand for Turing completeness. In 'Part #sigtent Stored Modules (SQL/PSM)’
of the standard there are definitions for IF-, CASEDOP-, assignment- and other statements. Ttairgimplementations of this part
have different names, different syntax and alsaffardnt scope of operation: PL/SQL in Oracle, SPIL/in DB2, Transact-SQL
T-SQL in SQL Server and Sybase, PL/pgSQL in Postgrel simply 'stored procedures' in MySQL.

9 surl21 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Benefit of Standardization

Like most other standards the main purpose of SQloiitability . Usually software designers and application depaie structure ai
solve problems in layers. Every abstraction lesekilized in its own component or sub-componem@sgntation to end user, business
logic, data access, data storage, net and opeatistem demands are typical representatives of sueiponents. They are organized as
a stack and every layer offers an interface touper layers to use its functionality. If one obske components is realized by two
different providers and both offer the same integféas an API, Web-Service, language specification is possible to exchange th
without changing the layers which are based on tHemssence the software industry nestdble interfacesat the top of important
layers to avoid dependence on a single provider. &3s as such an interface to relational databgsiems.

If an application uses only those SQL commands lwlace defined within standard SQL, it should besjids to exchange the
underlaying rDBMS with a different one without clgang the source code of the application. In practigis is a hard job, because
concrete implementations offer numerous additifeaiures and software engineers love to use them.

A second aspect is tlimnservation of know how If a student learns SQL, he is in a positioneéwalop applications which are basec
an arbitrary database system. The situation is ecafygte with any other popular programming languéfgene learns Java or C-Sharp,
he can develop applications of any kind runningdot of different hardware systems and even diffiehardware architectures.

Limits

Database systems consist of many components. Tessto the data is an important but not the omtgponent. Additionally there are
many more tasks: throughput optimization, physitedign, backup, distributed databases, replicaf®w®4 availability, Standard SQL
is focused mainly on data access and ignores typiBA tasks. Even theeREATE INDEX statement as a widely used optimiza
strategy is not part of the standard. Neverthelkssstandard fills thousands of pages. But moghefDBA's daily work is highly
specialized to every concrete implementation andtrbe done in a different way when he switches diffarent rDBMS. Mainly
application developers benefit from SQL.

The Standardization Process

The standardization process is organized in tweldevihe first level acts in a national contextetasted companies, universities
persons of one country work within their natiortalslardization organisation like ANSI, Deutschesitat fiir Normung (DIN) oBritish
Standards Institution (BSI), where every memberdrasvote. The second level is the internatioredest The national organizations are
members of ISO respectively IEC. In case of SQlrehie a common committee of ISO and IEC named J@chnical Committee
ISO/IEC JTC 1, Information technology, Subcommit®&@ 32, Data management and interchange, wherg eatipnal body has one
vote. This committee approve the standard unden#meel SO/IEC 9075-n:yyyy, wheren is the part number anglyy is the year ¢
publication. The nine parts of the standard arerite=d in short here.

If the committee releases a new version, this nancern only some of the nine parts. So it is péssiat theyyyy denomination differs
from part to partCore SQL is defined mainly by the second pd®O/IEC 9075-2:yyyy Part 2: Foundation (SQL/Foundation) - but it
contains also some features of other parts.

Note: The AP JDBC is part of Java SE and Java EE but not paheoSQL standard.

The standard is complemented by a second, closkited standardSO/IEC 13249-n:yyyy SQL Multimedia and Application Packages,
which is developed by the same organizations anthttiee. This publication defines interfaces andkage based on SQL. They focus
on special kind of applications: text, picturesadaining and spatial data applications.

Verification of Conformance to the Standard

Until 1996 the National Institute of Standards dmrathnology (NIST)certified the compliance of the SQL implementatanrDBMS
with the SQL standard. As NIST abandon this wodwadays vendors self-certify the compliance ofrtipedoduct. They must declare
the degree of conformance in a special appendikeif documentation. This documentation may be mglous as the standard defines
not only a set of base features - callsle SQL:yyyy - but also a lot of additional features an implataion may conform to or not.

Implementations

To fulfill their clients' demands all major vendas rDBMS offers - among other data access wayse-language SQL within thi
product. The implementations cov€ore SQL, a bunch of additional standardized features arftuge number of additional, not
standardized features. The access to standardizedrés may use the regular syntax or an implerientspecific syntax. In essence
SQL is the clamp holding everything together, butnmally there are a lot of detours around the @ffi@anguage.

10 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

SQL consists of statements which start with a keydwike SELECT, DELETE or CREATE and terminate lwd semicolon. The
elements are case-insensitive with the exceptidixefl character string values like 'Mr. Brown'.

UPDATE clause —[UPDATE countr\y Exprelssion
srawse {SET population = population + 1
were o {WHERE name = 'USA';

I Expression |

I

Predicate

Statement

An example of a complete statement with severdkdénguage elements.

Clauses. Statements are subdivided into clauses. The pagsilar one is the WHERE clause.

Predicates: Predicates specify conditions which can be evatlida a boolean value. E.g.: a boolean comparB&TWEEN,

LIKE, IS NULL, IN, SOME/ANY, ALL, EXISTS.

Expressions. Expressions are numeric or string values byfjtselthe result of arithmetic or concatenation rapers, or the result

of functions.

= Object names. Names of database objects like tables, viewsinaos, functions.

= Values: Numeric or string values.

= Arithmetic operators. The plus sign, minus sign, asterisk and solidys-(* and /) specify addition, subtraction, mullgation ani
division.

m Concatenation operator: The '||' sign specifies the concatenation of attar strings.

= Comparison operators. The equals operator, not equals operator, less tperator, greater than operator, less than waleq
operator, greater than or equals operator (=g<>, <=, >=) compares values and expressions.

m Boolean operators. AND, OR, NOT combines boolean values.

Create Table

),

i~ Data types with temporal aspects
ICREATE TABLE t_temporal (

Data Types
More Details
e e e e e 4
1
L.
- Frequently used data types and simple constraint s
ICREATE TABLE t_standard (
v column name data type default nulla ble/constraint
void DECIMAL PRI MARY KEY, -- some prefer the name: 'sid'
: col_1 VARCHAB0) DEFAULT 'n/a’ NOT NULL, -- string with variable length. Oracle: 'VARCHAR2'
v col_2 CHAR10), -- string with fixed length
. col_3 DECIMAL(10,2) DEFAULT 0.0, -- 8 digits before and 2 after the decimal. Signed.
1 col_4 NUMERI@10,2) DEFAULT 0.0, -- same as col_3
v col_5 INTEGER
1 col 6 BIGINT -- Oracle: use 'NUMBER(n)', n up to 38
‘
1

i - column name data type default nullable/co nstraint

: id DECIMAL PRI MARY KEY,

! col_1 DATE -- Oracle: contains day and time, seconds without d ecimal
1 col_2 TIME, -- Oracle: use 'DATE' and pick time-part

1 col_3 TI MESTAMP, -- Including decimal for seconds

! col_4 TI MESTAMP W TH TIME ZONE, -- MySql: no time zone

1 col_5 INTERVAL YEAR TO MONTH,

: col_6 INTERVAL DAY TO SECOND

1

1

11 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

i :
' 1
\CREATE TABLE t_misc (!
Vo column name data type default nullable/co nstraint '
vid DECIMAL PRI MARY KEY, :
1 col_1 CLOB, -- very long string (MySql: LONGTEXT) !
! col_2 BLOB -- binary, eg: Word document or mp3-stream f
1 col_3 FLOAT(6), -- example: two-thirds (2/3). .
1 col_4 REAL, !
' col_5 DOUBLE PRECI SI ON, '
y col_6 BOOLEAN -- Oracle: Not supported .
1 col_7 XML -- Oracle: 'XMLType' !
) :
L e e e e e E e E e E e f e E e E e f e m e mEmE e e e E e e e E e — e e e == = -

Constraints
More Details

-
i-- Denominate all constraints with an expressive na
\-- table name (unique across all tables in your sch
-

\CREATE TABLE myExampleTable (
1

me, eg.: abbreviations for
ema), column name, constraint type, running number.

1
1
1
1
1
1
‘
1
h id DECIMAL :
1 col_1 DECIMAL(1), -- only 1 (signed) digit 1
1 col 2 VARCHAFS0), !
! col_3 VARCHAF0), '
1 CONSTRAI NT example_pk PRI MARY KEY (id), |
1 CONSTRAI NT example_uniq UNI QUE (col_2), !
! CONSTRAINT example_fk FOREI GN KEY (col_1) REFERENCES person(id), '
1 CONSTRAI NT example_col_1_nn CHECK (col_1 IS NOT NULL), .
1 CONSTRAI NT example_col_1_check CHECK (col_1 >=0 AND col_1 < 6), .
! CONSTRAI NT example_col_2_nn CHECK (col_2 IS NOT NULL), '
1 CONSTRAI NT example_check_1 CHECK (LENGTH(col_2) > 3), .
1 CONSTRAI NT example_check_2 CHECK (LENGTH(col_2) < LENGTH(col_3)) '
1 :
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - iy
Foreign Key
More Details
T

-
I Reference to a different (or the same) table. Th
'CREATE TABLE t_hierarchie (

id DECIMAL,
part_name VARCHAFS0),
super_part_id DECIMAL,

CONSTRAI NT hier_pk PRI MARY KEY (id),
-- In this special case the foreign key refers to t
CONSTRAI NT hier_fk

-- n:m relationships

CREATE TABLE t1 (

e mmmmmmmmmmm e mmmm e mm e e ————

id DECIMAL,

name VARCHAIS0),

CONSTRAI NT t1_pk PRI MARY KEY (id)
);
CREATE TABLE t2 (

id DECIMAL,

name VARCHAIB0),

CONSTRAI NT t2_pk PRI MARY KEY (id)
ICREATE TABLE t1_t2 (
'id DECIMAL,

t1_id DECIMAL,

t2_id DECIMAL,

CONSTRAI NT t1_t2_pk
CONSTRAI NT t1_t2_unique
CONSTRAINT t1_t2_fk_1
CONSTRAI NT t1_t2_fk_2

PRI MARY KEY (id),

UNI QUE (t1_id, t2_id),
FOREI GN KEY (t1_id)
FOREI GN KEY (t2_id)

-- ON DELETE / ON UPDATE / DEFFERABLE

-- DELETE and UPDATE behaviour for child tables (se

-- Oracle: Only DELETE [CASCADE | SET NULL] is poss

-- specified explicit - just omit the phras

CONSTRAI NT hier_fk
ON DELETE CASCADE
ON UPDATE CASCADE

-- Initial stage: immediate vs. deferred, [not] def
-- MySQL: DEFERABLE is not supported

CONSTRAI NT t1_t2_fk 1 FOREI GN KEY (t1_id)

12 sur 121

FOREI GN KEY (super_part_id)

is creates 1:m or n:m relationships.

-- ID of the part which contains this part

he same table
REFERENCES t_hierarchie(id)

-- also this table should have its own Primary Key
-- every link should occur only once
REFERENCES ti(id),
REFERENCES t2(id)

FOREI GN KEY (super_part_id)
-- or: NO ACTION (the default), RESTRICT, SET NULL,
-- or: NO ACTION (the default), RESTRICT, SET NULL,

e first example)

ible. Default is NO ACTION, but this cannot be

e.

REFERENCES t_hierarchie(id)

SET DEFAULT
SET DEFAULT

errable

REFERENCES ti(id)

I NI TIALLY | MVEDI ATE DEFERRABLE

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

\-- Change constraint characteristics at a later sta

1ISET CONSTRAI NT hier_fk DEFERRED; -- or: IMMEDIATE
'

Alter Table

More Details

Concerning columns.

1
i Add a column (plus some column constraints). Ora
'ALTER TABLE t1 ADD COLUMN col_1 VARCHARLOO)
1

1

:ALTER TABLE t1 ALTER COLUWN col_1 SET DATA TYPE NUMERIG
WALTER TABLE t1 ALTER COLUWN col_1 SET SET DEFAULT -1;
ALTER TABLE t1 ALTER COLUWN col_1 SET NOT NULL;

:/-\LTER TABLE t1 ALTER COLUWN col_1 DROP NOT NULL;

-- Drop a column. Oracle: The key word 'COLUMN" is
ALTER TABLE t1 DROP COLUMWN col_2;

ALTER TABLE t1 ADD CONSTRAINT t1_col_1_unig
'ALTER TABLE t1 ADD CONSTRAI NT t1_col_2_fk

1

- Change definitons. Some implementations use diff
:/-\LTER TABLE t1 ALTER CONSTRAI NT t1_col_1_unique
1

i-- Drop a constraint. You need to know its name. No

:/-\LTER TABLE t1 DROP CONSTRAI NT tl1_col_1_unique;
1-- As an extention to the SQL standard some impleme

Drop Table

More Details

- All data and complete table structure inclusive

i-- No column name. No WHERE clause. No trigger is f
1DROP TABLE t1;

'

Select

Basic Syntax

More Details

i-- Overall structure: SELECT / FROM / WHERE / GROUP
1
1

- constants, column values, operators, fun
SELECT 'ID:* , id,
IFROM t1

- precedence within WHERE: functions, comparisions
WHERE col_1 > 100

JANC NOT MOD(col_2, 10) = 0
10R col_3 < col_1

JORDER BY col_4 DESC, col_5

h
-- number of rows, number of not-null-values
SELECT COUNT(¥), COUNT(col_1) FROM t1;

-- predefined functions

SELECT COUNT(col_1), MAX(col_1), M N(col_1),

-- UNIQUE values only
SELECT DI STINCT col_1 FROM t1;

-- In the next example col_1 many have duplicates.
SELECT DI STI NCT col_1, col_2 FROM t1;

More Details

13 sur 121

col_1 + col_2, sqrt(col_2)

-- sort ascending (the default) or descending

AVG(col_1),

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

ge :

1

1

__ A
__ .
1

cle: The key word 'COLUMN' is not allowed. '
CHECK (LENGTH(col_1) > 5); :
1

ations use different key words like 'MODIFY".) :

i

1

1

1

1

i

mandatory. :

1

1

1

__ .
1

1

UNI QUE (col_1); '
FOREI GN KEY (col_2) REFERENCES person (id); .
1

erent key words like 'MODIFY". .
UNI QUE (col_1); !
1

t supported by MySQL, there is only a 'DROP FOREIGN KEY". .

1

ntations offer an ENABLE / DISABLE command for cons traints. :

1

__ a
__ .
1

1

indices are thrown away. :
ired. Considers Foreign Keys. Very fast. '

i

__ -1
__ .

BY / HAVING / ORDER BY

ctions

, NOT, AND, OR

SUMCcol_1) FROM t1;

Only the combination of col_1 plus col_2 is unique.

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

-- CASE expression with conditions on exactly ONE ¢
SELECT id,
CASE contact_type
WHEN ‘fixed line*
WHEN 'mobile’

THEN 'Phone’
THEN 'Phone’

END,

contact_value

JFROM contact;

1

- CASE expression with conditions on ANY column
'SELECT id,

! CASE -- NO column name

1 VWHEN contact_type I'N ('fixed line'
. VWHEN id = 4

! ELSE
|

1

1

END,
contact_value
:FROM contact;

L e e e mf e cmmcmc e cmcmmccmmccmmcccmmccmmcc - e mcc e mcc - -mce-—meec-—-mecec—-mee—-mememem e —mememmmem e mmmemmm e m e mm e m——— === -

Grouping
More Details

-
{SELECT product_group, count (*) AS cnt
IFROM sales

VHERE region = ‘west'
\GROUP BY product_group

-- ONE column name

ELSE ‘Not a telephone number'

, 'mobile’) THEN 'Phone'
THEN 'ICQ’
‘Something else’

-- additional restrictions are possible but not nec essary
-- '‘product_group' is the criterion which creates g roups

HAVI NG COUNT(*) > 1000 -- restriction to groups with more than 1000 sales per group

JORDER BY cnt;
1

- Attention: in the next example col_2 is not part
\SELECT col_1, col_2

FROM - t1

(GROUP BY col_1;

1

1

- We must accumulate all col_2-values of each grou
SELECT col_1, sun(col_2), m n(col_2)
IFROM 1

:GROUP BY col_1;

i Inner join: Only persons together with their con

- Ignores all persons without contacts
SELECT *

IFROM person p

:JOI N contact ¢ ON p.id = c.person_id;

1

- Left outer join: ALL persons. Ignores contacts w
:SELECT *

{FROM person p

LLEFT JO N contact ¢ ON p.d = c.person_id;
1

I Right outer join: ALL contacts. Ignores persons
\SELECT *

1FROM person p

\RIGHT JOIN contact ¢ ON p.id = c.person_id;
1

- Full outer join: ALL persons. ALL contacts.
ISELECT *

:FRO\/I person p

WFULL JO N contact ¢ ON p.d = c.person_id;
1

1

- Carthesian product (missing ON keyword): be care
\SELECT COUNT(*)

JFROM person p

:JOI N contact c;

Subquery

More Details

- Subquery within SELECT clause
(SELECT id,
. lastname,
weight,
(SELECT avg(weight) FROM person)
FROM person;

-- Subquery within WHERE clause

14 sur 121

of the GROUP BY criterion. Therefore it cannot be

p to ONE value, eg:

tacts.
and all contacts without persons

ithout persons

without contacts

full!

-- the subquery

displayed.

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

:SELECT id,
lastname,
weight
person
weight < (

1

1
IFROM
MWHERE
I

'
- CORRELATED subquery within SELECT clause
:SELECT id,

1 (SELECT status_name
IFROVI sales sa;

1

i-- CORRELATED subquery retrieving the highest versi
ISELECT *

:FROM booking b

WVHERE version =

1 (SELECT MAX(version) FROM booking sq

SELECT avg(weight) FROM person) -- the subquery

FROM status st WHERE st.id = sa. state)

Set operations

on within each booking_number

VWHERE sq.booking_number = b.booking_number)

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

More Details
P T 1
[1
1
- UNION .
\SELECT firstname -- first SELECT command '
JFROM person 1
+ UNI ON -- push both intermediate results together to one r esult '
:SELECT lastname -- second SELECT command :
JFROM person; 1
1
! 1
I Default behaviour is: "UNION DISTINCT'. 'UNION A LL" must be explicitly specified, if duplicate valu es shall be removed. !
! 1
i INTERSECT: resulting values must be in BOTH inte rmediate results .
ISELECT firstname FROM person !
! I NTERSECT :
SELECT lastname FROM person; .
! 1
1
- EXCEPT: resulting values must be in the first bu t not in the second intermediate result N
\SELECT firstname FROM person .
1 EXCEPT -- Oracle uses 'MINUS'. MySQL does not support EXCE PT. '
1SELECT lastname FROM person; '
L o o e e o e :
Rollup/Cube
More Details
T
1
- Additional sum per group and sub-group !
'SELECT SUM(col_x),
:FRC]VI :
(GROUP BY ROLLUP (producer, model); -- the MySQL syntax is: GROUP BY producer, model WI TH ROLLUP 1
' '
1
- Additional sum per EVERY combination of the grou ping columns !
ISELECT SUMcol_x), ... :
'FROM ... '
IGROUP BY CUBE (producer, model); -- not supported by MySQL !
L o o . 1
Window functions
More Details
C T T T T T T 1
\-- The frames boundaries '
ISELECT id, N
. emp_name, '
. dep_name, f
1 FIRST_VALUE(id) OVER (PARTITION BY dep_name ORDER BY id) AS frame_first_row, .
. LAST_VALUE(id) OVER (PARTITION BY dep_name ORDER BY id) AS frame_last_row, !
' COUNT(*) OVER (PARTITION BY dep_name ORDER BY id) AS frame_count, f
1 LAG(id) OVER (PARTITION BY dep_name ORDER BY id) AS prev_row, .
. LEAD(id) OVER (PARTITION BY dep_name ORDER BY id) AS next_row !
'FROM employee; f
1
1
\-- The moving average i
:SELECT id, dep_name, salary, :
1 AVG(salary) OVER (PARTITION BY dep_name ORDER BY salary .
. ROWS BETWEEN 2 PRECEDINGAND CURRENT ROW AS sum_over_lor2or3_rows '
:FROM employee; :
L o o o e e e e e e e eeea 2
Recursions
More Details
___ .

- The 'with clause' consists of three parts:

15 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

- First: arbitrary name of an intermediate table a nd its columns
W TH intermediate_table (id, firstname, lastname) AS

1
(
' -- Second: starting row (or rows)

SELECT id, firstname, lastname
FROM family_tree

WHERE firstname = ‘Karl'
AND lastname = 'Miller'
UNI ON ALL
-- Third: Definition of the rule for querying the n ext level. In most cases this is done with a join o peration.

FROM intermediate_table i

1

1

1

1

1

1

1

1

:

\ SELECT f.d, f.firstname, f.lastname

1

i JON family tree f ON f.father_id = iid
]
)
1
1
]
1
1

)

-- After the 'with clause': depth first / breadth f irst

-- SEARCH BREADTH FIRST BY firstname SET sequence_n umber (default behaviour)
i-- SEARCH DEPTH FIRST BY firsthame SET sequence_num ber

1
\-- The final SELECT

:SELECT * FROM intermediate_table;

- Hints: Oracle supports the syntax of the SQL sta ndard since version 11.2. .

- MySQL does not support recursions at all and recommend procedural workarounds.

L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - iy
More Details

-
I~ fix list of values/rows

I'NSERT | NTO t1 (id, col_1, col_2) VALUES (6, 46, ‘abc');
I NSERT | NTO t1 (id, col_1, col_2) VALUES (7, 47, ‘abc7'),
(8, 48, ‘abe8'),
(9, 49, ‘'abc9');

{COW T,

- subselect: leads to 0, 1 or more new rows

il NSERT | NTO t1 (id, col_1, col_2)
' SELECT id, col_x, col_y

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1 1
'+ FROM t2 1
\ VWHERE col_y > 100; |
\COWM T; ;
1 1
I dynamic values .
I'NSERT | NTO t1 (id, col_1, col_2) VALUES (16, CURRENT_DATE, ‘abc'); !
1COW T; '
1 1
1 1
INSERT I NTO t1 (id, col_1, col_2) !
+ SELECT id, .
. CASE .
! WHEN col_x < 40 THEN col_x + 10 !
i ELSE colLx + 5 '
! END, !
' col_y !
1 FROM t2 1
1 WHERE col_y > 100; .
1ICOW T; '
L e e e e e e e N

Update

More Details

-- basic syntax

{UPDATE t1

SET col_1 = “Jimmy Walker'

! col_2 = 4711

VHERE id = 5;

1

1

1-- raise value of col_2 by factor 2; no WHERE ==> a Il rows!

JUPDATE t1 SET col 2 = col_2 * 2;
1

- non-correlated subquery leads to one single eval uation of the subquery
JUPDATE t1 SET col_2 = (SELECT max(id) FROM t1);
1

- correlated subquery leads to one evaluation of s ubquery for EVERY affected row of outer query
JUPDATE t1 SET col_2 = (SELECT col_2 FROM t2 where tl.id = t2.id);

1

- Subquery in WHERE clause

\UPDATE article

'SET col_1 = ‘topseller'

WVHERE id IN

1 (SELECT article_id

! FROM sales

' GROUP BY article_id

. HAVI NG COUNT(*) > 1000

)

16 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Merge

More Details

1
1
-
i-- INSERT / UPDATE depending on any criterion, in t his case: the two columns 'id'

IMERGEI NTO hobby_shadow t -- the target table

. USI NG (SELECT id, hobbyname, remark

' FROM hobby

' WHERE id < 8) s -- the source

. ON (tid = s.id) -- the 'match criterion'

' VWHEN MATCHEDTHEN

' UPDATE SET remark = concat(s.remark, ' Merge / Update')

1 VHEN NOT MATCHEDTHEN

! I NSERT (id, hobbyname, remark) VALUES (s.id, s.hobbyname, concat(s.remark, ' Merge / Insert')
I

1

1

I

1

-- Independent from the number of affected rows the re is only ONE round trip between client and DBMS

Delete

More Details

-- Basic syntax
DELETE FROM t1 WHERE id = 5; -- no column name behind 'DELETE' key word because the complete row will be deleted
1

1

- no hit is OK

DELETE FROM t1 WHERE id != id;
1

1

- subquery

[DELETE FROM person_hobby

\VHERE person_id | N

' (SELECT id

FROM person

WHERE lastname = 'Goldstein’
);

T T T T T T T T T T T e -

Truncate

More Details

-- TRUNCATE deletes ALL rows (WHERE clause is not p ossible). The table structure remains.

-- No trigger actions will be fired. Foreign Keys a re considered. Much faster than DELETE.
" TRUNCATE TABLE t1;

1

Standard Track

Foundation

More than a Spreadsheet

Let's start with a simple example. Suppose we wanbllect information about people - their namlacp of birth and some more items.
In the beginning we might consider to collect téda in a simple spreadsheet. But what if we gma successful company and have to
handle millions of those data items? Could a spkeet deal with this huge amount of informationl€several employees
programs simultaneously insert new data, deletehange it? Of course not. And this is one of theeworthy advantages of a DBI
over a spreadsheet program: we can imagine thetsteuof a table as a simple spreadsheet - buadbess to it is internally organizec

a way thathuge amountsof data can be accessed bptof usersat thesame time

In summary it can be said that one can imagindla &s a spreadsheet optimized for bulk data anduwrent access.

Concelive the Structure

17 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

To keep control and to ensure a good performaiatdes are subject to a few strict rules. Everyetaolumn has a fixed name and the
values of each column must be of the same data Byr¢hermore, it is highly recommended - though campulsory - that each r
can be identified by a unique value. The columnylirich this identifying value resides, is calle@ tRrimary Key. In this Wikibook we
always name itd. But everybody is free to choose a different nafuethermore we may use the concatenation of niane one colurr

as the Primary Key.

At the beginning we have to decide the followingstfions:

1. What information units of persons (in this firstaemple) do we want to save? Of course there is af lmformation about persons
(e.g.: eye color, zodiacal sign, ...), but everpligption needs only some of them. We have to dewillich ones are of interes
our concrete context.

2.What names do we assign to the selected informatiits? Each of the identified information unitsegdo a column of the table,
which needs to have a name.

3. Of what data type are the information units? Alladgalues within one column must be of the sama tigie. We cannot put
arbitrary string into a column of data type DATE.

In our example we decide to save first name, lashey date and place of birth, social security numaed the person's weight.
Obviously date of birth is of data type DATE, theight is a number and all others are some kindtrofgs. For strings there s
distinction between those that have a fixed leragttl those in which the length usually varies gyefidm row to row. The former is
named CHAR(<n>), where <n> is tfiged length, and the others VARCHAR(<n>), where <nthismaximum length.

Fasten Decisions

The decisions previously taken must be expresseal inachine-understandable language. This langa&QL, which acts as the
interface between end users - or between specigigmms - and the DBMS.

CONSTRAI NT person_pk PRI MARY KEY (id)

\-- comment lines starts with two consecutive minus signs followed by a space '--" :
ICREATE TABLE person (.
1 -- define columns (name / type / default value / nu llable) .
id DECIMAL NOT NULL, ,
1 firstname VARCHAK50) NOT NULL, .
1 lastname VARCHAI50) NOT NULL, '
1 date_of_birth DATE |
! place_of_birth VARCHAS0), .
1 ssn CHAR11), !
1 weight DECIMAL DEFAULT 0 NOT NULL, :
b select one of the defined columns as the Primary Key and .
1 -- guess a meaningfull name for the Primary Key con straint: '‘person_pk' may be a good choice !
: 1
f 1
' |

We chooseperson as the name of the table, which consists of see&mrmns. One of them plays the role of the Priniéey: id. We cal
store exclusively digits in the columd andweight, strings in a length up to 50 characterdiistname, lastname andplace of birth,
dates indate_of_birth and a string of exactly eleven characterssin The phrase NOT NULL is part of the definitionidf firstname,
lastname andweight. This means that in every row there must be aeviduthose four columns. Storing no value in ahthose columns
is not possible - but the 8-character-string 'nloe/zor the digit '0' are allowed because theyvataees. Or to say it the other way round:
it is possible to omit the values ddite_of birth, place_of birth andssn.

The definition of a Primary Key is called a 'coastt' (later on we will get to know more kinds afnstraints). Every constraint sho
have a name - itjgerson_pk in this example.

The Result

After execution of the above 'CREATE TABLE' commahd DBMS has created an object that one can iraagjmilar to the followin
Wiki-table:

id [firstname |lastname date_of_birth| place_of_birth ssn wight
This Wiki-table shows 4 lines. The first line repeats the names of the columns - no values! Thenfiolg 3 lines are for demonstrat

purposes only. But in the database table existeotly no single row! She is completely empty, ows at all, no values at all! The only
thing that exists in the database is streicture of the table.

Back to Start

Maybe we want to delete the table one day. To dwes@an use th®ROP command. It removes the table totally: all datd #me
complete structure are thrown away.

Fr TS TS T T ST TS E TS SIS S SIS TS ss s T
DROP TABLE person; ‘
1 1
b e e e e e E e E e E e E e f e E e f e fEm e mE e E mE e e e E e — e e === = -4

18 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Don't confuse the DROP command with the DELETE cam which we present on the next page. The DELEGiRand removes
only rows - possibly all of them. However, the &liself, which holds the definition of the struetukeeps retained.

As shown in the previous page we now have an etaitle namegberson. What can we do with such a table? Just useatdikbag!
Store things in it, look into it to check the eriste of things, modify things in it or throw thingat of it. These are the four natt
operations, which concerns data in tables:

INSERT: put some data into the table
SELECT: retrieve data from the table
UPDATE: modify data, which exists in the table
DELETE: remove data from the table.

Each of these four operations are expressed by ahai SQL command. They start with a keyword antsrup to a semicolon at the
end. This rule applies to all SQL commands: Theyiatroduced by a keyword and terminated by a sglonic In the middle there may
be more keywords as well as object names and values

Store new Data with INSERT Command
When storing new data in rows of a table we mustenall affected objects and values: the table néhere may be a lot of tables
within the database), the columnnames and the saldi this is embedded within some keywords sat tiiee SQL compiler ce

recognise the tokens and their meaning. In getiegadyntax for a simple INSERT is

I'NSERT | NTO <tablename> (<list_of_columnnames>)
WALUES (<list_of_values>);
1

I-- put one row

1
f 1
:I NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn, weight) .
WAL UES (1, ‘Larry" 'Goldstein’ , date '1970-11-20' , ‘'Dallas' s '078-05-1120' , 95); :
\-- confirm the INSERT command f
1ICOMM T; .

1

When the DBMS recognises the keywords INSERT INT@ ®ALUES it knows what to do: it creates a new riovthe table and puts
the given values into the named columns. In thevalexample the command is followed by a second @@MMIT confirms the
INSERT operation as well as the other writing ofieres UPDATE and DELETE. (We will learn much moresoat COMMIT and its
counterpart ROLLBACK in a later chapter.)

A short comment about the format of the valuedate of birth: There is no unique format for dates honored edirche world. Peoples use different formats
depending on their cultural habit. For our purpose we deoidepresent dates in the hierarchical format defind8@8601. It may be possible that your local
database installation use a different format s yloa are forced to either modify our examples @rmodify the default date format of your database
installation.

Now we will put some more rows into our table. To $b we use a variation of the above syntax. fossible to omit the list
columnnames if the list of values correlates eyaeith the number, order and data type of the cakimsed in the original CREATE
TABLE statement.

Hint: The practice of omitting the list of colummmas is not recommended for real applications! Tabiactures change over time, e.g. someone may emid n
columns to the table. In this case unexpected siéetsfmay occur in applications.

- put four rows

I NSERT | NTO person VALUES (2 ‘Tom' , ‘Burton' date '1980-01-22' , 'Birmingham' , '078-05-1121' , 75);
!'NSERT | NTO person VALUES 3, 'Lisa' ‘Hamilton' , date '1975-12-30" , 'Mumbai' , '078-05-1122" , 56);
il NSERT | NTO person VALUES (4, 'Debora’ , 'Patterson’ , date '2011-06-01' , ‘'Shanghai' , '078-05-1123" , 11);
I'NSERT | NTO person VALUES (5 ‘James' , ‘'de Winter' , date '1975-12-23' , 'San Francisco' , '078-05-1124' , 75);

1COMM T;

Retrieve Data with SELECT Command

Now our table should contain five rows. Can we tee sabout that? How can we check whether everytivimgsed well and the rov
and values exist really? To do so, we need a comimdaich shows us the actual content of the tabls.the SELECT command w
the following general syntax

1
(SELECT <list_of_columnnames>
:FROM <tablename>

19 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

WHERE <search_condition> '
:OQDER BY <order_by_clause>; :

1
g -

__ .

1

ISELECT * :

IFROM person; '
1

L o o e o o e e e 2

The asterik character "' indicates 'all columhsthe result, the DBMS should deliver all five r®wach with the seven values we 1
previously with the INSERT command.

In the following examples we add the actually migsilauses of the general syntax - one after therot

Add a list of some or all columnnames

.. 4
{SELECT firstname, lastname N
IFROM person; '
L o o o o o e e o e —eeem 2
The DBMS should deliver the two columfisstname andlastname of all five rows.

Add a search condition
25 i
\SELECT id, firstname, lastname N
'FROM person '
:V\HERE id > 2; :
L e e e e e e e e e e e e m e e m e e m e mm e e mm e e mm e e mmm e mme e mmm e mmmmmmmmmmmmmmm e mmm - A
The DBMS should deliver the three columdsfirthame andlastname of three rows.

Add a sort instruction

:' ''' T
'SELECT id, firstname, lastname, date_of birth i
FROM person .
MHERE id > 2 ‘
:OQDER BY date_of_birth; |
L o e o 4

The DBMS should deliver the four colummd, firstname, lastname and date_of_birth of three rows in the ascending ordel
date_of birth.

Modify Data with UPDATE Command

If we want to change the values of some columrsdine rows we can do so by using the UPDATE commalmel.general syntax fol
simple UPDATE is:

1

JUPDATE <tablename>
ISET <columnname>
1 <columnname>

1
1
<value>, .
<value>, !
1
1
1
1

WHERE <search_condition>;

Values are assigned to the named columns. Unmewtioalumns keep unchanged. The search_conditienratte same way as in the
SELECT command. It restricts the coverage of therand to rows, which satisfy the criteria. If theHBRE keyword and the
search_condition are omitteal] rows of the table are affected. It is possiblegecify search_conditions, which hit no rows. lis tase
no rows are updated - and no error or exceptionrscc

Change one column of one row

T TS S S E T
1

:UPDATE person ‘
SET firstname = ‘James Walker' :
WVWHERE id = 5; .
1ICOW T; '
1

L o . 4

The first name of Mr. de Winter changes to Jamesk&avhereas all his other values keep unchangdsb All other rows keep
unchanged. Please verify this with a SELECT command

20 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Change one column of multiple rows

L e 1
1

WUPDATE person

SET firsthame = 'Unknown’ .
WVWHERE date_of_birth < date '2000-01-01" .
1ICOVM T; '
1

L e e e e e e e e e e e 4

The <search_condition> isn't restricted to the BrinKey column. We can specify any other columnd Ame comparison operator isn't
restricted to the equal sign. We can use otherabpes - they solely have to match the data typhetolumn.

In this example we change tfiestname of four rows with a single command. If there ighble with millions of rows we can change a
them using one single command.

Change two columns of one row

5 T
i-- Please note the additional comma :
'UPDATE person .
:SET firstname = ‘Jimmy Walker' !
' lastname = ‘'de la Crux' '
WHERE id = 5; .
1ICOVWM T; :
L o o e e e e 1

The two values are changed with one single command.

Remove data with DELETE Command

The DELETE command removes complete rows from #tdet As the rows are removed as a whole there iseed to specify any
columnname. The semantics of the <search_condii®tire same as with SELECT and UPDATE.

5 T
\DELETE !
'FROM <tablename> .
:V\HERE <search_condition>; .
b e e e e e e e e e e e e m e e m e mm e e mm e e mm e e mme e mme e mme e mmm e mmmmmmmmmmmmmmmmm - d
Delete one row

T ST T ST ST TS TS ST E s s i
DELETE :
FROM person '
WHERE id = 5; '
:C(JVM T; '
b o e 1
The row of James de Winter is removed from theetabl

Delete many rows
25 i
\DELETE !
JFROM person; |
ICOWM T; |
L e e e e e e e e e e e e m e e m e e m e mm e e mm e e mm e e mmm e mme e mmm e mmmmmmmmmmmmmmm e mmm - A
All remained rows are deleted as we have omitteddearch_condition>. The table is empty, builitestists.

No rows affecte

:' """ T
\DELETE i
FROM person .
MHERE id = 99; ‘
:CO\/M T, '
L o e e e e e e 4

This command will remove no row as there is no with id equals to 99. But the syntax and the executiohinvihe DBMS are st
perfect. No exception is thrown. The command teateis without any error message or error code.

Summary

The INSERT and DELETE commands affect rows in tketirety. INSERT puts a complete new row into ldégunmentioned columns
remain empty) and DELETE removes complete rowsointrast, SELECT and UPDATE affect only those calarthat are mention
in the command; unmentioned columns are unaffected.

21 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

The INSERT command (in the simple version of tligg) has no <search_condition> and therefore haediactly one row. The three
other commands may affect zero, one or more ropwsrlting on the evaluation of their <search_conditio

First of all a database is a collection of dataesehdata are organized in tables as shown in te@&person. In addition, there are
many other kinds of objects in the DBMS: views,dtions, procedures, indices, rights and many otheitglly we focus on tables a
present four of them. They serve as the founddtioour Wikibook. Other kind of objects will be mented later.

We try to keep everything as simple as possibleieaeless this minimalistic set of four tables destrates a 1:n as well as a

relationship.

person

The person table holds information about fictitious persosese: Create a simple Table.

-- guess a meaningfull name for the Primary Key con
CONSTRAI NT person_pk PRI MARY KEY (id)

),

:-- comment lines starts with two consecutive minus signs
ICREATE TABLE person (

1 -- define columns (name / type / default value / nu llable)
Tid DECIMAL NOT NULL,

1 firstname VARCHAIS0) NOT NULL,

1 lastname VARCHAIS0) NOT NULL,

1 date_of_birth DATE

! place_of_birth VARCHA0),

1 ssn CHAR11),

1 weight DECIMAL DEFAULT 0 NOT NULL,

b select one of the defined columns as the Primary Key and
1

1

1

1

Ll

U

contact

straint: ‘person_pk' may be a good choice

The contact table holds information about the contact datsahe persons. One could consider to store thisacbiformation i
additional columns of thperson table: one column for email, one for icq, and soWe decided against it for some serious reasons.

= Missing values: A lot of people do not have mosthafse contact values respectively we doen't kii@walues. Hereinafter the

table will look like a sparse matrix.

= Multiplicities: Other people have more than one iadress or multiple phone numbers. Shall we @eéiflot of columns email_1,
email_2, ... ? What is the upper limit? Standard- S{@es not offer something like an 'array of values columns (some

implementations do).

m Future Extentions: Some day there will be one arenoontact types which are unknown today. Then axehio modify the table.

We can deal with all this situations in an uncoogiied way, when the contact data goes to its oWwie.tdhe only special thing is
bringing persons together with their contact datas task will be managed by the coluperson_id of tablecontact. It holds the same

value as the Primary Key of the allocated person.

The general statement is, that we do hawe information unit (person) to whicpotentially multiple information units of same type
(contact) belongs to. We call this togethernesslationship - in this case a:m relationship. Whenever we encounter such a situation,
we store the values, which may occure more thae,dn@ separate table together with the id ofitsetable.

\CREATE TABLE contact (

1 -- define columns (name / type / default value / nu llable)
id DECIMAL NOT NULL,
person_id DECIMAL NOT NULL,
-- use a default value, if contact_type is omitted
contact_type VARCHARS5) DEFAULT ‘email' NOT NULL,
contact_value VARCHAIS0) NOT NULL,
-- select one of the defined columns as the Primary Key

-- define Foreign Key relation between column perso
CONSTRAI NT contact_fk FOREI GN KEY (person_id)
-- more contraint(s)
CONSTRAI NT contact_check

CHECK (contact_type

1

1

1

1

1

1

1

:

| CONSTRAI NT contact_pk PRI MARY KEY (id),
:

:

1

: IN (‘fixed line'
l

r

hobby

n_id and column id of table person
REFERENCES person(id),

, 'mobile’

, 'email' , ‘icq'

People usually pursue one or more hobbies. Comzemultiplicity we have the same problems as befite contact. So we need

separate table for hobbies.

ICREATE TABLE hobby (

22 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

-- define columns (name / type / default value / nu

id DECIMAL NOT NULL,
hobbyname VARCHARLO0) NOT NULL,
remark VARCHARL000),

-- select one of the defined columns as the Primary
CONSTRAI NT hobby_pk PRI MARY KEY (id),

-- forbid duplicate recording of a hobby

CONSTRAI NT hobby_unique UNI QUE (hobbyname)

llable)

Key

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

You may have noticed, that there is no column lier ¢orresponding person. Why this? With hobbiehaee an additional problem: It's
not just that one person pursues multiple hobBiethe same time multiple persons pursue the sashbyh

We call this kind of togethernessnan relationship. It can be designed by creating a third table betwthe two original tables. The
third table holds the id's of the first and sectaigle. So one can decide which person persues voichy. In our example this 'table-
in-the-middle’ igper son_hobby and will be defined next.

person_hobby

CREATE TABLE person_hobby (
-- define columns (name / type / default value / nu

id DECIMAL NOT NULL,
person_id DECIMAL NOT NULL,
hobby_id DECIMAL NOT NULL,

-- Also this table has its own Primary Key!

CONSTRAI NT person_hobby_pk PRI MARY KEY (id),

-- define Foreign Key relation between column perso

CONSTRAI NT person_hobby_fk_1

-- define Foreign Key relation between column hobby

CONSTRAI NT person_hobby_fk_2
);

FOREI GN KEY (person_id)

FOREI GN KEY (hobby_id)

llable)

n_id and column id of table person
REFERENCES person(id),
_id and column id of table hobby
REFERENCES hobby(id)

Every row of the table holds one id frqyerson and one fronhobby. This is the technic how the information of persamd hobbies are

joined togethe

Visualisation of the Structure

After execution of the above commands your dataBhseald contain four tables (without any data). Tddges and their relationship to
each other may be visualised in a so called ERtlationship Diagram. On the left side there istherelationship betwegperson anc

contact and on the right side the n:m relationship betwaseson andhobby with its ‘table-in-the-middlger son_hobby.

_ persor v
Id DECIMALLID,0)
frstrame VARCHAR{50)

|astriame ¥ ARCHARSD) 1

date_of_birth DATE

_| person_hobby ¥
10 id DECTMAL (10,0}

parson_id DECIMAL (10.8)

person_notdy_fk_1

rDBMS offers different ways to put data into
their storage: from csv files, Excel files,

place_of birth VARCH AR(50)
ssn CHAR{11}

4.
1

|
|
|
I
} welght DECIMAL {10}
|
|
|

_| contact v
d DEQMAL{10,0)

¢ person_id DEQMAL(10,0)
contact_typs YARCHAR(25)
contact_value VARCHAR(50)

Visual Representation of our Example Database

& hobby _id DECIMAL(10,0)
|
1.2
|

person_hobby_fi_2 |

|
i
)

"~ hobby ¥
d DEIMAL (10,00

hobbyname VARCHAR{100) |

remiark VARDHEAR] 1000}

product specific binary files, via several API's
or special gateways to other databases
respectively database systems and some more
technics. So there is a wide range of -
standardised - possibilities to bring data into
our system. Because we are speaking about
SQL we use the standardised INSI
command to do the job. It is available or
systems.

We use only a small amount of data because
we want to keep things simple. Sometimes one
needs a great number of rows to do

performance tests. For this purpose we show a apB¢SERT command at the end of this page, whidlates your table in ¢

exponential fashion.

person

-- After we have done a lot of tests we may want to

-- To do so use the DELETE command. But be aware of
-- persons at the very end - with DELETE it's just

-- Be careful and don't confuse DELETE with DROP !!

-- DELETE FROM person_hobby;
-- DELETE FROM hobby;

-- DELETE FROM contact;

-- DELETE FROM person;

23 sur 121

reset the data to its original version.
Foreign Keys: you may be forced to delete
the opposite sequence of tables in comparition to |

NSERTS.

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

:-- COMMIT; :
' 1
I NSERT | NTO person VALUES (1 ‘Larry , 'Goldstein’ , DATE1970-11-20° , 'Dallas' , '078-05-1120" , 95); .
:I NSERT | NTO person VALUES (2 ‘Tom' , ‘Burton' DATE1977-01-22' , 'Birmingham' '078-05-1121" , 75); '
il NSERT | NTO person VALUES (3 ‘Lisa’ ‘Hamilton' s DATE1975-12-23' , 'Richland’ s '078-05-1122' , 56); :
:I NSERT | NTO person VALUES (4, ‘Kim* ‘Goldstein’ , DATE2011-06-01 , 'Shanghai’ , '078-05-1123' , 11); :
:I NSERT | NTO person VALUES (5, ‘James' , ‘de Winter' , DATE1975-12-23' , 'San Francisco' , '078-05-1124' , 75); 1
il NSERT | NTO person VALUES (6, ‘Elias’ , 'Baker' , DATE1939-10-03' , 'San Francisco' , '078-05-1125' , 55); '
I NSERT | NTO person VALUES (7 'Yorgos' , ‘Stefanos' , DATE1975-12-23' , ‘'Athens' , '078-05-1126" , 64); !
I NSERT | NTO person VALUES (8 ‘John' ‘de Winter' , DATE1977-01-22' , 'San Francisco' , '078-05-1127' , 77); 1
: NSERT | NTO person VALUES (9, ‘Richie’ , 'Rich’ DATE1975-12-23" , 'Richland’ y '078-05-1128' , 90); :
I'NSERT | NTO person VALUES (10, 'Victor' , 'de Winter' , DATE1979-02-28' , 'San Francisco' , '078-05-1129" , 78),; !
1COM T 1
L e e e e e e e e e e .
contact
L T 1
\-- DELETE FROM contact; 1
- COMMIT; N
1
1
I'NSERT | NTO contact ~ VALUES (1, 1, ‘fixed line' , '555-0100"); :
il NSERT | NTO contact VALUES (2, 1, ‘email' ‘larry.goldstein@acme.xx’) .
I'NSERT | NTO contact VALUES (3, 1, ‘email' ‘lg@my_company.xx'); !
:I NSERT | NTO contact VALUES (4, 1, 'icq" 12111) 1
il NSERT | NTO contact VALUES (5, 4, ‘fixed line' , '5550101'); .
:I NSERT | NTO contact VALUES (6, 4, ‘mobile’ '10123444444"); :
:I NSERT | NTO contact VALUES (7, 5, ‘email' ‘james.dewinter@acme.xx'); f
il NSERT | NTO contact VALUES (8, 7, ‘fixed line' , '+30000000000000"); :
I'NSERT | NTO contact ~ VALUES (9, 7, ‘mobile’ '+30695100000000"); !
:OO\/M T; '
L o o o e e e e e eeeieceeeooo 2
hobby
T TS S S S E T
1
- DELETE FROM hobby; :
- COMMIT; .
1 1
il NSERT | NTO hobby VALUES (1, 'Painting’ :
. ‘Applying paint, pigment, color or other medium to a surface.’'); .
:I NSERT | NTO hobby VALUES (2, ‘Fishing’ :
' ‘Catching fishes.'); '
I NSERT | NTO hobby VALUES (3, ‘Underwater Diving' s .
' ‘Going underwater with or without breathing apparat us (scuba diving / breath-holding)."); !
il NSERT | NTO hobby VALUES (4, ‘Chess’ '
. ‘Two players have 16 figures each. They move them o n an eight-by-eight grid according to special rules .
'NSERT | NTO hobby VALUES (5, ‘Literature’ , 'Reading books.’); !
il NSERT | NTO hobby VALUES (6, 'Yoga' |
. ‘A physical, mental, and spiritual practices which originated in ancient India.'); .
IINSERT | NTO hobby VALUES (7, ‘Stamp collecting’ s '
i ‘Collecting of post stamps and related objects."); '
' NSERT | NTO hobby VALUES (8, ‘Astronomy’ '
! ‘Observing astronomical objects such as moons, plan ets, stars, nebulae, and galaxies.'); f
I NSERT | NTO hobby VALUES (9, 'Microscopy' .
. '‘Observing very small objects using a microscope.'); !
:C(JVNI T 1
L C o o o L ___. A

1

i-- DELETE FROM person_hobby;
1-- COMMIT;
1
1

I NSERT | NTO person_hobby VALUES (1, 1);
il NSERT | NTO person_hobby VALUES (2, 4);
I NSERT | NTO person_hobby VALUES (3, 5);
I NSERT | NTO person_hobby VALUES (4, ;

|
|
|
|
il NSERT | NTO person_hobby VALUES (5,
|
|
|
|

LorNoOARPER
w
&

N
—

I'NSERT | NTO person_hobby VALUES (6,

:I NSERT | NTO person_hobby VALUES (7, 4);

Il NSERT | NTO person_hobby VALUES (8, 8);

I'NSERT | NTO person_hobby VALUES (9, 9);

:COMVI T
g -
Grow up

For realistic performance tests we need a huge ahwfudata. The few number of rows in our exam@eallase does not meet this
criteria. How can we generate test data and stared table? There are different possibilities:RF@ops in a procedure, (pseudo-)
recursive calls, importing external data in a sysspecific fashion and some more.

Because we are dealing with SQL we introduce arERIScommand which is portable across all rDBMShgiigh it has a simple
syntax it is very powerful. With every executionwtll double the number of rows. Suppose there W in a table. After the first
execution there will be a second row in the taBltefirst glance this sounds boring. But after 1@eutions there are more than thous
rows, after 20 executions there are more than lomiland we suspect that only few installations able to execute it more than 30
times.

24 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

L T
1

:I NSERT | NTO person (id, firstname, lastname, weight) |
SELECT id + (sel ect nax(id) from person), firstname, lastname, weight .
{FROM person; !
1ICOMWM T; 1
1

L o o o e e e A

The command is an INSERT in combination with a (BBIBLECT. The SELECT retrievs all rows of the tablecause there is no
WHERE clause. This is the reason for the doubliffge mandatory columnirstname and lastname keeps unchanged. We ignore
optional columns. Only the primary keg is computed. The new value is the sum of the alder plus the highest availabig wher
starting the command.

Some more remarks:

= max(id) is determined only once per execution! Thistrates an important aspect of rDBMS: At a ceptual level the database
has a certain state before execution of a commaddianew state after its execution. Commandsatmic operations movir
the database from one state to another - they oumpletely or not a bit! Both, the SELECT and theen SELECT with the
max(id), act on the initial state. They never dee result or an intermediate result of the INSEBfherwise the INSERT wot
never end.

= |f we wish to observe the process of growing, we add a column to the table to store max(id) witbleiteration.

» The computation of the nedd may be omitted if the DBMS supports AUTO INCREMERNGIumns.

m For performance tests it may be helpful to storeescandom data in one or more columns.

Basic Commands

The SELECT command retrieves data from one or nadyies or views. It generally consists of the fellng language elements:

B T T T T T e e T T PP
\SELECT <things_to_be_displayed> -- the so called 'Projection’ - mostly a list of co lumnnames

IFROM <tablename> -- table or view names and their aliases

1

(GROUP BY <group_by_clause>
HHAVING <having_clause>

H
|
WVHERE <where_clause> -- the so called 'Restriction' or 'search condition ' E
|
:OQDER BY <order_by_clause>; E

1

With the exception of the first two elements aherts are optional. The sequence of language elsngniandatory. At certain places
within the command there may start new SELECT contisa in a recursive manner.

Projection

In the projection part of the SELECT command yoecsfy a list of columns, operations working on eohs, functions, fixed values
new SELECT commands.

1FROM person;

e b
- ClJava style comments are possible within SQL co mmands :
SELECT id, /* the name of a column */ .
! concat(firstname, lastname), /* the concat() function */ '
1 weight + 5, /* the add operation */ '
! 'kg' /* a value */ .
1
1
1

The DBMS will retrieve ten rows, each of them cetssdf four columns.

We can mix the sequence of columns in any ordeetoieve them several times.

1
(SELECT id, lastname, lastname, ‘weighs' , weight, 'kg'

1
1
IFROM person; E
L o o o o o e e e e e oo 2

Fr TSI ST ST T ST T T TS S ST S S S S s s s T
1

iSELECT * FROM person; :
1 1
Lo e e e e e e e E e E e E e E e E e E e E e E e f e mE e E fE e E e E e E e e e e e e e e e e e e e E e == = -4

For numeric columns we can apply the usual nunmgrérators +, -, * and /. There are also a lot efipfined functions depending on the
data type: power, sqgrt, modulo, string functioretedunctions.

25 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

UNIQUE

It is possible to compact results in the sense MFQWE values. In this case all resultingws, which would be identical without the
UNIQUE keyword, will be compressed to orav. In other words: duplicates are eliminated - jikgt in set theory.

I retrieves 10 rows

{SELECT lastname

IFROM person;

I retrieves only 7 rows. Duplicate values are thro wn away.
'SELECT DI STI NCT lastname

IFROM person;

I Hint: The term 'DISTINCT' refers to the complete resulting row, which you can imagine as the
- aggregation of ALL columns of the projecti on. The keyword DISTINCT must follow directly behin d the SELECT keyword.
- The following query leads to 10 rows altho ugh three persons have the same lastname.

{SELECT DI STI NCT lastname, firstname
IFROM person;

- 7 rows again

{SELECT DI STI NCT lastname, lastname
:FROM person;

L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

Aliases for Columnnames

Sometimes we want to give resulting columns mogessive names. We can do so by choosing an atiais whe projection. This alias
is the new name within the resultset. GUIs usétmsit as the column label.

i The keyword 'AS' is optional

(SELECT lastname as family_name, weight weight_in_kg
:FROM person;

L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

Functions

There are predefined functions for use in projetiand at some other positions). The most fredyeased are:

count(<columnname>|*"): Counts the number of rtasytows.

max(<columnname>): The highest value in <columnthefresultset. Also applicable on strings.

min(<columnname>): The lowest value in <columnxhef resultset. Also applicable on strings.

sum(<columnname>): The sum of all values in a nigre@umn.

avg(<columnname>): The average of a numeric column.

concat(<columnname_1>, <columnname_2>): The conatih of two columns. Alternatively the functionayn be
expressed by the '||' operator: <columnname_Jlco|lirkmnname_2>

Standard SQL and every DBMS offers much more foneti

We must differ between those functions which retwme value per row like concat() and those whi¢brreonly one row per complete
resultset like max(). The former one may be mixecémy combination with column names as shown invéwy first example of this
page. With the later ones there exists a problémelmix them with a normal column name, the DBM8agnise a contradiction in the
qguery. On the one hand it should retrieve exaatly walue (in one row) and on the other hand it khairieve a lot of values (in a lot
rows). The reaction of DBMS differ from vendor tendor. Some throw an error message at runtimersottediver suspicious results.

.
- works fine ‘
{SELECT lastname, concat(weight, "kg') .
:FROM person; .
- check the reaction of your DBMS 1
'SELECT lastname, avg(weight) '
:FROM person; '

1

{SELECT i n(weight), max(weight), avg(weight) as average_1, sum(weight) / count (*) as average_2

.
'
:-- a legal mixture of functions resulting in one ro w with 4 columns '
'
'
:FROM person; !

'

SELECT within SELECT

If we really want to see the result of a resultset-orientedtfan in combination with columns of more than aoe, we can start a very
new SELECT on a location where - in simple casg€elumname occurs. This second SELECT is an ae$pindependent command.

26 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Be careful: It will be executed favery resulting row of the first SELECT!

:FROM person;

[ittt ettt ittt 1
i retrieves 10 rows; notice the additional parenth esis to delimit the two SELECTs from each other. :
(SELECT lastname, (SELECT avg(weight) from person) :
'FROM person; .
- Compute the percentage of each persons weight in relation to the average weight of all persons '
{SELECT lastname, weight, weight * 100 / (SELECT avg(weight) from person) as percentage_of_average .

|

4

Table names

Behind the Keyword FROM we have to announce theenafrthe table on which the command shall work.réhg the table name
well known and may be used as an identifier. Infifse simple examples the use of an additionatiifier seems to be needless. Late
it will turn into a necessary feature to formulatanplex commands.

S

ISELECT person.firstname, person.lastname
IFROM person;

- Define an alias for the table name (analog to co lumn names). To retain overview we usually

- abbreviate tables by the first character of thei r name.

{SELECT p.firstname, p.lastname

IFROM person AS p; -- Hint: not all systems accept keyword 'AS" with t able aliases. Omit it in this cases!

i The keyword 'AS' is optional again.
{SELECT p.firstname, p.lastname
:FROM person p;

Restriction

In the WHERE clause we specify some 'search camditiwhich are among the named table(s) or vieW{s).evaluation of this critel
is - mostly - one of the first things during theeextion of a SELECT command. Before any row carsdréed or displayed, she must
meet the conditions in the clause.

If we omit the clause all rows of the table argiesed. Else the number of rows will be reducedoatiog to the specified criteria. If we
specify 'weight < 70", for example, only those roave retrieved where the weight column stores aevédss than 70. It is such that
restrictions act omows of tables by evaluatiorcolumn values(sometime they act on other things like the eris¢eof rows, but for the
moment we focus on basic principles). As a resudt,can imagine that the evaluation of the 'wheaeisg#' produces a list of rows. This
list of rows will be processed in further stepg lorting, grouping or displaying certain columpjection).

Comparisons

We compare variables, constant values and restifsinection calls with each other in the same waywas would do in othe
programming languages. The only difference is, &tise column names instead of variables. The ansgm operators must match the
given data types they have to operate on. Thetrektlie comparison is a boolean value. If itriget the according row will be proces
furthermore. Some examples:

= 'weight = 70" compares the column ‘weight' with ¢bastant value '70' whether the column is equ#ieaconstant value.

= '70 = weight": same as before.

= ‘firstname = lastname' compares two columns - e&the samerow - for equality. Names like 'Frederic Fredegicaluate to
true.

= ‘firsthame < lastname' is a legal comparison of telamns according to the lexical order of strings.

= 'LENGTH(firstname) < 5' compares the result of action call to the constant value '5'. The functi@@NGTH() operates
on strings and returns a number.

Boolean logic

Often we want to specify more than a single searittria, e.g.: Are there people born in San Frszwivith lastname Baker? To do this,
we specify every necessary comparison independent the next one and join them together with thelden operators AND
respectively OR.

L e 1
1
ISELECT * :
JFROM person .
WWHERE place_of_birth = 'San Francisco' '
:ANI: lastname = 'Baker' '
1
g -

The result of a comparison is a boolean. It matobgled between ‘true' and ‘false’ by the unaryaipe NOT.

27 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

R e R e e e e e T 4
1

ISELECT * i
FFROM person '
WHERE place_of_birth = 'San Francisco' '
'ANC NOT lastname = ‘Baker' ; --all except 'Baker' |
i-- for clarification: The NOT in the foregoing exam ple is an 'unary operation' on the result of the '
- comparison. It's not an addit ion to the AND. !
:SELECT * 1
\FROM person '
VHERE place_of_birth = ‘San Francisco' !
:ANI: (NOT (lastname = 'Baker')); -- same as before, but explicit notated with paren thesis !
g -

Theprecedenceof comparisons and boolean logic is as follows:

1. all comparisons
2.NOT operator
3. AND operator
4. OR operator

v
I~ AND (born in SF and lastname Baker; 1 hit as an intermediate result) will be processed before
- OR (person Yorgos; 1 hit)

-1+ 1==>2rows

-- OR (born in SF; 4 hits)
- 0+4==>4rows
ISELECT *

ISELECT *

JFROM person

WVHERE place_of_birth = ‘San Francisco’ -- 4 hits SF

AN lastname = 'Baker' -- 1 hit Baker

:(R firstname = ‘Yorgos' -- 1 hit Yorgos

|

1

I-- AND (person Yorgos Baker; no hit as an intermedi ate result) will be processed before
r

1

JFROM person

WHERE place_of_birth = ‘San Francisco' -- 4 hits SF

10R firstname = ‘Yorgos' -- 1 hit Yorgos

JANC lasthame = 'Baker’ -- 1 hit Baker

"

‘

I~ We can modify the sequence of evaluations by spe cifying parentheses.
i-- Same as first example, adding parentheses, one r ow.

SELECT *

IFROM person

:V\HERE place_of_birth = ‘San Francisco' -- 4 hits SF

VANC (lasthame = 'Baker’ -- 1 hit Baker

OR firstname = 'Yorgos') -- 1 hit Yorgos

:,

L e m e e e e m e e e e m e m e 2

Two abbreviations

Sometimes we shorten the syntax by using the BETW/E&yword. It defines a lower and upper limit asdused mainly for numeric
and date values, but also applicable to strings.

r ''' T
'SELECT * :
IFROM person '
VHERE weight >= 70 .
ANC weight <= 90; 1
- An equivalent shorter and more expressive wordin g .
ISELECT * :
JFROM person '
:V\HERE weight BETWEEN 70 AND 90; -- BETWEEN includes the two cutting edges .
L o o o o o o o o o e o e o e o e o o o e e e o e e e e e e e e e e e e e e oo oo 2
For the comparison of a column or function withuember of values we can use the short IN expression.

__ 4

\SELECT *
'FROM person

1

i

1
WVHERE lastname = ‘de Winter' !
1oR lastname = 'Baker' 1
- An equivalent shorter and more expressive wordin g .
SELECT * :
JFROM person 1
:\/\HERE lastname | N ('de Winter' , 'Baker'); .
L o o o o o o o o o e o oo e o e o e e e e o e o e e e e e e e e e e e e oo oo 2

Grouping

We will offer the GROUP BY clause in combinatiorttvihe HAVING clause in a later chapter.

28 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Sorting

The DBMS is free to deliver the resulting rows im arbitrary order. Rows may be returned in the oxfethe Primary Key, in the
chronological order they are stored into the dagapin the order of an B-tree organised interngl ke even in a random order.
Concerning the sequence of delivered rows the DBM$ do what it wants to do. Don't expect anything.

If we expect a certain order of rows, we must egp@ur wishes explicitly. We can do this in the GHRDOBY clause. There we specif
list of columnnames in combination with an option &scending respectively descending sorting.

i~ all persons in ascending (which is the default) order of their weight
'SELECT *

IFROM person

JORDER BY weight;

1-- all persons in descending order of their weight

ISELECT *

JFROM person

:(RDER BY weight desc;

[T T T T T T T T T T T e -

In the above result there are two rows with ideiti@lues in the columweight. As this situation leads to random results, weehtée
possibility to specify more columns. These follogvicolumns are processed only for those rows wigmtidal values in all precedi

columns.

I_ ''' T
- All persons in descending order of their weight. In ambiguous cases order the

- additional column place_of_birth ascending: Birm ingham before San Francisco.

JFROM person

1
i
1
\SELECT * '
1
:OQDER BY weight desc, place_of_birth; :

1

In the ORDER BY clause we can specify any columthefprocessed table. We are not limited to thes evieich are returned by the
projection.

1

- same ordering as above

(SELECT firstname, lastname

JFROM person

:OQDER BY weight desc, place_of_birth;

Combine the Language Elements

Only the first two elements of the SELECT commara mandatory: the part up to the first table (@i name. All others are optional.
If we specify also the optional ones, their predateed sequence must be kept in mind. But theycambinable according to our needs.

1

- We have seen on this page: SELECT / FROM / WHERE / ORDER BY

(SELECT p.lastname,

. p.weight,

! p.weight * 100 / (SELECT avg(p2.weight) FROM person p2) AS percentage_of_average
{FROM person p

WVHERE p.weight BETWEEN 70 AND 90

:(RDER BY p.weight desc, p.place_of_birth;

Further Information

There are more information about additional opputies of the SELECT command.

Join Operation
Grouping

Set Operations

Like Predicate
Predefined Functions

Exercises

Show hobbyname and remark from the hobby table.
Click to see solution

i
{SELECT hobbyname, remark E

29 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

iFROM hobby; :

L e e e e e E e E e E e f e E e E e f e m e mEmE e e e E e e e E e — e e e == = -

Show hobbyname and remark from the hobby tableeGie result by hobbyname.

Click to see solution

25 T
\SELECT hobbyname, remark :
IFROM hobby '
:(RDER BY hobbyname; !
e 4

Show hobbyname and remark from the hobby table o&hdHobby' as first columnname and 'Short_Degonipbf Hobby' as seco
columnname.

Click to see solution

\SELECT hobbyname as Hobby, remark as Short_Description_of_Hobby
:FROM hobby;

- columnname without underscore: Use quotes

{SELECT hobbyname as Hobby, remark as "Short Description of Hobby"
:FROM hobby;

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = -

Show firstname and lastname of persons born irFgamcisco.
Click to see solution

\SELECT firstname, lastname

JFROM person

:V\HERE place_of_birth = 'San Francisco'
L e m e e e e m e e e e m e m e i)

Show all information items of persons with lastndd®Winter'.
Click to see solution

ISELECT *
JFROM person
:V\HERE lastname = ‘'de Winter'

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = 2

How many rows are stored in the contact table?
Click to see solution

\SELECT count *)
JFROM contact;

How many E-Malils are stored in the contact table?
Click to see solution

1

:SELECT count (*)

{FROM contact

\HERE contact_type = ‘email’

What is the mean weight of persons born in Sandiseo?
Click to see solution

1

:SELECT avg(weight)

{FROM person

WWHERE place_of_birth = 'San Francisco'
:71.25

Find persons born after 1979-12-31, which weighamiban / less than 50 kg.
Click to see solution

ISELECT *

JFROM person

:\/\HERE date_of_birth > DATE '1979-12-31'
JANC weight > 50;

1

ISELECT *
JFROM person
1

30 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

WHERE date_of_birth > DATE '1979-12-31' '
:ANI: weight < 50; '
g 4

Find persons born in Birmingham, Mumbai, Shanghditbens in the order of their firstname.

Click to see solution

JFROM person
VHERE place_of_birth
1OR place_of_birth
1OR place_of_birth
:(R place_of_birth
(ORDER BY firstname;
- equivalent:

:SELECT *

{FROM person
WVHERE place_of_birth I'N ('Birmingham' , 'Mumbai' , ‘'Shanghai" , ‘Athens')
:CRDER BY firstname;

.
1
‘
1
'‘Birmingham’ .
‘Mumbai* f
‘Shanghai' '
'Athens' !
1
1
1
1
1
1
1
1
1
1
1

Find persons born in Birmingham, Mumbai, Shanghatbens within the 21. century.

Click to see solution

P m o mm oo oo oo oo e e oo e e e e e e e e e e e e e e e e oo 1
1
ISELECT * :
WFROM person '
WHERE (place_of birth = ‘Birmingham' '
. OR place_of_birth = 'Mumbali' 1
1 OR place_of_birth = 'Shanghai' .
. OR place_of_birth = 'Athens' '
1) f
IANC date_of birth >= DATE '2000-01-01' !
- equivalent: '
ISELECT * 1
IFROM person '
WVWHERE place_of_birth I'N ('Birmingham' , 'Mumbai' , 'Shanghai’ , 'Athens') !
:/-\NI: date_of_birth >= DATE '2000-01-01" N |
1
e -

Find persons born between Dallas and Richlandwi#eent' not in the sense of a geographic area ibedéxical order of citynames)
Click to see solution

- strings have a lexical order. So we can use some operators known
I from numeric data types.

:SELECT *

IFROM person

WVHERE place_of_birth >= ‘Dallas'

:/-\NI: place_of_birth <= ‘Richland'

(ORDER BY place_of_birth;

- equivalent:

'SELECT *

{FROM person

WVWHERE place_of_birth BETWEEN 'Dallas’ AND 'Richland'
:CRDER BY place_of_birth;

Which kind of contacts are stored in the contalsketa (Only one row per value.)

Click to see solution

4
\SELECT DI STI NCT contact_type :
'FROM contact; .
fixed line !
email 1
ieq :
:mobile !

1

How many different kind of contacts are storechia tontact table? (Hint: Count the rows of abovergi

Click to see solution

25 T
\SELECT count (DI STI NCT contact_type) :
IFROM contact; .
4 .
1 1
L e m e e e e e e e e e e e e e 4

Show contact_type, contact_value and a string effthhm 'total number of contacts: <x>', where <g>the quantity of all existir
contacts.

Click to see solution

1
{SELECT contact_type, contact_value,

1 (SELECT concat('total number of contacts: ' , count(*¥)) FROM contact)
1

1

31 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

:FROM contact;
- Some systems need explicit type casting from num
\SELECT contact_type, contact_value,

eric to string

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

! (SELECT concat('total number of contacts: ' cast (count (*) as char)) FROM contact)
IFROM contact;
\-- The '||" operator is some kind of 'syntactical s

- The operator is part of the SQL standard, but no

\SELECT contact_type, contact_value,

' (SELECT 'total number of contacts: * 1]
contact;

count (*)

FROM contact)

1
1
1
1
1
1
1
1
ugar'. It's an abbreviation for the concat() functi on. !
t implemented by all vendors. f
1
1
1
1
1
1

DBMS offers a special service. We cando a single or even multiple consecutive write antétgeoperations. To do so we use the
command ROLLBACK. When modifying data, the DBMStes in a first step all new, changed or deleted data temporary space.
During this stage the modified data is not parthef regular' database. If we are sure the modiica shall apply, we use the COMN
command. If we want to revert our changes, we bseROLLBACK command. All changes up to the finalMMIT or ROLLBACK

are considered to be part of a so caltadsaction.

The syntax of COMMIT and ROLLBACK is very simple.

-- commits all previous INSERT, UPDATE and DELETE ¢
-- occurred since last COMMIT or ROLLBACK

-- reverts all previous INSERT, UPDATE and DELETE ¢

' -- occurred since last COMMIT or ROLLBACK

The keyword 'WORK' is optional.

AUTOCOMMIT

ommands, which

ommands, which

The feature AUTOCOMMIT automatically performs a COIM after every write operation (INSERT, UPDATE BELETE). This
feature is not part of the SQL standard, but islemented and activated by default in some impleatents. If we want to use the
ROLLBACK command, we must deactivate the AUTOCOMM(After an - automatic or explicit - COMMIT comméia ROLLBACK
command is syntactically okay, but it does nott@sgeverything is already committed.) Often we caactivate the AUTOCOMMI
with a separate command like 'SET autocommit ®0SET autocommit off;' or by clicking an icon arGUI.

To test the following statements it is necessamydack without AUTOCOMMIT.

COMMIT

Let us insert a new person into the database andhie COMMIT.

- Store a new person with id 99.

I NSERT | NTO person (id, firstname, lastname, date_of_birth,
:VALUES (99, ‘'Harriet' ‘Flint'
1

i-- Is the new person really in the database? The pr
- even if they are actually not committed. (One hi
\SELECT *

'FROM person

WVHERE id = 99;
1

place_of
DATE1970-10-19'

t expected.)

1

- Try COMMIT command
«COW T;

1

1

- Is she still in the database? (One hit expected.)
SELECT *

[FROM person

:\/\HERE id = 99;

L e e e e e cmmccm e cmmmmccmmccmmcmmmmcemmcm e e mmm == =

Now we remove the person from the datat

\-- Remove the new person

DELETE
FROM person
VHERE id = 99;

1
1 Is the person really gone? Again, the process wh
i-- if they are actually not committed. (No hit expe
SELECT *

IFROM person

:\/\HERE id = 99;

1

\-- Try COMMIT command

:OO\/M T,

1

- Is the person still in the database? (No hit exp
:SELECT *

{FROM person

1

cted.)

ected.)

32 sur 121

‘Dallas'

ocess which executes the write operation will see i

ich performs the write operation will see the chang

_birth, ssn, weight)
'078-05-1120' , 65);

ts results,

es, even

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

So far, so boring.

ROLLBACK

The exciting command is the ROLLBACK. It restorésnges of previous INSERT, UPDATE or DELETE comnsand

We delete and restore Mrs. Hamilton from our exanclaltabase.

1

DELETE

IFROM person

MWHERE id = 3; -- Lisa Hamilton
1

- no hit expected
SELECT *
IFROM person
WVWHERE id = 3;
1

1

- ROLLBACK restores the deletion
1ROLLBACK;

1

1

- ONE hit expected !!! Else: check AUTOCOMMIT
SELECT *

JFROM person

:V\HERE id = 3;

The ROLLBACK is not restricted to one single rotvray affect several rows, several commands, @iffekind of commands and ey
several tables.

\-- same as above

DELETE

FROM person

WHERE id = 3;

1-- destroy all e-mail addresses

{UPDATE contact

SET contact_value = ‘unknown’
:V\HERE contact_type = ‘email’

SELECT * FROM person;
\SELECT * FROM contact;

:—— A single ROLLBACK command restores the deletion in one table and the modifications in another table
IROLLBACK;

- verify ROLLBACK
{SELECT * FROM person;

1
1
1
1
1
1
1
1
1
1
1
1
1
! |
i-- verify modifications :
1
1
1
1
1
1
1
1
1
1
1
:
ISELECT * FROM contact; ‘

1

Exercises

Supose théobby table contains 9 rows and therson table 10 rows. We execute the following operations
add 3 hobbies

add 4 persons

commit

add 5 hobbies

add 6 persons

rollback

How many rows are in the hobby table?

Click to see solution

How many rows are in the person table?

Click to see solution

Structured Query Language/INSERT

Structured Query Language/UPDATE Structured Quemnguage/DELETE

33 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Daily Operations

Data should be stored in such a way that no reduridiormation exists in the database. For exaniptayr database includes group:
people who, in each case, all pursue the same htfsry we would rather avoid repeatedly storingsime static details about a gi
hobby; namely in every record about one of the ktsbbnthusiasts. Likewise, we would rather avoipeegedly storing the same
detailed information about an individual hobbyisamely in every record about one of that personlsbies. Instead we create
independenperson andhobby tables and point from one to the other. This té@pke for grouping data in separate, redundancy-free
tables is called database normalization. Such adparalso tends to simplify the logic and enhatteeflexibility of assembling precisely
the items needed for a given purpose. This assemblycomplished by means of the 'JOIN' operation.

The Idea

In our example database, there are two taplerson andcontact. The contact table contains the colunperson_id, which correlates
with the Primary-Key columid of theperson table. By evaluating the column values we candointacts and persons together.

person table P contact table C

ID LASTNAME EIRSTNAME . ID | PERSON_ID CONTACT_TYPE | CONTACT_VALUE

1 | Goldstein Larry 11 fixed line 555-0100
> Burton Tom 2 |1 email larry.goldstein@acme.xx
3 |Hamilton Lisa 31 email lg@my_company.xx
4 Goldstein | Kim 41 icq 12111
5 4 fixed line 5550101
6 4 mobile 10123444444

Joined (virtual) table, created outps son andcontact

P.ID|P.LASTNAME P.FIRSTNAME ... C.ID C.PERSON_ID C.CONTAC T_TYPE | C.CONTACT_VALUE

1 Goldstein Larry w1 1 fixed line 555-0100

1 Goldstein Larry 2 1 email larry.goldstein@acme.xx
1 Goldstein Larry 3 1 email lg@my_company.xx

1 Goldstein Larry 4 1 icq 12111

2 Burton Tom . ? ? ? ?

3 Hamilton Lisa ? ? ? ?

4 Goldstein Kim 5 4 fixed line 5550101

4 Goldstein Kim 6 mobile 10123444444

So, Larry Goldstein that exists only once in theresti person table, is now listed four times in the joined,twal table — each time,
combination with one of his four contact items. Bagne applies for Kim Goldstein and his two contizehs.

But what is going on with Tom Burton and Lisa Haaml, whose contact information is not available? W&y have some trouble
attempting to join theiperson data with their non-existemontact information. For the moment, we have flagged tingation witt
question marks. A detailed explanation of how &msform the problem into a solution appears lateths page.

The Basic Syntax

Obviously it's necessary to specify two things it JOIN operation

» the names of the relevant tables
» the names of the relevant columns

34 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

The basic syntax extends the SELECT command wébetwo elements

1
{SELECT <things_to_be_displayed> -- as usual

1
1
IFROM <tablename_1> <table_1_alias> -- a table alias '
JON <tablename_2> <table_2_alias> ON <j oi n condition> -- the join criterion .
. -- optionally all the other elements of SELECT comm and '
‘
1

ISELECT * :
'FROM person p .
:JOl N contact ¢ ON p.id = c.person_id; '

1

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = 2

One of the table names is referenced after the FR®Mord (as previously), and the other one afterrtew keyword, JOIN, which (no
surprise here) instructs the DBMS to perform a joperation. Next, the ON keyword introduces theuowl names together witt
comparison operator (or a general condition, aswilhsee later). The column names are prefixedhwhie respective aliases of the table
namesp andc. This is necessary, due to the fact that colunitisidentical names (liked) may exist in multiple tables.

When the DBMS executes the command, it deliversiesbing' that contains all the columns from botblds, including the twad
columns from their respectivepdrson and contact) tables. The result contains 9 rows, one g@esting combination of person a
contact; viz., due to the 'ON' expression, pergmonmds without any corresponding contact recordsiat appear in the result.

The delivered 'something' looks like a new tahtefaict, it has the same structure, behaviour amna ds a table. If it is created fror
view or as the result of a subselection, we cam @ezform new SELECTSs on it. But there is one ingat difference between this an
table: Its assembled datanist stored in the DBMS as such; rather, the dataasnputed at run time from the values of real tables,
only held in temporary memory while the DBMS is ming your program.

This key feature — assembling complex informatiamnt simple tables — is made possible by meansetwlo simple keywords, JO
and ON. As you will see also, the syntax can besreded to build very complex queries, such that gan add many additior
refinements to the specification of your join atie

It can sometimes be confusing when results donttimgour intentions. If this happens, try to siffypfour query, as shown here.
Confusion often results from the fact that the JGyNtax itself may become quite complex. Moreojanjng can be combined with
of the other syntactic elements of the SELECT comanavhich also may lead to lack of clarity.

The combination of the join syntax with other laage elements is shown in the following examples.

I

-

i show only important columns

'SELECT p.firstname, p.lastname, c.contact_type as "Kind of Contact" , c.contact_value as "Call Number"
IFROM person p

JO'N contact ¢ ON p.id = c.person_id;

1

- show only desired rows

{SELECT p.firstname, p.lastname, c.contact_type as "Kind of Contact" , c.contact_value as "Call Number"
IFROM person p

JON contact ¢ ON p.id = c.person_id

WVHERE c.contact_type I'N ('fixed line' , 'mobile’);

1

I apply any sort order

SELECT p.firstname, p.lastname, c.contact_type as "Kind of Contact" , c.contact_value as "Call Number"
IFROM person p

WO N contact ¢ ON p.id = c.person_id

WHERE c.contact_type I'N (‘fixed line' , 'mobile’)

1ORDER BY p.lastname, p.firstname, c.contact_type DESC;

1

1

ISELECT count (¥)
IFROM person p
WJOI N contact ¢ ON p.id = c.person_id

WHERE c.contact_type I'N ('fixed line' , 'mobile’);

1

- JOIN a table with itself. Example: Search differ ent persons with same lastname

\SELECT pi.id, pi.firstname, pl.lastname, p2.id, p2.firstname, p 2.lastname

JFROM person pl

WJO N person p2 ON pl.lastname = p2.lastname -- for second incarnation of person we must use a d ifferent alias
VHERE pl.id != p2.id

i-- sorting of p2.lastname is not necessary as it is identical to the already sorted p1.lastname

1ORDER BY pl.lastname, pl.firstname, p2.firstname;
1

1

- JOIN more than two tables. Example: contact info rmation of different persons with same lastname

SELECT pl.id, pl.firstname, pl.lastname, p2.id, p2.firsthame, p 2.lastname, c.contact_type, c.contact_value
JFROM person pl

:JOl N person p2 ON pl.lastname = p2.lastname

JON contact ¢ ON p2.id = c.person_id -- contact info from person2. pl.id would lead to p ersonl
WVWHERE pl.id != p2.id

1
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
‘
f
1-- use functions: min() / max() / count() '
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
'
f
:CRDER BY pl.lastname, pl.firstname, p2.lastname; '

a1

35 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Four Join Types

Earlier on this page, we saw an example of a pdult wherein some rows contained person namesidbabntact information — inste
showing a question mark in that latter column.hié tasic syntax of the JOIN operation had been, ubede (question-mark) rows
would have been filtered out. That (basic syntathwikclusive result) is known as an INNER join. fehare also three different kinds
OUTER joins. The results of an OUTER join will cairt not only all the full-data rows that an INNE®&njs results would, but also
partial-data rows, i.e., those where no data wasdadn one or both of the two stored tables; tilusy're called LEFT OUTER, RIGF
OUTER and FULL OUTER joins.

So we can widen the basic JOIN syntax to the fptioos:

[INNER] JOIN

LEFT [OUTER] JOIN
RIGHT [OUTER] JOIN
FULL [OUTER] JOIN

Keywords surrounded by [] are optional. The panstars OUTER from LEFT, RIGHT or FULL, and a plajire, basic-syntax) JOI
defaults to INNER.

Inner Join

The inner join is probably the most commonly uséthe four types. As we have seen, it results oty those rows that exactly ma
the criterion following the ON. Below is an exampleowing how to create a list of persons and ttaitacts.

- A list of persons and their contacts

1
1
:SELECT p.firstname, p.lastname, c.contact_type, c.contact_value .
{FROM person p .
JO'N contact ¢ ON p.d = c.person_id -- identical meaning: INNER JOIN ... '
:OQDER BY p.lastname, p.firstname, c.contact_type DESC, c.contact_value; '
1

What is most significant is that records for pessawithout any contact information amet part of the result.

Left (outer) Join
Sometimes we need a little more; for example, wghitnivant a list of all person records, to includy aontact-information records that

may also be available for that person. Note how differs from the example above: this time, theuls will containall person records,
even those for persons who hanecontact-information record(s).

- A list of ALL persons plus their contacts

1
1
:SELECT p.firstname, p.lastname, c.contact_type, c.contact_value .
{FROM person p .
ILEFT JO N contact ¢ ON p.id = c.person_id -- identical meaning: LEFT OUTER JOIN ... '
:OQDER BY p.lastname, p.firstname, c.contact_type DESC, c.contact_value; '
1

In those cases where the contact information isvaifeble, the DBMS will supplant it with the ‘nulalue’ or with the 'null spec
marker' (not to be confused with tisering (-type) 'null value' or 'null' nor with binary Monetheless, implemention details aren't
important here. The null special marker will becdissed in a later chapter).

In summary, the left (outer) join is an inner jgiys one row for each left-side match without arterpart on the right side.

Consider the word 'left'. It refers to the leftesiof the formula, "FROM <table_1> LEFT JOIN <tat##e", or more specifically, the table
denoted on the left side (hetable 1); indicating that every row of that table will bepresented at least once in the result, whet
corresponding record is found in the right-sidddgheretable 2) or not.

Another example:

Fr TS T T T T T T T T TS TS T T TS T TS S S SIS S SIS s s T
ESELECT p.firstname, p.lastname, c.contact_type, c.contact_value :
\FROM contact ¢ '
ILEFT JO N person p ON p.id = c.person_id -- identical meaning: LEFT OUTER JOIN ... !
:(RDER BY p.lastname, p.firstname, c.contact_type DESC, c.contact_value; '
[T T T T T T T T T T T e -

What's the difference? We've changed the ordehetdble names. Note that we're still using a LEHT, but becauseontact is now
the "left" referent (the object in the FROM clays®htact data will now be considered as being of primarganiance; therefore, all the
contact rows will appear in the result - along vatly corresponding information that may exist ia fflerson table. As it happens, in the
database we're using, every contact record comelspm a person record so, in this case, it wotkglmt the results are equivalent to
what they'd have been if we'd used an inner joat.tNey're different from those of the previous-Jein example.

36 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Right (outer) Join

The right join obeys the same rules as the left, jput in reverse. Now, every record from the takkerenced in the join clause \
appear in the result, including those that haveamesponding record in the other table. Again, BMS supplies each empty right-
column cell with the null special marker. The odifference is that the evaluation sequence of taklearried out in reverse or, in ot
words, with the roles of the two tables swapped.

- A list of ALL contact records with any correspon ding person data, even if s :
:SELECT p.firstname, p.lastname, c.contact_type, c.contact_value .
{FROM person p .
\RIGHT JOIN contact ¢ ON p.id = c.person_id -- same as RIGHT OUTER JOIN ... '
:OQDER BY p.lastname, p.firstname, c.contact_type DESC, c.contact_value; '

1

Full (outer) Join

A full join retrieves every row of both the leftiie and the right table, regardless of whether mesponding record exists in the
respective opposite table.

ESELECT p.firstname, p.lastname, c.contact_type, c.contact_value :
\FROM person p '
JFULL JOIN contact ¢ ON p.id = c.person_id -- identical meaning: FULL OUTER JOIN ... !
:(RDER BY p.lastname, p.firstname, c.contact_type DESC, c.contact_value; '
T T . -

Giventable 1 andtable 2 below,

table 1

table 2
ID X

ID TABLE_1_ID |Y
111

11 21
2 12

2 5 22
3 13
the full join:
ESELECT *
IFROM table_1 t1

FULL JOIN table 2 2 ON tLid = t2.table_1_id;
L e e e e e e e E e e e E e E e E m E mE mE EmE e e e e m e m e m - m e — e — e mm = === e e e = e = e = e e = = = e = = = e = e = e = e = e = e = e = = -

will yield:

T1.ID |T1.X|T2.ID T2.TABLE_1_ID T2.Y

1 1 |1 1 21
2 12 | null | nul null
3 13 | null | nul null
null null |2 5 22

These results contain the (single) matching rous jpl row each for all the other records of botlthef original tables. As each of these
other rows represent data found in only one oftéides, they are each missing some data, so tlsereptesentative of that missing ¢
contain the null special marker.

Note: The full join is not supported by all DBMSeertheless, because it isn't an atomic operaitids always possible to create
desired result by a combination of multiple SELE@iith SET operations.

Cartesian Product

With inner joins, it is possible to omit the ON. IS@terprets this as a (syntactically correct) resjuto combine every record from the
left table with every record from the right tabliewill return a large number of rows; namely, fh@duct of the respective record counts
of both tables.

This special kind of an inner join is called a @aran product. The Cartesian product is an elemewotgeration of relational algebra,
which is the foundation for all rDBMS implementato

37 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

1

i all persons combined with all contacts (some imp lementations replace the
- keyword 'JOIN' with a comma)

SELECT p.firstname, p.lastname, c.contact_type, c.contact_value

IFROM person p

:JOl N contact ¢ -- missing ON keyword: p X ¢ will be created

(ORDER BY p.lastname, p.firstname, c.contact_type DESC, c.contact_value;

1

1

- count the resulting rows
\SELECT count (*)

JFROM person p

JO N contact c;

1

T T T T T T T T T T T e -

Be careful then; if you unintentionally omit the Q&km, the result will be much larger than expectédfor example, the first table
contains 10,000 records, and the second one 282@0@ds, the output will contain 200 million rows.

The n:m Situation

How can we create a list of persons and their lesfftbRemember: one person may run many hobbieseandaspersons may run the
same hobby. So there is no direct connection freragns to hobbies. Between the two tables we haagerd a third onperson_hobby.
It holds the id of persons as well as the id oftiies.

We have to 'walk’ fronperson to person_hobby and from there tbobby.

.
- persons combined with their hobbies :
(SELECT p.id p_id, p.firstname, p.lastname, h.hobbyname, h.id h_i d .
:FROM person p .
JO'N person_hobby ph ON p.id = ph.person_id '
YO N hobby h ON ph.hobby_id = h.id .
:OQDER BY p.lastname, p.firstname, h.hobbyname; !

1

Please notice that no column of the tgieson_hobby goes to the result. This table acts only duringrimediate execution steps. E
its columnid is not of interest.

Some people do not perform a hobby. As we perforaretNNER JOIN they are not part of the above Ifstve want to see in the list
also persons without hobbies, we must do what we dane before: use LEFT OUTER JOINs instead of HRNJOINS.

.
i ALL persons plus their hobbies (if present) :
(SELECT p.id p_id, p.firstname, p.lastname, h.hobbyname, h.id h_i d .
:FROM person p !
LEFT JO N person_hobby ph ON p.id = ph.person_id '
ILEFT JO'N hobby h ON ph.hobby_id = h.id .
:OQDER BY p.lastname, p.firstname, h.hobbyname; !

1

Hint: If necessary we can combine every kind ofi jaiith every other kind of join in every desiredjsence, eg: LEFT OUTER w
FULL OUTER with INNER

More Details
Criteria for join operations are not restrictedhe usual formulation:

1

:SELECT

[FROM table_1 t1

JON table_2 t2 ON tl.id = t2.fk

First, we can usany column not only primary key and foreign key columns.olme of the above examples we used the lastnana
join. Lastname is of type character and has no ingarf any key. To avoid poor performance some DB#®trict the use of columns
those having an index.

Second, the comparator is not restricted toettpeal sign We can use any sensfull operator, for examplégteater than' for numeric

values.

e e e e e 4
1

- Which person has the greater body weight - restr icted to 'de Winter' for clarity

(SELECT p1l.id, pl.firstname as "is heavier" , pl.weight, p2.id, p2.firstname as "than" , p2.weight

JFROM person pl
JO N person p2 ON pl.weight > p2.weight

MHERE pl.lastname = ‘'de Winter'

JANC p2.lastname = 'de Winter'

:(RDER BY pl.weight desc, p2.weight desc;
T T . -

38 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Third, we can use aarbitrary function .

S
- short lastnames vs. long lastnames
{SELECT pl.firstname, pl.lastname as “shorter lastname" , p2.firstname, p2.lastname

JO N person p2 ON LENGTH(pl.lastname) < LENGTH(p2.lastname)
\-- likewise ORDER BY can use functions

1
1
|
1
'FROM person pl .
|
1
:(RDER BY | engt h(pl.lastname), | engt h(p2.lastname); !

1

Exercises

Show first- and lasthname plus icq number for pesswving an icq number
Click to see solution

1

:SELECT p.id, p.firstname, p.lastname, c.contact_value
{FROM person p

JO'N contact ¢ ON p.id = c.person_id

:\/\HERE c.contact_type = ‘icqt

Show first- and lastname plus ICQ number plus fileel number for persons having an ICQ number ANiixed line. You need to jo
thecontact table twice.

Click to see solution

-- 1
1
{SELECT p.id, p.firstname, p.lastname, ‘
' cl.contact_value as icq, '
. c2.contact_value as "fixed line" -- looks like previous, but is different '
\FROM person p '
WJO N contact c1 ON p.id = cl.person_id '
WO N contact c2 ON p.id = c2.person_id -- it's a second (virtual) incarnation of contact t able !
VHERE cl.contact_type = 'icq’ -- from first incarnation f
1ANC c2.contact_type = ‘fixed line' ; -- from second incarnation .
! 1
1
- In this example of an INNER JOIN we can convert the WHERE part to an additional JOIN criterion. :
- This may clarify the intention of the command. B ut be careful: This shifting in combination with .
i-- one of the OUTER JOINs may lead to different res ults. !
:SELECT p.id, p.firstname, p.lastname, cl.contact_value as icq, c2.contact_value as "fixed line" :
{FROM person p .
JO'N contact c1 ON p.id = cl.person_id AND cl.contact_type = 'icq’ 1
:JOl N contact c2 ON p.id = c2.person_id AND c2.contact_type = ‘fixed line' .
e . :
Show first- and lastname plus (if present) the iZ@ber for ALL persons
Click to see solution
Fr T ST T T ST T T ST ST ST ST ST ST ST ST ST T T ST ST T T ST ST ST ST ST ST ST ST ST ST E S s TS e e T
- To retrieve ALL persons it's necessary to use a LEFT join. :
I But the first approach is not what we expect! In this example the LEFT JOIN is evaluated first '
i-- and creates an intermediate table with null-valu es in contact_type (eliminate the '
i-- WHERE clause to see this intermediate result). T hese rows and all other except the '
I one with 'ICQ" are then thrown away by evaluatin g the WHERE clause. .
ISELECT p.id, p.firstname, p.lastname, c.contact_value !
1FROM person p 1
ILEFT JO N contact ¢ ON p.d = c.person_id .
:\/\HERE c.contact_type = 'icq’ !
- It's necessary to formulate the search criterion as part of the JOIN. Unlike with '
\-- the INNER JOIN in the previous example with (LEF T/FULL/RIGHT) OUTER JOINSs it is not possible .
1-- to shift it to the WHERE clause. !
\SELECT p.id, p.firsthame, p.lastname, c.contact_value :
{FROM person p .
:LEFT JO'N contact ¢ ON p.d = c.person_id AND c.contact_type = 'icq’ '
g -4
Create a list which contains ALL hobbies plus adoay persons (if present)
Click to see solution
YT T T T T T T T T T T T T 1
(SELECT p.id p_id, p.firstname, p.lastname, h.hobbyname, h.id h_i d 1
IFROM person p .
WRIGHT JO N person_hobby ph ON p.id = ph.person_id .
WRIGHT JON hobby h ON ph.hobby_id = h.id 1
:(RDER BY h.hobbyname, p.lastname, p.firstname; '
L o o o o o o o e e e e e e e e e e e oo e e oo e e e e e e e e e e e e e e e e memeeeeee !
Is it possible that one of the three outer joinstams fewer rows than the corresponding inner?join
Click to see solution
Fr TS T T T T T T T T TS TS T T TS T TS S S SIS S SIS s s T
1 1
No. '
1 1
1 1
‘Al four join types contain the same rows with colu mn-matching-values. In addition '
:outer joins contain rows where column values do not match - if such a situation exists. '
1
e -

39 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

In this chapter we will leave the level of indivaluows. We strive to find informations and stateisethat refer tgroups of rows- at
the expense of information about individual rowsthe context of SQL such 'row-groups' (or setsowfs) are build by the GROUP
clause and further processed by the HAVING clause.

Constitute Groups

First we must establish criteria according to whicé rows are assigned to groups. To do so wehegsedantent of one or more columns
of the involved table(s). If the values are idealfithe rows belong to the same group. Consideladtieame in tableperson. In our sma
example we can insinuate that persons with santealae form a family. So if we strive for informat® about families we should use
this column as the grouping criterion. This grogpailows us to ask questions concerning whole fasyisuch as 'Which families are
there?', 'How many families exists?', 'How manyspes are in each family?'. Please note that dlierh are questions about the whole
group (which means the family), not about singlesgwhich means the person).

In the SQL syntax the criterion is specified attee key word GROUP BY and consists of one or moterannames.

SELECT ... -- as usual
'FROM -- as usual (optionally plus JOINs)

1
‘
1
IGROUP BY <columnname> -- optionally more columnnames !
! -- optionally other elements of SELECT command 1

‘

!

ISELECT lastname
JFROM person
:GROUP BY lastname;
L e m e e e e m e e e e m e m e i)

The query retrieves seven ‘family names' out ofltheows. There are several persons with lastn@alestein' or 'de Winter'.

We can retrieve the same seven 'family names' plyiag the key word DISTINCT in a SELECT without GRIP BY.

\SELECT DI STI NCT lastname
JFROM person;

1-- no GROUP BY clause

1

[T T T T T T T T T T T e -

What makes the difference? The DISTINCT key wortinigted to remove duplicate values. It can notiaté computations on ott
rows and columns of the result set. In contragt, HROUP BY additionally arranges the intermedia&eeived rows as a numbet
groups and offers the possibility to get informasia@bout each of these groups. It is even the thasewithin these groupal columns
are available, not only the ‘criterion’-column. danfirm this statement about ‘all' columns we weight which is not the ‘criterion'-
column.

\SELECT lastname, avg(weight) -- avg() is a function to compute the arithmetic me an of numerical values
JFROM person
:GROUP BY lastname;

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = 2

The result shows the seven family names - as sefemeb- plus the average weight of every familye Teight of individual persons is
not shown. (In groups with exactly one person therage weight of the group is of course identiodahe single persons weight.)

Grouping over multiple columns

If necessary we can define the grouping over moae bne column. In this case we can imagine theatenation of the colums as the
grouping rule.

I Group over one column: place_of_birth leads to 6 resulting rows

'SELECT place_of_birth, count (*)

IFROM person

IGROUP BY place_of_birth;

- Group over two columns: place_of_birth plus last name leads to 8 resulting rows with Richland and SF shown twice
SELECT place_of_birth, lastname, count (¥)

JFROM person

:GROUP BY place_of_birth, lastname;

L e e e mf e cmmcmc e cmcmmccmmccmmcccmmccmmcc - e mcc e mcc - -mce-—meec-—-mecec—-mee—-mememem e —mememmmem e mmmemmm e m e mm e m——— === -

Inspect Groups

40 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

After we have defined groups with the GROUP BY keyrd, we can select more informations about eacthef, e.g.: how mu
persons (rows) exist within each family (group @ivs)?

JFROM person

.
\SELECT lastname, count *) -- count() is a function which counts values or row s :
1
1
:GROUP BY lastname; '

1

We see that in our small example database themeidamily with 3 members, another with 2 membeais @l others consist of exactly 1
member.

What is going on behind the scene during the exatof the command?

1. All ten rows of tableperson are retrieved (in the above command there is nd&ERE clause).

2.The rows are arranged into seven groups accorditigetvalue of columhastname.

3. Every group with all of its rows is passed to tli&. ECT clause.

4.The SELECT builds one resulting row for every reedi group (in 'real world' databases each of tleigs may conta
thousands of rows).

In step 4exactly oneresulting row is generated per group. BecauseSHIEECT creates only one resulting row per groups ot
possible to show values of such columns which nifigrdrom row to row, e.g. the firstname. The SELEcan only show such values
of which it is ensured that they are identical watall rows of the group: the ‘criterion’-column.

T T T L T L e
1

- It is not possible to show the ‘firstname’ of a group! ‘firstname’ is an attribute of single person

I Within a group 'firstname' varies from row to ro w.

- The DBMS should recognise this problem and shoul d issue an error message.

\SELECT lastname, firstname

JFROM person

:GROUP BY lastname;

- A hint to users of MySQL:

\-- To receive correct results (the error message) y ou must deactivate a special performance feature by issuing the command
:—— set sql_mode = 'ONLY_FULL_GROUP_BY"; or set iti n the workbench or in the ini-file.

Nevertheless we can get information about the mitermon-columns. But this information is more gemzed. The DBMS offers
special group of functions which builds one valug of a set of rows. Consider the avg() functiohjolt computes the arithmetic me

of numerical values. This function receives a calurame and operates on a set of rows. If our comrimaquestion contains a GROUP
BY clause, the avg() function does compute oneevgkr group - not one value per all rows as ugalt is possible to show the result
of such functions together with the values of tngerion'-column.

Here is an - incomplete - list of such functioosunt(), max(), min(), sum(), avg(). Not all fuiems are of that kind, e.g. the funct
concat(), which concatenates two strings, opei@tesngle rows and creates one value per row.

1

- compute avg() by your own formula

SELECT lastname, sum(weight) / count (weight) as "Mean weight 1" , avg(weight) as "Mean weight 2"
JFROM person

:GROUP BY lastname;

Focus on Desired Groups

You know the WHERE clause. It defines which rowsaéble will be part of the result set. The HAVIN{ause has the same meaning at
the group-level. It defines which groups will betpaf the result set.

__ .
1
\-- The HAVING complements the GROUP BY :
ISELECT ... i
FROM ... !
\GROUP BY <columnname> 1
:HAVI NG <havi ng clause>; -- specify a criterion which can be applied to grou ps .
L o o o o o o o e meeem 2
We retrieve exclusively families with more than émbers:
T TS S S S E T
1
:SELECT lastname :
{FROM person !
IGROUP BY lastname -- grouping over lastname '
:H/-\VI NG count (*) > 1; -- more than one person within the group 1
1
T T . -

All families with one member are no longer parttof result.

In a second example we focus on such groups whitfies a criterion on columfirstname. Consider thatirstname is not the grouping-
column.

I Groups containing a person whose firstname has m ore than 4 characters: 5 resulting rows
ISELECT lastname

41 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

FROM person

IGROUP BY lastname

:HAVI NG nmax(| engt h(firstname)) > 4; -- max() returns ONE value (the highest one) for al | rows of each ‘lastname’-group
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

The result shows the 5 families Baker, de Winteid&tein, Rich and Stefanos (, but not the row(#) e longfirstname).

Please note that this result is very different ftbi similar question to persons whose firstnangenhare than 4 characters:

i-- Persons whose firstname has more than 4 characte rs: 6 resulting rows!! i
:SELECT lastname, firstname '
{FROM person '
WVWHERE | engt h(firstname) > 4; '
- no GROUP BY and no HAVING. The WHERE isn't an eq uivalent replacement for the HAVING!! .

1

Where is the additional row coming from? In the ifgrde Winter there are two persons with a firsteaonger than 4 characters: James
and Victor. Because in the command without GROUPwRYselect for persons and not for families, boths are displayed individually.

In summary we can say that the HAVING clause degiddich groups are part of the result set and lwaie not.

The Overall Picture

The GROUP BY and HAVING clauses are part of the BEL comand and we can combine them with any otlaeises of the SELEC
as desired. Only the order of the clauses is dbliga

i This is the obligatory order of clauses
'SELECT ...

{FROM

VHERE

:GROUP BY ...

HAVI NG

As mentioned the WHERE clause works on the rowlletereas the HAVING clause works on the groupdekast the WHERE is
evaluated, next the GROUP BY, next the HAVING, néwd ORDER BY and at the end the SELECT. Every stdgased on the results
of the previous one.

Finally we offer two additional examples:

- Are there persons born on the same day?

\SELECT date_of_birth -- In a later chapter you will learn how to select the name of this persons.
JFROM person

1GROUP BY date_of_birth

HAVI NG count (date_of_birth) > 1 -- more than one on the same day?

'ORDER BY date_of_birth;

1

i~ Families with long first- and lastname. Comment out some lines to see differences to the original q uery.
'SELECT lastname, count (*) as cnt

IFROM person

WVHERE | engt h(firstname) > 4

:GROUP BY lastname

HAVI NG | engt h(lastname) > 4

IORDER BY cnt desc, lastname

Exercises

Are there persons born on the same day in the say®eHint: group over both criteria
Click to see solution

1

:SELECT date_of_birth, place_of_birth
{FROM person

\GROUP BY date_of_birth, place_of_birth
:HAVI NG count (*) > 1;

Categorise persons according to the formula: 'rqumdght / 10)": 10 to 19 kg --> 1, 20 to 29 kg 27...
How much persons exist in each category?

Click to see solution

ISELECT round (weight / 10), count (*)

IFROM person

'GROUP BY round (weight / 10)

- ORDER BY round (weight / 10) -- order by catego ry
JORDER BY count (¥ -- order by frequency

42 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Which contact type is used in which frequency big¢acontact?

Click to see solution

[ttt ittt ittt ittt ittt 1
\SELECT contact_type, count (*) i
'FROM contact .
'GROUP BY contact_type .
-- ORDER BY contact_type -- order by contact_type 1
:OQDER BY count (*) -- order by frequency :
; :
g 4

Restrict previous result to contact types whichuosaenore than once.
Click to see solution

1

'SELECT contact_type, count (*)

IFROM contact

IGROUP BY contact_type

:HAVI NG count (*) > 1

- order by contact_type -- order by contact_type
JORDER BY count (*) -- order by frequency

Are there persons performing more than 2 hobies® Efieck table person_hobby.
Click to see solution

1

\SELECT person_id, count (*) i

:FROM person_hobby |

(GROUP BY person_id '

HHAVING count (¥) > 2 !
1
1

Are there persons performing only one hobby?
Click to see solution

\SELECT person_id, count (¥ ‘
IFROM person_hobby .
\GROUP BY person_id '
HAVING count(*) = 1 '
1
1

Are there persons performing no hobby?
Click to see solution

There are persons, which do not perform a hobby. Bu t the nearby formulation ‘count(*) = 0

will not lead to the expected result because for su ch persons there are no rows

in table person_contact, so the DBMS cannot create any group and hence cannot display anything.
1

1

:Looking for something that does NOT exist is often more difficult than looking for the
existence of something. In such cases you usually h ave to use one of: NOT EXISTS, NOT IN,
1a combination of OUTER JOIN and IS NULL, a combinat ion of OUTER JOIN and MINUS together
:With INNER JOIN.

[T T T T T T T T T T T e -

When creating new rows it may occur that we domivk the value of one or more columns.

Let's assume that we want to store informationsiebanking accounts and for one of those accouatdan't know the balance. What
can we do? There are several possibilities:

= Reject the whole row with all other informations like aemt number, dispositional credit, interest rate, Not very
attractive.

m Store adefault value instead of the value we acually don't know. Bugréhare cases where it is impossible to def
default value because every value is possible agbgnk account of '0' or -1' is not unusual.

= Store dlag that signals that no value is stored. This apgréasimilar to theNot-a-Number technique.

Relational DBMS uses the last mentioned techniquet the sense of the flag is 'there is no valueedtoiSometimes people say 'The
NULL value is stored' or 'THdULL special marker is stored'.

Extention of Boolean Logic

43 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Assume there is a table for banking accounts ame saf its rows hold the NULL special marker in t@umnbalance. Does those rows
fullfill at least one of the two WHERE conditionsalance >= 0' or 'balance <= 0'? No. It is not jpdsso decide whether these
conditions are true or false! Honestly we must adhdt we don't know an answer in our usual tre#féogic because we don't kno
value forbalance. We are forced to extend the range of booleanegawith a third one, which we calhkown. The two conditions
above evaluate neither true nor false, both evaltaunknown' for rows whet®lance holds the NULL special marker.

In a later stage we need definitions for the baoleperators NOT, AND, OR and EQUAL when true/fatgeract with unknown. Yc
find the definitions here.

Retrieve the NULL Special Marker

Within every SELECT command such rows become phathe resulting rows, in which the WHERE conditiemaluates to true. If it
evaluates to false or unknown, the row will be ¢age. Asall WHERE conditions like the above 'balance >= 0id also their negation -
evaluates to unknown for missibglance values, there is preliminary no way to retrieventh

To overcome this lack, SQL contains the speciaagdrlS NULL'. The wording 'balance IS NULL' evdkmto true for exactly the rows
with a missing value ibalance.

1
'SELECT ... :
IFROM
WVHERE <columnname> | S NULL .
1
1
1
1
1

We must use exactly this wording. The use of aithraetic operator like >, <=, =, ... will not régwve rows with the NULL speci
marker. The same holds true even for the condifimlance = 0) OR NOT (balance = 0)', which isw@&dtogy in conventional true/false
logic. Beside this IS NULL predicate there is nbestway to retrieve the NULL special marker - with@ne simple but not helpf
exception: if you omit the WHERE condition, all rewf the table are retrieved, with and without NUtpecial marker in any column.

That's all' Dealing with NULL special marker andetB-value-logic might sound strange if you firsttrifgs topic. But as the IS NULL
predicate evaluates always to true or false eviytivorks as usual afterwards. We can use all alenents of the SELECT commi
(boolean logic, join, having, order by, ...) in theane way we have done so far.

Some Examples

Our test database does not contain the NULL spetwaker. Nevertheless we have met the situatioimgltine explanation of OUTE
joins. OUTER joins create resulting rows where sawlemns contain the NULL special marker. We mustsider this possibility, if w
deal with the results of such subselects.

There are two other ways to generate the NULL speaarker.

= INSERT or UPDATE command with the explicit notiohtbe NULL special marker. In this case the SQL keyrd null is
used as a representative for the NULL special nmarke
» INSERT command without using all columns. The oedittolumns will get the NULL special marker - odefault, if one is

defined.
To demonstrate this and to create some exampldhddiollowing excercises, we put one row into geeson table with some columns
left empty.
;' """ T
- Insert a new row for testing purpose
il NSERT | NTO person (id, firstname, lastname) VALUES (51, ‘Half man' , ‘Uncomplete’);
{COWM T;
- Retrieve the row. As defined in CREATE TABLE sta tement the weight has a default value of integer 0.
:—— Date_of_birth and place_of_birth contain the NUL L special marker.

\SELECT * FROM person WHERE id = 51;

1

i use the IS NULL predicate within WHERE clause. T he result contains 1 row.
:SELECT * FROM person WHERE ssn |'S NULL;

-~ weight has a value!! We expect to retrieve no ro ws when we use the IS NULL predicate.
:SELECT * FROM person WHERE weight |S NULL;

- or, to say it the other way round, the number of rows is 0

(SELECT count (*) FROM person WHERE weight 1S NULL;

- but in the next statement the number of rows is 1

\SELECT count (¥} FROM person WHERE weight = 0;
1

- Negate the IS NULL predicate

\SELECT count (¥} FROM person WHERE ssn |'S NULL; -- IS NULL

{SELECT count (*) FROM person WHERE ssn | S NOT NULL; -- Negation of IS NULL

'

'SELECT count (¥)

JFROM person

WMHERE ssn IS NULL

1OR ssn IS NOT NULL; -- A tautology, which always retrieves ALL rows of a table
i-- Same as above

44 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

:SELECT count (*) |
{FROM person '
WVWHERE ssn |'S NULL H
:(R NOT ssn | S NULL; -- A tautology, which always retrieves ALL rows of a table '

1

I T
1

-

I Insert a new row for testing purpose with all co lumns filled with a usefull value

I NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn, weight)

WALUES (52, ‘'Lyn' , ‘Mutable' , DATE1951-05-13' , ‘'Anchorage’ , '078-05-1152" , 69);

1COWM T;

'SELECT * FROM person \WHERE id = 52;

\-- Delete a single column value (not the complete r ow)

:UPDATE person SET ssn = null WHERE id = 52;

1COMM T;

{SELECT * FROM person WHERE id = 52; -- one row

:SELECT * FROM person WHERE ssn |'S NULL; --two rows: 51 + 52
g 4

__ .

1

{DELETE FROM person WHERE id > 50; ;

ICOMM T; .
1

L e m e e e m e cmmcccm e mcmmccmmccmmcmcmmccmmc - mccc e mcc - -mc-c— e ee—-meec--mece—-m e emmememmm e m e e e mm e mm e m—— === -

Coalesce() and Similar Functions

In the context of the NULL special marker it isaitthe case that we have to retrieve rows withaloev(the NULL special markeor
a default value such as 0 or blank. In such cake3)VHERE condition looks something like this: WHERE (col IS NULL OR col = 0)
...". To keep source code simpler, the SQL standefiies a functiomoalesce(<expression_1>, <expression_2H)the first argument,
which normaly is the name of a column, is not NULhe function evaluates to this argument - elstéosecond argument.

Example:

'
- Retrieve rows without ssn or with ssn equal to b lank.
SELECT *

JFROM person

:V\HERE coalesce(ssn,)y ="

- equivalent:

:—— WHERE (ssn IS NULL

- OR ssn="");

The function nameoal esce results from the fact that the function acceptsagsitrary number of parameters and evaluates thes
recursive manner. If parameterresults in a real value, it evaluates to this peter, else the function calls itself without the¢h
parameter. coalesce(expression_1, expression_2essipn_3) evaluates to expression_1, if expressios not NULL, else to
expression_2, if expression_2 is not NULL, elsexpression_3.

The SQL standard defines another functioflif(<expression_1>, <expression_2>)it evaluates to NULL, if the two expressions are
equal - and it evaluates to the first expressiahely differ from each other.

Different vendors offers some more functions ligeull(), ifnull() or nvl() to support handling of NULL values. The meaningti$
functions is vendor specific.

Exercises

Insert a new hobby 'Snowshoeing' without a remark.

Click to see solution

25 T
I NSERT | NTO hobby (id, hobbyname, remark) :
'VALUES (10, 'Snowshoeing’ , null); .
:CO\/M T, '
g 4

Find a second solution for the above question withising the key word 'null'. (First delete row)10.
Click to see solution

EDELETE FROM hobby WHERE id = 10;

il NSERT | NTO hobby (id, hobbyname)
WVALUES (10, ‘'Snowshoeing');
1ICOWM T,

45 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

Retrieve all hobbies without a remark.

Click to see solution

https://en.wikibooks.org/w/ixgdp ?title=Structured

_Query_Langua

__ .
-1 row :
:SELECT * FROM hobby WHERE remark |S NULL; N
L e o e o o e o e e e e e e e e e e eea 2
How many hobbies are exemplified with a remark?

Click to see solution

r """ T
- 9 rows :
:SELECT count (*) FROM hobby WHERE remark |S NOT NULL; '
S 2
Change row 10 of hobby in the way that the hobbneomtains the string 'NULL' and the remark 'Naméaiby not known'.

Click to see solution
25 T
1 Consider the two apostrophes surrounding the str ing 'NULL', which consists of the 4 characters N, U LandL!! :
\UPDATE hobby SET hobbyname = 'NULL' , remark = 'Name of hobby not known' WHERE id = 10; .
1COWM T; :
e 4
a) Retrieve the row where hobbyname is 'NULL".

b) Retrieve the row where remark is ‘Name of hofadstyknown'.

Click to see solution
25 T
i This may be a pitfall question. There is no rela tion to the IS NULL predicate :
{SELECT * FROM hobby WHERE hobbyname = 'NULL' ; '
:SELECT * FROM hobby WHERE remark = ‘Name of hobby not known' !
L e m e e e e e e e e e e e e 4
How many hobbies have a hobby name?

Click to see solution

r """ T
i-- All 10 rows contains a hobby name, even the row with the hobbyname 'NULL' :
:SELECT count (*) FROM hobby WHERE hobbyname IS NOT NULL; '
S 2

There are two groups of predefined functions:

m aggregate functions They work on a set of rows, which means they ivecene value for each row of a set of rows
returns one value for the whole set. If they aflkedan the context of a GROUP BY clause, they @aled once per group,
else once for all rows.

» scalar functions They work on single rows, which means they rez@re value of a single row and returns one vait
each of them.

Aggregate functions

They work on a set of rows and return one singlaevéike the number of rows, the highest or lowestie, the standard deviation, etc.
The most important aggregate functions are:

Signatur
COUNT(¥)

COUNT(<column
name>)

MIN(<column
name>)

MAX(<column
name>)

SUM(<column
name>)

AVG(<column
name>)

46 sur 121

Semantic

The number of rows

The number of rows where <column name> contairsl@v(IS NOT NULL). The elimination of rows witheh

NULL special marker in the considered column appi@all aggregate functions.

Lowest value. In the case of strings accordindgheogequence of characters.

Highest value. In the case of strings accordindpéosequence of characters.

Sum of all values

Arithmetic mean

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

As an example we retrieve the maximum weight opaisons:

__ .

1

{SELECT MAX(weight) :

IFROM person; '
1

L o o o o o o o o o e mdeecoooo 2

A Word of Caution
Aggregate functions result in one value for a $ebws. Therefore it is not possible to use thegetber with 'normal’ columns in the
projection (the part behind SELECT key word). If gggecify, for example,

__ .

1

(SELECT lastname, ~ SUMweight) ‘

IFROM person; '
1

L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

we try to instruct the DBMS to showlat of rows containing thdastname simultaneously witlone value. This is a contradiction and the
system will throw an exception. We can use a laggfregate functions within one projection but we ot allowed to use them toget
with 'normal’ columns.

- Multiple aggregate functions. No 'normal’ column S.

[SELECT SUMweight)/ COUNT(weight) as average_1, AVG(weight) as average_2
:FROM person;

L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

Grouping

If we use aggregate functions in the context of mamds containing a GROUP BY, the aggregate funstoa called once per group.
T TS S S E T
1

1-- Not only one resulting row, but one resulting ro w per lastname together with the average weight of all rows with this lastname.

ISELECT AVG(weight)
JFROM person
:GROJP BY lastname;

E—— The lastname may be shown as it is the GROUP BY criteria
\SELECT lastname, AVG(weight)

JFROM person

:GROUP BY lastname;

The NULL special marker
If a row contains no value (it holds the NULL spdcenarker) in the named column, the row is not pathe computation.

i If ssnis NULL, this row will not count.
{SELECT COUNT(ssn)
:FROM person;

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = 2

ALL vs. DISTINCT

The complete signatures of the functions arela litore detailed. We can prepend the column nanteomie of the two key words ALL
or DISTINCT. If we specify ALL, which is the defaukvery value is part of the computation, elsegy dhbse, which are distinct frc
each other.

function_name ([ALL|DISTINCT]<column name>)
COUNT (DISTINCT weight) -- as an example

Hint

The standard defines some more aggregate functibeempute statistical messures. Also the keywdN¥, EVERY and SOME
formally are defined as aggregate functions. Wedigtuss them on a separate page.

Scalar functions

Scalar functions act on a 'per row basis'. Theycalled once per row and they return one valuegadlr Often they are group
according to the data types they act on:

» String functions
SUBSTRING(<column name> FROM <pos> FOR <len>) mesua string starting at position <pos> (first cloéea counts
'1") in the length of <len>.
UPPER(<column name>) returns the uppercase eqoivaiéhe column value.

47 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

LOWER(<column name>) returns the lowercase equitaiéthe column value.
CHARACTER_LENGTH(<column name>) returns the lengththe column value.
TRIM(<column name>) returns the column value withleading and trailing spaces.

TRIM(LEADING FROM <column name>) returns the columalue without leading spaces.
TRIM(TRAILING FROM <column name>) returns the colnomalue without trailing spaces.

Numeric functions

SQRT(<column name>) returns the square root otthemn value.

ABS(<column name>) returns the absolute value efctilumn value.

MOD(<column name>, <divisor>) returns the remairofigolumn value divided by divisor.
others: FLOOR, CEIL, POWER, EXP, LN.

Date, Time & Interval functions
EXTRACT(month FROM date_of_birth) returns the moaofttolumn date_of_birth.

build-in functions. They do not have any input paeger.
CURRENT_DATE() returns the currente date.
CURRENT_TIME() returns the currente time.

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

There is another wikibook where those functionssii@wn in detail. The data type of the return vadueot always identical to the type
of the input, e.g. ‘character_length()' receivetriag and returns a number.

Here is an example with some scalar functions:

1

{SELECT LOVER(firstname), UPPER(lastname), CONCAT(‘today is:" , CURRENT_DATE)
IFROM person;

1

Exercises

What is the hightest id used so far in the hobbjeta

Click to see solution

1
{SELECT max(id)
:FROM hobby;

Which lastname will occur first in an ordered list?

Click to see solution

1

{SELECT ni n(lastname)
IFROM person;

1

Are there aggregate functions where it makes rierdifice to use the ALL or the DISTINCT key word?

Click to see solution

\Yes. min(ALL <column name>) leads to the same resul t as min(DISTINCT <column name>) as
:it makes no difference whether the smallest value o ccurs one or more times. The same is true for max()

Show persons with a short firstname (up to 4 charap

Click to see solution

1
1-- We can use functions as part of the WHERE clause

\SELECT *

JFROM person

WHERE charact er _| engt h(firstname) <= 4; -- Hint: Some implementations use a different funct ion name: length() or len().
1

Show firstname, lastname and the number of chasadte the concatenated string. Find two differealutions. You may use the

character_length() function to compute the lenditstiings and the concat() function to concateséiags.

Click to see solution

1
-- Addition of the computed length. Hint: Some impl ementations use a different function name: length() or len().

SELECT firstname, lastname, charact er _| engt h(firstname) + char act er _| engt h(lastname)
IFROM person;

- length of the concatenated string

SELECT firstname, lastname, character_| engt h(concat (firstname, lastname))

48 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

IFROM person;
\-- show both solutions together
ISELECT firstname, lastname,

' charact er _| engt h(firstname) + charact er _| engt h(lastname) as L1,

. charact er _| engt h(concat (firstname, lastname)) as L2

:FROM person;

T T T T T T T T T T T e -

Tables, views and results of SELECT commands aeminewhat similar to sets of set theory. In thismparision the elements of sets
correspond to rows of tables, views and SELECTli®sThe differences between set theory and timizeed SQL constructs are:

» Sets of set theory do not allow duplicates whe&@ks allows duplicates. (Even different rows of @aable may be identic
as there is no duty to use the concept of primagsXR In the following we use the temultiset when we speak about sets
in SQL where duplicates are possible.

m Sets of set theory and multisets are not orderet f& the result of a SELECT command we can emfan ordering by
means of the optional ORDER BY clause.

The comparision between set theory and SQL goes fewther. In SQL we have operations which actsroitisets in the sense of set
theory: The SQL operations UNION, INTERSECT and EEXJ (some name it MINUS) process intermediaitétisets generated by
differents SELECT commands. The operations exgeehiltisets are of the same type. This means mainly that thest have the
same number of columns. Also their data type shoatdelate, but this is not mandatory. If they d, the DBMS will cast them to
common data type - if possible.

UNION

The UNION operation pushs the result of several BEL commands together. The result of the UNION aimistthose values, which are
in the first or in the second intermediate result.

:FRQ\/l person;

5 T
- Please consider that this is only one command (o nly ONE semicolon at the very end) :
[SELECT firstname -- first SELECT command .
:FROM person '
i UNION -- push both intermediate results together to one r esult 1
{SELECT lastname -- second SELECT command .
1
1
1

This is a single SQL command. It consists of tw&BETs and one UNION operation. The SELECTs areuatal
first. Afterwards their results are pushed togettemone single result. In our example the resulitains all
lastnames and firstnames in a single column (oamgke may be of limited help in praxis, it's onlg@monstration
for the UNION).

DISTINCT / ALL TheUNION of
If we examine the result closely, we will noticatlit consists only of 17 values. The tapdeson contains ten rows two intermediate
so that we probably expect twenty values in thelltef we perform the 'SELECT firstname ..." ai®ELECT results

lastname ..."' as separate commands without the NNK@ receive for both commands 10 values. Theaggtion

for the 3 missing values is the UNION command.dhéwves by default that it removes duplicates. Thezesome of the intermediate
values are skipped. If we want to obtain this digté values we have to extent the UNION. It canvizken with one of the two key
words DISTINCT or ALL. DISTINCT is the default aritd behaviour is the removal of duplicate valuesciiwe have seen before. ALL
leads to the retention of all values, independdrdther they appeared before or not.

I remove (that's the default) or keep duplicates

1
1
ISELECT
i+ UNION [DISTINCT | ALL] '
'SELECT ... \
:[-- it is possible to 'UNION' more than 2 intermedia te results .
\ UNION [DISTINCT | ALL] '
1
1
1
1

A hint for Oracle users: The use of the key wor@DNCT, which is the default, is not accepted ba@s. Omit it.

General hint
In most cases the UNION combines SELECT commandslifferent tables or on different columns of thensatable. SELEC
commands on the same column of a single tablelysisd the WHERE clause in combination with boolkeyic.

1

- A very unusual example. People apply such querys on the same table only in combination with very co mplex WHERE conditions.
\-- This example would normally expressed with a phr asing similar to: WHERE lastname IN (‘de Winter', " Goldstein');

:SELECT *

{FROM person

WVWHERE lastname = ‘'de Winter'

+ UNION ALL

ISELECT *

1

49 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

JFROM person !
:\/\HERE lastname = 'Goldstein’ ; '
\

INTERSECT

The INTERSECT operation evaluates to those valwbigh are in both intermediate results, in thet s well as
in the second.

INTERSECT

:' """ T
- As in our example database there is no example f or the INTERSECT we insert a new person. :
- This person has the same lastname 'Victor' as th e first name of another person. .
:I NSERT | NTO person VALUES (21, ‘Paul' , ‘Victor' , DATE1966-04-02' , 'Washington' , '078-05-1121' , 66); :
ICOMM T; '
- All firstnames which are used as lastname. .
{SELECT firstname -- first SELECT command !
IFROM person 1
i | NTERSECT -- looking for common values .
{SELECT lastname -- second SELECT command !
:FROM person; |

1
g -

A hint to MySQL users: MySQL (5.5) does not suppdNTERSECT operation. But as it is not an elemgni@peration, there are
workarrounds.

EXCEPT

The EXCEPT operation evaluates to those valueshndmie in the first intermediate result but nothie second.

EXCEPT
0 1
1
i-- All firstname with the exception of 'Victor' bec ause there is a lastname with this value. f
:SELECT firstname -- first SELECT command :
:FROM person .
1 EXCEPT -- are there values in the result of first SELECT b ut not of second? '
{SELECT lastname -- second SELECT command .
1
1
1

:FROM person;

A hint to MySQL users: MySQL (5.5) does not suppthe EXCEPT operation. But as it is not an elemgntgperation, there are
workarrounds.
A hint to Oracle users: Oracle use the key word VENnstead of EXCEPT.

i~ Clean up the example database
{DELETE FROM person WHERE id > 10;
1ICOWM T;
e -

Order By

We can combine set operations with all other elemehSELECT command, in particular with ORDER BidaGROUP BY. But this
may lead to some uncertainties. Therefore, we wikddo explain some of the details below.

e
ISELECT firstname -- first SELECT command

JFROM person

\SELECT lastname -- second SELECT command

JFROM person

1
i
v UNI ON -- push both intermediate results together to one r esult E
i
:(RDER BY firstname; E

'

To which part of the command belongs the ORDER BY the first SELECT, to the second SELECT or tordmult of the UNION? The
SQL rules determine, that set operations are etedubefore ORDER BY clauses (as always parenttossischange the order
evaluation). Therefore the ORDER BY sorts the fieasult and not any of the intermediate results.

We rearrange the example in the hope that thingslgar.

! N
i-- Equivalent semantic
1
1

50 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

\SELECT * FROM

ORDER BY t.firstname;

'

'
! (SELECT firstname -- first SELECT command !
i FROM person 1
. UNI ON -- push both intermediate (unnamed) results togethe r to the next intermediate result 't' .
! SELECT lastname -- second SELECT command !
i FROM person 1
V)t -- 't'is the name for the intermediate result gene rated by UNION .
: :

|

First the two SELECTS are evaluated, afterwared2lHION. This intermediate result gets the nam#' & ordered.

Often one would like to achieve that the rows fritwa first SELECT are ordered independent from ttadsbe second SELECT. We ¢
do this by adding a virtuel column to the resulboth SELECTSs.

ISELECT '1' as dummy, firsthame :
IFROM person |
1 UNION !
ISELECT '2' , lastname |
JFROM person |
:(RDER BY dummy, firstname; !

1

Group By

With the GROUP BY clause things are little more pticated than with ORDER BY. The GROUP BY referghe last SELECT or - to
say it the other way round - to the SELECT of itect level.

1

i-- Will not work because the GROUP BY belongs to th e second SELECT and not to the UNION!
SELECT firstname

IFROM person

' UNION

SELECT lastname

IFROM person

IGROUP BY firstname;

1
1
1
1
1
1
1
1
1
1
1
1° :
1
\-- Works, but possibly not what you want to do. !
- The alias name for the (only) column of the UNIO N is ‘firstname’. '
(SELECT firstname :
JFROM person !
+ UNI ON '
I~ We group over the (only) column of the second SE LECT, which is 'lastname' and results in 7 values .
{SELECT lastname '
FROM person .
JGROUP BY lastname; '
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- Make things clear: rearrange the query to group over the final result
SELECT * FROM
' (SELECT firstname -- columnnames of the first SELECT determins the co lumnnames of the UNION
FROM person
UNI ON

SELECT lastname
FROM person
)t
GROUP BY t.firstname; -- now we can group over the complete result

Exercises

Show the lowest, highest and mean weight as ajug@saf 1 row and b) 1 value in 3 rows.
Click to see solution

- 1 row

SELECT mi n(weight), max(weight), avg(weight)
JFROM person;

1

1
1
1
1
1
i
1 1
-- 3 rows !
ISELECT ni n(weight) :
IFROM person ,
1 UNI ON '
'SELECT max (weight) :
IFROM person !
1 UNI ON :
{SELECT avg(weight) '
:FROM person; !

1

Extend the previous 3-rows-solution to meet twoitialthl criteria: a) consider only persons borrsan Francisco and
b) add a virtual column to show 'Min', 'Max' andgPaccording to the correlating numeric values.

Click to see solution

1

'SELECT 'Min' , ni n(weight)

IFROM person

WHERE place_of_birth = ‘San Francisco'

51 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

T UNION

'SELECT 'Max' , max (weight)

IFROM person

WHERE place_of_birth = 'San Francisco'
: UNI ON

SELECT ‘Avg' , avg(weight)

JFROM person

:V\HERE place_of_birth = 'San Francisco'

Extend the previous solution to order the reshé:minimum value first, followed by the average #meh the highest value.
Click to see solution

- 'ugly’ solution

1ISELECT '1 Min' AS note, i n(weight)
JFROM person

VHERE place_of_birth = 'San Francisco'
1 UNI ON

\SELECT '3 Max' AS note, nax(weight)
:FROM person

VHERE place_of_birth = 'San Francisco'
1 UNION

:SELECT ‘2 Avg' AS note, avg(weight)
{FROM person

WWHERE place_of_birth = 'San Francisco'
:CRDER BY note;

1

\-- 'clean’ solution

iSELECT 1 AS note, 'Mi
JFROM person

VHERE place_of_birth = 'San Francisco'
1+ UNI ON

ISELECT 3 AS note, 'Max' , max(weight)
'FROM person
WVHERE place_of_birth
! UNION

:SELECT 2 AS note, 'Avg' , avg(weight)
{FROM person

\VHERE place_of_birth = 'San Francisco'
:(RDER BY note;

n'" , m n(weight)

'San Francisco'

Create a list of lastnames for persons with a viejgiater than 70 kg together with
all e-mail values (one value per row). There i£oncordance between lastnames and e-mails.
(This example is not very helpfull for praxis, astructive.)

Click to see solution

1

:SELECT lastname

IFROM person

VHERE weight > 70

: UNI ON

\SELECT contact_value

JFROM contact

:\/\HERE contact_type = ‘email’

In the previous example the lastname 'de Wintesh@wvn only once. But there are more than one persbthe family with a weight
greater than 70 kg.

Why?

Extend the previous solution to show as much riegulbws as hits to the criteria.

Click to see solution

:” Extend 'UNION' to 'UNION ALL'. The default is 'U NION DISTINCT'
ISELECT lastname

IFROM person

WVWHERE weight > 70

+ UNION ALL

\SELECT contact_value

JFROM contact

:V\HERE contact_type = ‘email’

[T T T T T T T T T T T e -

Sometimes it's necessary to translate stored véduaslues to be stored) from one representaticanbther. Suppose there is a col
status with legal values from 0 to 9 but the end-usemuhreceive strings which explain the meaninghef numeric values in short, eg.:
'ordered’, 'delivered’, 'back delivery', ‘out ascdt, The recommended way to do this is asp table where the numeric values
maps to the explanatory strings. Notwithstandingy tpplication developers may favor a solutiorhimitan application server.

The CASE expression, which is shown on this page, technique for solving the described situat®mpart of a SELECT, INSERT

UPDATE command as well as solving additional protde As part of the language it's a powerful ternictvitan be applied at plenty
places within SQL commands. On this page we focugsouse together with the SELECT command. Thetestyy and syntax for CASE
within INSERT and UPDATE are equivalent and arespreed over there. In comparison with the recommenechnique of a separate

52 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

table for the translation the CASE expression ismmore flexible (which is not an advantage ircalies).

Two Examples

contact_value
FROM contact;

R e e e R el)
1

- Technical term: "simple case" :

- Select id, contact_type in a translated version and contact_value .

'SELECT id, :

! CASE contact_type 1

WHEN ‘fixed line' THEN 'Phone' .

WHEN ‘mobile’ THEN 'Phone’ !

ELSE ‘Not a telephone number f

1

1

1

1

1

1

1
1
:
. END,
1
1
1
1

The CASE expression is introduced with its key wGAISE and runs up to the END key word. In thist fl@sample it specifies a colui
name and a series of WHEN/THEN clauses with anooptiELSE clause. The WHEN/THEN clauses are consparel evaluate
against the values of the named column, one dftepther. If non of them hits, the ELSE clause iapplf there is no ELSE clause
non of the WHEN/THEN clauses hit, the NULL speaigrker will be applied.

The comparison between the values of the columntleadixed values within the WHEN/THEN clause ivdasolely by "=" (equals).
This is a good starting point, but real applicatioeed more than that. Therefore there is a vaoiathie CASE.

- Technical term: "searched case"
I Select persons name, weight and a denomination o f the weight
'SELECT firstname,
lastname,
weight,
CASE
WHEN (weight |S NULL OR weight = 0) THEN ‘weight is unknown'
VWHEN weight < 40 THEN ‘lightweight'
WHEN weight BETWEEN 40 AND 85 THEN ‘medium’
ELSE ‘heavyweight'
END
FROM person;

The crucial point is the direct succession of the key words CASE and WHEN. Therenig column name between them. In this variant
there must be a complete expression, which evaluatene of the 3-value-logic terriisie, false or unknown, between each WHEN a
THEN. Now it is possible to use all the comparisand boolean operators as they are known by the REH&8ause. It is even possible
to compare different columns or function calls watch other.

Syntax

There are the two variandsnple case andsearched case.
I T
- "simple case" performs successive comparisons us ing the equal operator: <column_name> = <expression x>

\CASE <col umm_nane>
VWHEN <expression_1> THEN <result_1>
VWHEN <expression_2> THEN <result_2>

ELSE <default_result> -- optional
END
1
- "searched case" is recognised by 'nothing' betwe en CASE and first WHEN
CASE

VWHEN <condition_1> THEN <result_1>
VWHEN <condition_2> THEN <result_2>

LSE <default_result> -- optional

Thesimple case is limited to one column and the use of the egpalrator whereas theearched case may evaluate arbitrary columns
the (intermediate) result with arbitrary operatdusictions or predicates.

Typical Use Cases

The use of CASE expressions is not limited to mtiges (the column list between SELECT and FROM;.the clause evaluates t
value, it can be applied as a substitution for @slat several places within SQL commands. In thenimg, we offer some examples.

ORDER BY clause

Sort contact values in the order: all fixed lingsmobile phones, all emails, all icq's. Withinchagroup sort over the contact values.

53 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

\FROM contact !
:CRDER BY 1
' -- a "simple case" construct as substitution for a column name '
. CASE contact_type '
! WHEN ‘fixed line' THEN 0 f
1 VHEN 'mobile’ THEN 1 .
. WHEN ‘email’ THEN 2 !
! WHEN ‘icq' THEN 3 1
! ELSE 4 !
! END, !
' contact_value; |

1
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

IFROM
JORDER

-- order by weight classes
SELECT firstname, lastname, weight,

CASE

WHEN (weight 1S NULL OR weight = 0) THEN

WHEN weight < 40 THEN
VWHEN weight BETWEEN 40 AND 85 THEN
ELSE

END

person

BY

-- a "searched case" construct with IS NULL, BETWEE

CASE
WHEN (weight |S NULL OR weight = 0) THEN
WHEN weight < 40 THEN
WHEN weight BETWEEN 40 AND 85 THEN
ELSE

END, lastname, firstname;

WHERE clause

‘weight is unknown'
‘lightweight'
‘medium’
'heavyweight'

N and ‘less than'.

wWN RO

Within the WHERE clauses there may occur fixed galor column names. CASE expressions can be useduwdsstitution for them.
the example persons receive a discount on theghtveiepending on their place of birth (considexsita theoretical example). Thus Mr.
Goldstein with its 95 kg counts only with 76 kg d@sdhot part of the result set.

2ttt T
ISELECT * :
IFROM person .
:V\HERE CASE :
' -- Modify weight depending on place of birth. '
. WHEN place_of_birth = 'Dallas’ THEN weight * 0.8 .
! VWHEN place_of_birth = ‘Richland’ THEN weight * 0.9 !
: ELSE weight :
! END > 80 N
10R weight < 20; -- any other condition '
L o il a
Exercises

Show firstname, lastname and the gender of albpsrsConsider Larry, Tom, James, John, Elias, @rgotor as ‘'male’,

Lisa as 'female’ and all others as 'unknown gendse' asimple case expression.

Click to see solution
T T T H
:SELECT firstname, lastname, '
1 CASE firsthame '
. VHEN 'Larry' THEN 'male’ !
: WHEN ‘Tom' THEN ‘'male’ 1
1 WHEN 'James' THEN 'male’ .
. VHEN 'John' THEN 'male’ '
! WHEN 'Elias' THEN ‘'male’ '
‘ WHEN 'Yorgos' THEN 'male’ '
. VHEN 'Victor' THEN 'male’ !
' VHEN 'Lisa’ THEN ‘female’ :
H ELSE ‘unknown gender’ .
' END '
:FROM person; ‘
L e e e e e e e e e e e e e e 4
Use asearched case expression to solve the previous question.

Click to see solution
__ 1

ISELECT firstname, lastname,

54 sur 121

CASE
WHEN firstname

WHEN firsthame =

in ('Larry'

‘Lisa’

‘Tom' , ‘'James' ,

THEN 'male’
THEN ‘female’

‘John' , 'Elias' , 'Yorgos' , 'Victor')

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

ELSE ‘unknown gender'
END
:FROM person;
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

Show firstname, lastname and a classification lopeisons. Classify persons according to the lepfttheir firstname. Call the class
'short name' if character_length(firstname) < £dimam length' if < 6, 'long name' else.

Click to see solution

I Hint: Some implementations use a different funct ion name: length() or len().
'SELECT firstname, lastname,
' CASE
WHEN CHARACTER_LENGTH(firstname) < 4 THEN 'short name'
WHEN CHARACTER_LENGTH(firstname) < 6 THEN 'medium length’
ELSE ‘long name’
END
:FROM person;

T T T T T T T T T T T e -

Count the number of short, medium and long naméiseobove exercise.
Click to see solution

I Hint: Some implementations use a different funct ion name: length() or len().
:SELECT SUM CASE

' WHEN CHARACTER_LENGTH(firstname) < 4 THEN 1

. ELSE 0
' END) as short_names,
' SUM CASE

. VWHEN CHARACTER_LENGTH(firstname) between 4 and 5 THEN 1
: ELSE 0
1 END) as medium,
. SUM CASE

' WHEN CHARACTER_LENGTH(firstname) > 5 THEN 1
' ELSE 0
. END) as long_names

:FROM person;

T T T T T T T T T T T e -

A subquery is a complete SELECT command which éslwgithin another SELECT, UPDATE, INSERT or DELEE&mmand. The only
difference to a simple SELECT is, that it is enelbin parenthesis.

Classification

Depending on the type of the created result thexrehaee classes of subqueries:

= Scalar Value Subquery: The subquery returns one single value, (SELECT max(weight) FROM person)

= Row Subquery: The subquery returns one single row of one orem@lues, e.g(SELECT min(weight), max(weight)
FROM person) .

= Table Subquery: The subquery returns a list of rows, which islalé, e.g{SELECT lastname, weight FROM person) . Foi
the classification it makes no difference whetler tresulting list contains zero, one or more rolt® demarcation betwe
a table subquery and a row subquery is ploggntially more than one row may occur.

Every type can be used on all positions whereythpe it stands for may occur: the scalar value sebgwhere a single value may occur,
the row subquery where a single row may occur haddble subquery where a table may occur. Additipmable subqueries may oc
as an argument of an EXISTS, IN, SOME, ANY or Allegicate.

Independent from this classification subqueries tagorrelated subqueries or non-correlated subqueries. Correlated subqueries have
a correlation to the surrounding query by the thet they use values from the surrounding querhiwithe subquery. Non-correla
subqueries are independent from the surrounding/gUikis distinction is shown in detail in the nektapterbut applies also to the otl
two subquery classes.

Because correlated subqgueries use values, whiatheéeemined by the surrounding query and may ché&ogerow to row, the subquery
is executed - conceptional - as often as resultivgs of the surrounding query exist. This mightdle® performance problems.
Nevertheless correlated subqueries are an oftehamestruct. In many cases exist equivalent coastnhich use a JOIN. Which ¢
shows the better performance depends highly oDBMS, and the number of involved rows, the exiseen€ indices and a lot more
variables.

Scalar Value Subquery
The first example creates a list of lastnames, lwteignd the average weight of all persons.

ISELECT id,
1

55 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

lastname,

weight,

' (SELECT avg(weight) FROM person) -- this is the subquery
JFROM person

:(RDER BY lastname;

Because the subquery usesdlg) function, the SQL compiler knows that it will retuexactly one single value. Therefore it's type is
Scalar Value Subquery and can be used on positions where scalar valagouotur, e.g. in the list between SELECT and FROM.

In the next example the subquery is used as a @équa value within the WHERE clause.

\-- Persons who weigh more than the average of all p ersons :
ISELECT id, lastname, weight '
{FROM person !
WVWHERE weight >= (SELECT avg(weight) FROM person) -- another position for the subquery '
IORDER BY lastname; .
1

1

Both examples use the talgerson twice. Just as well one can use different tablibere is no dependency between the table na
the subquery and in the surrounding query. Thidiegppo all classes of correlated and non-corrdiagqueries. The subqueries may
retrieve any value from any other table, e.g. thealmer of contacts.

This first two examples show non-correlated subgsewhich means, that the subqueries are indepéfiden the queries in which they
are embedded. They are executed only once.

But often an application faces a situation, whéee subquery must use values from the outside qsénjlar to subroutines which uses
parameters). This kind of subquery is called aatated subquery. As an example the next querydistsons together with the average
weight of their family.

SELECT id, firstname, lastname, weight,
(SELECT avg(weight)

1

‘

1

FROM person sq -- 'sq' is an arbitrary alias name for the table in the subquery '

WHERE sq.lastname = p.lastname -- identify the inner and outer table by its alias names '

') family_average -- an arbitrary alias name for the computed family average .
JFROM person p --'p' is an arbitrary alias name for the table in the surrounding query !
:(RDER BY lastname, weight; '
[T T T T T T T T T T T e -

The subselect gets one row of the surrounding SHL&@r the next as an parameter with the nam@Vighin the subselect all columns
of the row 'p' are known and may be used. Herdah®ly name from the outside row is used in thegsidoy to find all persons witt
the family and the average weight of the family rbers.

Be careful: Correlated subqueries are executed peceow of the surrounding query. Therefore they much more costly th
non-correlated subqueries. There might exist afivatgnt solution using JOIN or GROUP BY which workigh better performance. The
query optimizer of the DBMS internally might rearge the given subquery into one of the equivalemh$. But this does not work in
cases.

The distinction between correlated and non-corelaubqueries is universal. It applies also toother subquery classes.

Row Subquery

This example retrieves one or more persons, whstadme is the lowest (in the sense of the lexacdér) of all firstnames and whose
lastname is the lowest of all lastnames. BecausieeoAND condition it might be the case that nosperis found.

. One resulting row: Elias Baker

ISELECT *

JFROM person

:V\HERE (firstname, lastname) = (SELECT M N(firstname), M N(lastname) FROM person);

Within the subquery the lowest first- and lastnames retrieved. The use of then() function garanties that not more than one
with two columns will arise - therefore it is a r@ubquery. In the surrounding query this intermiediasult is compared with each |
of the complete tablperson or - if present - an index is used.

It's a fortune that the command retrieves a rowntist cases the lowest first- and lastname refolts different persons. But also
those cases the command is syntactically correttdhnot throw any exception.

In the next example persons with the lowest fiestd lastnames within every family are retrieved.ddoso, it is neccessary to us
correlated row subquery.

\-- 7 rows, one per family :
ISELECT * i
FROM person p '
WHERE (firstname, lastname) = '
v (SELECT M N(firstname), M N(lastname) FROM person sq where p.lasthame = sq.lastname); .

1

56 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

Again, there are the two incarnations of tgt®eson, one with the alias name 'p’ in the surroundingrg@and one with the alias name 'sq'
in the subquery. The subquery is called once paitieg row of the surrounding query, because ptlastname' may change with every
row of 'p'.

Within every family there is as least one persorictvtachievs the condition - it is also conceivattlat several persons achiev the
condition.

Table Subquery

The next example retrievs persons who have a hdiitgyclass of the subquery is: non-correlated tablEjuery (used as a conditiol
the IN predicate).

:SELECT *

FROM person
MHERE id IN
(SELECT person_id FROM contact);

-- the subquery

The subquery creates multiple rows with one colfionreach of them. This constitutes a new, interaiediable. Therefore this example
is a table subquery.

The IN operator is able to act on this intermediatiele. In contrast, it is not possible to use ap@s like '=' or ">' on this kind
intermediate result. In this cases the SQL compilitrecognize an syntax error.

The next example is an extention of the first dh@dds a correlation criterion between the querg the subquery by requesting the
lastname within an email-address.

i A correlated table subquery, looking for lastnam
'SELECT *

IFROM person p
WVWHERE id IN

(SELECT person_id
FROM contact ¢

WHERE c.contact_type = ‘email’

AND UPPER(c.contact_value)

es within e-mail-addresses

LI KE CONCAT(CONCAT{' , UPPER(p.lastname)), %));
L e e e e e e e e e e e E e E e E m E mE Em E m e E e e e m e m e m - m e mm— e m o m = e e = e e e = e e e = = = e = e = e = e = e = e = e = = = -

The last comparision after the AND is a little dimplex. It uses the functions CONCAT() and UPPE®(Well as the predicate LIKE,
but this is not of interest for the actual topighguery'. The important part is that the subquefgrs to ‘p.lastname’ of the surroun:
query. Only Mr. Goldstein meets the criterion thég e-mail address contains his lastname when wlze columns are compar
case-insensitive.

Remark: CONCAT() concatenates two strings. UPPEBIGyverts a string to upper-case. LIKE in combinmatidth the ‘%' sign looks fi
one string within another.

Next, there is an example where a non-correlateld gubquery is object to a join operat

i Persons plus maximum weight of their family
:SELECT *

IFROM person p
JO'N (SELECT lastname, nmax(weight) max_fam_weight

FROM person
GROUP BY lastname

) AS sq ON p.lasthame = sg.lastname

Another Example

-- join criterion between subquery table 'sq’ and t

The example shows a solution for a common probfometimes there are rows describing an outdatge steentities. Those rows -

one logical entity - differ from each other in soo@umns and there is an additional coluwension to track the time flow.

Here is the example tahit®oking and its data.

- The table holds actual and historical values
ICREATE TABLE booking (

-- identifying columns

id DECIMAL
booking_number DECIMAL
version DECIMAL
-- describing columns

state CHAR10)
enter_ts TI MESTAMP

enter_by CHAR20)

-- select one of the defined columns as the Primary

57 sur 121

NOT
NOT
NOT

NOT
NOT
NOT

Key

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

! CONSTRAI NT booking_pk PRI MARY KEY (id),

v forbid duplicate recordings

1 CONSTRAI NT booking_unique UNI QUE (booking_number, version)
"

"

1

1

1

1

:
); :

1
i Add data :
I NSERT | NTO booking VALUES (1, 4711, 1, ‘created” , TI MESTAMP'2014-02-02 10:01:01' . CEmily); !
I NSERT | NTO booking VALUES (2, 4711, 2, 'modified’ , Tl NESTAVP'2014-02-03 11:10:01' . CEmily); i
' NSERT | NTO booking VALUES (3, 4711, 3, ‘canceled” . Tl MESTAVP'2014-02-10 09:01:01' . John'); '
[1
I NSERT | NTO booking VALUES (4, 4712, 1, ‘created” , TI NESTAVP'2014-03-10 12:12:12' , Emily’) '
' NSERT | NTO booking VALUES (5, 4712, 2, ‘delivered’ , TI NESTAVP'2014-03-12 06:01:00' . ‘Charles'); !
L. 1
I NSERT | NTO booking VALUES (6, 4713, 1, ‘created” , TI MESTAVP'2014-03-11 08:50:02' . CEmily); '
' NSERT | NTO booking VALUES (7, 4713, 2, ‘canceled’ , Tl MESTAVP'2014-03-12 08:40:12' . CEmily); '
I NSERT | NTO booking VALUES (8, 4713, 3, ‘reopend’ , TI NESTAMP'2014-03-13 10:04:32 . Jack) :
I NSERT | NTO booking VALUES (9, 4713, 4, ‘delivered’ , TI NESTAVP'2014-03-15 06:40:12' . Jack') '
[1
1COMM T; :
[1
L e e e e e e e E e e e E e E e E m E mE mE EmE e e e e m e m e m - m e — e — e mm = === e e e = e = e = e e = = = e = = = e = e = e = e = e = e = e = =)

The problem is to retrieve attual rows, which are those with the highest version Ineimwithin each booking. Bookings are consid
to be the same, if they have the same booking_numbe

The first solution uses a non-correlated table sabg

ISELECT * i
IFROM booking b '
WMHERE (booking_number, version) IN !
1 (SELECT booking_number, MAX(ver si on) FROM booking sq GROUP BY booking_number) -- the subquery '
ICRDER BY booking_number; .

1

The subquery creates a list of booking numberstbegenith their highest version. This list is udgdthe surrounding query to retrieve
the required rows with all its columns.

The second solution uses a correlated scalar galbguery.

1

ISELECT * i

IFROM booking b '

WHERE version = '

1 (SELECT max(version) FROM booking sq \WHERE sq.booking_number = b.booking_number) '

IORDER BY booking_number; '
1

The surrounding query retrievs all rows of the ¢alblor each of them it calls the subquery, whitheees the highest version within this
booking_number. In most cases this highest vewdiiders from the version of the actual row and hessaof the '=' operator those rows
are not part of the result. Only those, whose wars& equal to the value determined in the subq(eamg whose booking_number is the
same as those used in the subquery) are part ihteesult.

A variation of the introducing question may be &rieve only historical rows (all versions excepe thighest one) for one spe
booking.

.
ISELECT * i
'FROM booking b '
WHERE version != '
: (SELECT max(version) FROM booking sq WHERE sq.booking_number = b.booking_number) '
'ANC booking_number = 4711 .
1
1
1

IORDER BY version;
1

The surrounding query restricts the rows to thdsene special booking. The subquery is called doiythose rows.

It's easy to run into pitfalls:

.
- Unexpected result! :
ISELECT * :
:FROM booking b '
WVHERE version != (SELECT max(version) FROM booking) '
JANC booking_number = 4711 .
:CRDER BY version; :

1

The above query returns all versions of bookingldintluding the actual one! To get the expectedlted's necessary to 'link' the
surrounding query and the subquery together.

Exercises

58 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

Find the booking with the most versions.

Click to see solution

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

__ .
1
\-- The subselect return exactly ONE single value. T herefor it's a (non-correlated) single value subque ry. :
1-- But this is only a intermediate result. The fina | result may contain several rows, which is not the case in our example database! .
ISELECT * !
JFROM booking '
:V\HERE version = (SELECT MAX(version) FROM booking); .

1
g -
Find all bookings with are canceled (in the latession).
Click to see solution
r T T TS TS TS TS TS TS TS T ST T TS TS T T T TS TS T T TS TS T T T T T T T T T T T T T T T ST T T T T T T T T TS T T T T T T T T ST ST T T T T T T T TS TSI T T e T s s m T E T T

1
I It's necessary to link the subquery with the sur rounding query. 1
ISELECT * .
IFROM booking b .
WVHERE version = |
! (SELECT MAX(version) FROM booking sq VWHERE sqg.booking_number = b.booking_number) '
1ANC state = 'canceled' !
1

1
i Additionally within the resulting rows there mus t be a correlation between the version and the stat e. .
i This is accomplished with the AND key word at th e level of the surrounding query. If the AND works within !
i-- the subquery, the result does not meet the expec tations. '
'SELECT * !
FROM booking b '
WHERE version = '
' (SELECT MAX(version) FROM booking sq WHERE sqg.booking_number = b.booking_number AND state = ‘'canceled"), .
L e m e e e m e e e 2
Create a list of all persons together with the neindd persons which are born in the same city ag tiself.
Click to see solution
225 T
i-- The subselect uses the place_of_birth of the out side row. Therefore it's a correlated subquery. :
'SELECT firstname, '
! lastname, '
H place_of_birth, '
. (SELECT COUNT(*) FROM person sq WHERE p.place_of_birth = sq.place_of_birth) cnt -- an arbitrary name for the additional column .
IFROM person p; '
L o e o e e e e o e _-
Create a list of all persons together with the neinds their contact information.
Click to see solution
5 1
i-- The subselect uses the ID of the outside row. Th erefore it's a correlated subquery. 1
:SELECT firstname, :
' lastname, !
. (SELECT COUNT(*) FROM contact ¢ WHERE p.id = c.person_id) cnt -- an arbitrary name for the additional column '
IFROM person p; .
U A
Create a list of all persons together with the neindd their e-mail-addresses.
Click to see solution
2 T
ISELECT firstname, |
. lastname, :
' (SELECT COUNT(*) '
1 FROM contact c f
' WHERE p.id = c.person_id '
! AND contact_type = ‘email' -- The subselect is a complete SELECT. Therefor all elements of !
: -- a 'regular' SELECT may be used: Join, functions, ... and: SUBSELECT '
.) cnt -- an arbitrary name of the additional column '
1FROM person p; :
L o e o e e e e o e 1
Create a list of all persons together with the neindd their contact information. (Same questiolasve.)
Replace the subquery by a JOIN construct.
Click to see solution
__ 4

1

1 Step 1 (for demonstration purpose only): To retr
(SELECT firstname,

1 lastname,

. c.contact_type

JFROM person p

ILEFT OUTER JO N contact ¢ ON p.id = c.person_id;
1

Ll

- Step 2 (complete solution): Add the counter. To

(SELECT firstname,

. lastname,

! count (c.contact_type)
{FROM person p

LLEFT OQUTER JO N contact

¢ ON p.id = c.person_id

59 sur 121

ieve ALL persons, it's necessary to use an OUTER JO IN

do so, the result must be grouped.

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

IGROUP BY firstname, lastname; '
'

L e m e e e e m = e e e e = = = e e e = = = m e == = = = === = = = = e == = e mmmm = e 4

For which persons there are NO contact information?
Click to see solution

E—— The subquery returns more than one row. Therefor e it's a table subquery.
SELECT firstname, lastname

JFROM person

:\/\HERE id NOT I N (SELECT person_id FROM contact); -- the subquery

Often users and applications request informatioa farm which differs from the structure of exigfitables. To achieve those requests
the SELECT command offers plenty possibilities:jgections, joins, group by clause and so on. If ¢hare always the same requests,
what is the case in particular for applicationsif tine table structure intentionally should bedd from the application-level, views «

be defined. Furthermore the access rights to vimass be different from those to tables.

Views look like a table. They have columns of at&@iardata type, which can be retrieved in the samg as columns of a table. But
views are only definitions, they don't have dat#obwn! Their data is always the data of a taisles based on another view. A view
different sight to the stored data or somewhat likpradefined SELECT.

Create a View

One creates a view by specify its name, column saméhich is optionally - and especially the SELE€mmand on which the view is
based. Within this SELECT all elements are allowethe same way as in a standalone SELECT comm&nd. column names are
specified the column names of the SELECT are used.

\CREATE VI EW <view_name> [(col um_nane, ...)] AS
1 SELECT .. -- as usual

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = 2

Examples and Explanations

Example 1: Hide Columns

As a first example here is the vigerson_view_1 which contains all butd andssn columns of tablgerson. Users which have the right
to read from this view but not from the talplr son doesn't have accessitbandssn.

F T T T T T T T ST ST ST T T ST T T ST ST ST ST ST ST ST ST ST T T ST ST T T ST ST T TS TS ST TS TS TS T E T e S s T s e e i
ICREATE VI EW person_view_1 AS

\ SELECT firstname, lastname, date_of birth, place_of birth, wei ght

1 FROM person;

1

I SELECTSs on views have identical syntax as SELECT s on tables

:SELECT *

IFROM person_view_1
IORDER BY lastname;

i-- The column 'id" is not part of the view. Therefo re it is not seen and cannot be used
\-- anywhere in SELECTSs to person_view_1.

- This SELECT will generate an error message becau se of missing 'id' column:

SELECT *

JFROM person_view_1
:V\HERE id = 5;

As indicated in the above 'order by' example passible to use all columns of the view (but ndalthe table!) within any part
SELECTs to the view: in the projection, the WHERIRDER BY, GROUP BY and HAVING clauses, in functicalls and so on.

__ 1
1

\-- SELECTSs on views have identical syntax as SELECT s on tables i
ISELECT count (lastname), lastname '
FROM person_view_1 '
\GROUP BY lastname 1
ICRDER BY lastname; .
L o o e m A
Example 2: Rename Columns

Next there is a renaming of a column. The columme lastname of the table will bdamilyname in the view.

:' '' a
- first technique: list the desired column names w ithin parenthesis after the view name

(CREATE VI EW person_view_2a (firstname, familyname, date_of_birth, p lace_of_birth, weight) AS

1

60 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

SELECT firstname, lastname, date_of_birth, place_of_birth, wei ght
FROM person;

-- second technique: rename the column in the SELEC T part
CREATE VI EW person_view_2b AS

FROM person;
-- Hint: technique 1 overwrites technique 2

-- Access to person.lastname is possible via person _view_2a.familyname or person_view_2b.familyname.

!
1

1

1

1

1

:

\ SELECT firstname, lastname AS familyname, date_of_birth, place_of_birth, weight

:

I

1

:

1

- The objects person.familyname, person_view_2a.la stname or person_view_2b.lasthame does not exist!

Example 3: Apply WHERE Condition

Not only columns can be hidden in a view. It's gsssible to hid complete rows, because the vidimiten may contain a WHER

clause.

Fmmmm o e m e o oo oo e oo e o e e e mee oo
- Restrict access to few rows

ICREATE VI EW person_view_3 AS

! SELECT firstname, lastname, date_of_birth, place_of birth, wei ght

1

| VWHERE place_of_birth in ('San Francisco' , 'Richland");

1

- Verify result:
{SELECT *

.
1
1
1
|
FROM person :
1
1
1
1
|
1
:FROM person_view_3; !

a1

This view contains only persons born in San Frawcigr Richland. All other persons are hidden. Tfeeethe following SELEC
retrieves nothing although there are persons irtighke which fulfil the condition.

.
1
1
ISELECT * '
'FROM person_view_3 '
VHERE place_of_birth = ‘Dallas' ; '
' ‘
1
1
1
1
1
1
1
2

- One hit

ISELECT *

JFROM person

:\/\HERE place_of_birth = ‘Dallas’

Example 4: Use Functions

This example usues the sum() function.

:
.
ICREATE VI EW person_view_4 AS

1 -- General hint: Please consider that not all colum ns are availabe in a SELECT containing a GROUP BY ¢ lause
| SELECT lastname, count (lastname) AS count_of_members

1 FROM person

1 GROUP BY lastname

\ HAVI NG count (*) > 1;

1

1

- Verify result: 2 rows
ISELECT *
'FROM person_view_4;

1

\-- The computed column 'count_of_members' may be pa rt of a WHERE condition.
- This SELECT results in 1 row

(SELECT *

JFROM person_view_4
:V\HERE count_of_members > 2;

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = -

In this example the elaborated construct 'GROUP BMVING' is hidden from users and applications.
Example 5: Join

Next, there is an example where a view containgnoo$ out of serveral tables. To do so a JOIN ic@essary. The view contains
name of persons in combination with the availaloletact information. As an INNER JOIN is used, sgmeesons occur multiple, others
not at all.

1

- Persons and contacts

ICREATE VI EW person_view_5 AS
' SELECT p.firstname, p.lastname, c.contact_type, c.contact_value
1+ FROM person p

1 JON contact ¢ ON p.id = c.person_id;

1

- Verify result

ISELECT *

:FROM person_view_5;

1

:SELECT *

IFROM person_view_5
1

61 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

WHERE lastname = 'Goldstein’
1

L e e e e e E e E e E e f e E e E e f e m e mEmE e e e E e e e E e — e e e == = A

The columngperson.id ancontact.person_id are used during the definition of the view. Bugttare not part of the projection and hence
not available for SELECTSs to the view.

Hint: The syntax and semantic of join operationsxiplained on a separate page.

Some more Hints

Within a CREATE VIEW statement one may use moramelets of the regular SELECT statement than it mwshon this page,
especially: SET operations, recursive definitidD8SE expressions, ORDER BY and so on.

If there is an ORDER BY clause within the CREATEEW and another one in a SELECT to this view, therlane overwrites the
former.

Write Access via Views

In some cases, but not in general, it should bsilplesto change data (UPDATE, INSERT or DELETE cand) in a table by access
it via a view. Assume, as an counterexample, thatwants to change the coluroount_of _members of person_view 4 to a different
value. What shall the DBMS do? The column is subjecan aggregate function which counts the nundjeexisting rows in the
underlying table. Shall it add some more randomesinto new rows respectively shall it delete candows to satisfy the new value
count_of _members? Of course not!

On the other hand a very simple view like 'CREATEEW person_0 AS SELECT * from person;', which islah copy of the origin
table, should be manageable by the DBMS. Whereeidbrderline between updateable and non updatgsmes? The SQL stande
does not define it. But the concrete SQL implemigonia offer limited write-access to views basedtbeir own rules. These rules
sometimes are very fix, in other cases they caneistlexible techniques like 'INSTEAD OF' triggdrsgive programmers the chance to
implement their own rules.

Here are some general rules whin@ly be part of the implementors fixed rules to define, whiédws are updateable in his sens:

The view definition is based on one and only oretdt includes the Primary Key of this underlytadple.

The view definition must not use any aggregate tionc

The view definition must not have any DISTINCT-, GBP BY- or HAVING-clause.

The view definition must not have any JOIN, SUBQWEBET operation, EXISTS or NOT EXISTS predicate.

If it is possible to use the UPDATE, INSERT or DELEE command to a view, the syntax is the same dstefiles.

Clean up the Example Database

The DROP VIEW statement deletes a view definitlardoing so the data of the underlying table(sjasaffected.

Don't confuse the DROP command (definitions) witt DELETE command (data)!

.
iDROP VI EW person_view_1; :
\DROP VI EW person_view_2a; i
:DROP VI EW person_view_2b; :
{DROP VI EW person_view_3; '
DROP VI EW person_view_4; :
:DROP VI EW person_view_5; :

1

Exercises

Create a view 'hobby_view_1' which contains aluowts of table 'hobby' except 'id".
Rename column ‘remark’ to 'explanation’. Createdifferent solutions.

Click to see solution

ICREATE VI EW hobby_view_la AS

 SELECT hobbyname, remark AS explanation
1+ FROM hobby;

- Verification

:SELECT * FROM hobby_view_1la;

1

ICREATE VI EW hobby_view_1b (hobbyname, explanation) AS
' SELECT hobbyname, remark

i FROM hobby;

- Verification

:SELECT * FROM hobby_view_1b;

L e e e e m e c e e mffmm e mfcm e mcmmmcc e mc e mcccmmcce e m e m e e e e e e c e m e e e e e e e m e e e e e mm e e mmm e mmm e mm e mm e ————————— -

62 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Create a view 'hobby_view_2' with the same critasan the previous example. The only difference

is that the length of the explanation column istéh to 30 character. Hint: use the function

substr(<column name>, 1, 30) to determine the f8@tcharacters - she is not part of the SQL stahdmt works in plenty
implementation.

Click to see solution

ICREATE VI EW hobby_view_2 AS ‘
' SELECT hobbyname, substr(remark, 1, 30) AS explanation .
i FROM hobby; '
- Verification '
1
1

:SELECT * FROM hobby_view_2;

Create a view ‘contact_view_3' which contains @Ng of table contact with the exception of the"'imgvs. Count the number of the
view rows and compare it with the number of rowthia table ‘contact'.

Click to see solution

T
ICREATE VI EW contact_view 3 AS :
1 SELECT * '
: FROM contact :
1 WHERE contact_type != 'icq" ; -- an alternate operator with the same semantic as =" s '<>' '
' '

1
:—— Verification :
\SELECT 'view' , count(*) FROM contact_view 3 .
' UNION '
:SELECT ‘table’ , count(*) FROM contact; !

1

Create a view ‘contact_view_4' which contains ang per contact type with its notation and the numtifeoccurences. Afterwords
select those which occur more than once.

Click to see solution

1

'CREATE VI EW contact_view_4 AS

SELECT contact_type, count (*) AS cnt
FROM contact

GROUP BY contact_type;

- Verification

'SELECT *

[FROM contact_view_4;

1

E—— Use columns of a view with the same syntax as co lumn of a table.
SELECT *

JFROM contact_view_4

:V\HERE cnt > 2;

Create a view 'person_view_6" which contains fiestd lastname of persons plus the number of pemsidhsthe same name as the
person itself (family name). Hint: the solution sisecorrelated subquery.

Click to see solution

1

'CREATE VI EW person_view_6 AS

SELECT firstname, lastname, (SELECT count (*) FROM person sq WHERE sqg.lasthname = p.lastname) AS cnt_family
FROM person p;

- Verification
ISELECT *
:FROM person_view_6;

Clean up the example database.

Click to see solution

.
\DROP VI EW hobby_view_1a; :
'DROP VI EW hobby_view_1b; .
DROP VI EW hobby_view_2; '
\DROP VI EW contact_view_3; f
'DROP VI EW contact_view_4; .
DROP VI EW person_view_6; !

1

Hint: Be carefull and deactivate AUTOCOMMIT.

The basic syntax and semantic of the INSERT comnimddscribed on the page INSERT. There are exanmgle to insert single rows
with fixed values into a table. The present pagedees how to dynamise the command by the usebofueries.

63 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Evaluate Values at Runtime

First, the values to be inserted may be evaluaiedelative strict way by reading the system timether (quasi) constants.

Fr T ST T T T T T T T TS ST T T ST T E TS S ST S S SIS s s s i
1

- Use the key word CURRENT_DATE to determine the a ctual day. ‘
| NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn, weight) .
:VALUES (101, ‘Larry, no. 101" , 'Goldstein’ , CURRENT_DATE, ‘Dallas’ s '078-05-1120' , 95); :
1ICOWM T, 1
1

L o o oo e A

Next, the values to be inserted may be evaluatea scalar value subquery. This means, that singleegatobay be computed at runtime
based on the rows of the same or another table.

5 T
i-- Count the number of rows to determine the next | D. Caution: This handling of IDs is absolutly NOT r ecommended for real applications! :
I NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn, weight) .
:VALUES ((SELECT COUNT(*) + 1000 FROM person), -- The scalar value subquery. It computes one singl e value, in this case the new
- VALUES ((Select * FROM (SELECT COUNT(*) + 1000 FROM person) tmp), -- MySQL insists in usin g an intermediate table 1
. ‘Larry, no. ?' s 'Goldstein’ , CURRENT_DATE, ‘Dallas' '078-05-1120" , 95); .
1ICOWM T, !

1

Evaluate Rows at Runtime

Similar to the above shown evaluation of a singilas value through a scalar value subquery oneusara table subquety get sever.
rows and insert them into the specified table withine INSERT command. This version is able to indeusands of rows within one
single statement. In addition to its dynamic naftisaves all but one round-trips between the appitin and the DBMS and therefore is
much faster than a lot of single row-based INSERTSs.

5 T
i-- The statement doubles the number of rows within the table. It omits in the table subquery the WHERE clause and therefore i
- it reads all existing rows. Caution: This handli ng of IDs is absolutly NOT recommended for real app lications! '
:I NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn, weight) .
1 SELECT id + 1100, firstname, lastname, date_of_birth, place_of_b irth, ssn, weight '
! FROM person; '
1ICOVWM T; :

1

The syntax has change in such a way that the keg WALUES' with its list of values is replaced bycomplete subquery (often nar
'subselect’) which starts with the key word 'SELE@X course the number and type of the selectdahos must correlate with the
number and type of the columns of the specifiediroal list behind the 'INSERT INTO' key word. Withiine subquery the complete
power of the SELECT statement may be used: JOINERIE, GROUP BY, ORDER BY and especially other subigsen a recursive
manner. Therefore there is a wide range of usescaseate rows with increased version numbers, péticentage increased salary,
the actual timestamp, fixed values from rows ofshme or another table,

-- weights depending on the old weight.
(SELECT CASE WHEN weight < 40 THEN weight + 10

ELSE weight + 5
END
FROM person ssq -- alias for the table name in sub-subquery
WHERE sq.id = ssq.id -- link the rows together
)
FROM person sq -- alias for the table name in subquery
WHERE id <= 10; -- only the original 10 rows from the example datab ase

1ICOWM T;

2 T
i-- The next two statements compute different weight s depending on the old weight ‘
' NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn, weight) .
v the subquery starts here '
1 SELECT id + 1200, firstname, lastname, date_of_birth, place_of_b irth, ssn, f
. CASE WHEN weight < 40 THEN weight + 10 .
! ELSE weight + 5 '
' END 1
! FROM person .
' WHERE id <= 10; -- only the original 10 rows from the example datab ase !
COWM T 1
1 1
1

i-- The same semantic with a more complex syntax (to demonstrate the power of subselect) !
I NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn, weight) N
! --the first subquery starts here .
SELECT id + 1300, firstname, lastname, date_of_birth, place_of_b irth, ssn, '

-- here starts a subquery of the first subquery. Th e CASE construct evaluates different .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

The technique shown at Structured Query Languageriple Database_Data#Grow_wpich multiplies existing data, e.g. for tes
purpose, is based on such table subqueries.

Clean up Your Database

64 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Exercises

Insert a new person with id 1301, firstname 'Mr.ae lastname is the lowest lastname (in the sefde character encoding, use min()
function). Its weight is the average weight ofp@Etrsons (use avg() function).

Click to see solution

1
i-- Two columns are computed during runtime
il NSERT | NTO person (id, firsthame, lastname, weight)

\-- Check your result
:SELECT * FROM person WHERE id = 1301;

1
i
1
WALUES (1301, '
: ‘Mr. Mean' 1
1 (SELECT M N(lastname) FROM person), :
. (SELECT AVG(weight) FROM person) !
- the MySQL version with its intermediate tables '
- (SELECT * FROM (SELECT MIN(last name) FROM person) tmp1), .
' (SELECT * FROM (SELECT AVG(weig ht) FROM person) tmp2) !
!); '
{COWM T; :
1
1
1
1

Insert one additional person per family (=lastnamvéh firstname 'An extraordinary family membegsiname is the family name.
Incorporate only the rows from the original exangideabase with id <= 10.

Click to see solution

- Two columns are computed during runtime. The num ber of involved rows is delimited by the WHERE clau se.
I NSERT | NTO person (id, firsthame, lastname)
' -~ here starts the subquery

SELECT MAX(id) + 1310, -- in this case the max() function works per group
'An extraordinary family member* s

FROM person
WHERE id <= 10
' GROUP BY lastname;
{COWM T;
\-- Check your result
:SELECT * FROM person WHERE id > 1310;

1
1
1
! lastname
1
1
1

Clean up your database.

Click to see solution

.. -

1

'DELETE FROM person WHERE id > 1300; ‘

iCOWM T; '
1

L e m e e e m e cmmcccm e mcmmccmmccmmcmcmmccmmc - mccc e mcc - -mc-c— e ee—-meec--mece—-m e emmememmm e m e e e mm e mm e m—— === -

Hint: Be carefull and deactivate AUTOCOMMIT.
The page in hand offers two additional technicaraextention to the UPDATE command shown on orte@previous pages:

= Computing values, which are assigned to a colutmyrdime.
= Using complex subqueries as search conditionseiWRHERE clause.

Evaluate Values at Runtime

The values which are assigned to a column may bguoted by a correlated or non-correlated scalarevalbquenpon the involve
table or another one. There are many use casee whiettechnic is utilised: Increase values lingain percentage, use values from the
same or another table, The situation is aim that described on the page about the INSERTh@nd.

i The average weight of all persons is stored in ¢ olumn 'weight' of the first four persons.

\UPDATE person SET

' -- dynamic computation of a value

weight = (SELECT AVG(weight) FROM person)

-- weight = (SELECT * FROM (SELECT AVG(weight) FRO M person) tmp) -- MySQL insists on using an interme diate table
WHERE id < 5;

1

i-- Check the result
ISELECT * FROM person;
1

65 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

The subquery may use values of the row, whichtigadly updated. In the next example persons redéigenean weight of their family.
To compute this mean weight, it is necessary tdhseolumn ‘lastname’ of the actual processed row.

1
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

4

1
'-- The subquery is a ‘correlated' scalar value subq uery.

{UPDATE person p SET

| --'p.lastname’ refers to the lastname of the actua | row. The subquery bears all rows in mind, not onl y such with 'id >= 5"
1+ weight = (SELECT AVG(weight) FROM person sq VWHERE sqg.lastname = p.lastname)

1 -- A hint to MySQL users: MySQL does not support UP DATE in combination with a correlated subquery

1 --to the same table. Different tables work. MySQL has a different, non-standard concept: multi-table update.

L

1

WWHERE id >= 5;

1

\-- Check the result
:SELECT * FROM person;
1

i-- revoke the changes
IROLLBACK;

1

-

Subqueries in WHERE Clause

The WHERE clause determines which rows of a tatddrevolved by the UPDATE command. This WHERE céabas the same syn
and semantic as the WHERE clause of the SELECTEHArHTE command. It may contain complex combinatiohboolean operators,
predicates like ANY, ALL or EXISTS and - in a reaxesmanner - subquerys as described in SELECT: &ilyq

- UPDATE rows in the table 'person’. The decision which rows are affected is made by consulting the t able 'contact'.
1-- In the example persons with more than 2 contact information are affected.

\UPDATE person

SET firstname = ‘Has many buddies'

WHERE id IN

1 (SELECT person_id

FROM contact

GROUP BY person_id

HAVI NG count (*) > 2

);

-- Check the result
SELECT * FROM person;

\-- revoke the changes
1ROLLBACK;
1

The command performs an UPDATE in the tapéeson, but the affected rows are identified by a subguertable contact. This
technique of grabbing information from other tabidfers very flexible strategies to modify the data

It is no error to select 0 rows in the subquenthis case the DBMS executes the UPDATE commandaal and throws no exception.
(The same holds true for subqueries in SELECT ot IDEE statements.)

Exercises

Assign the firstname 'Short firstname' to all pessavhich have a firstname with less than 5 characte

Click to see solution

R e e e R el)
1

i-- Hint: Some implementations use a different funct ion name: length() or len().

WUPDATE person

ISET firsthame = 'Short firstname'

:\/\HERE charact er _| engt h(firstname) < 5;

1

i-- Check the result
:SELECT * FROM person;
1

\-- revoke the changes
1ROLLBACK;

1

Assign the firstname 'No hobby' to all persons Wwitiave no hobby.

Click to see solution

R e e i e 4
1

'UPDATE person

ISET firstname = ‘No hobby"

:V\HERE id NOT IN
! (SELECT person_id

66 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

FROM person_hobby
)i

1
1
1
'
\-- Check the result
:SELECT * FROM person;
1

i-- revoke the changes

:RG_ LBACK;

Assign the firstname 'Sportsman' to all personfopming one of the hobbies 'Underwater Diving™ga'.

Click to see solution

F T T T T T T T ST ST ST T T ST T T ST ST ST ST ST ST ST ST ST T T ST ST T T ST ST T TS TS ST TS TS TS T E T e S s T s e e i
1
WUPDATE person
\SET firstname = ‘Sportsman’
WHERE id IN
-- The subquery must join to the table 'hobby' to s ee their column 'hobbyname'.

(SELECT ph.person_id

FROM person_hobby ph

JO N hobby h ON ph.hobby_id = h.id

AND h.hobbyname | N ('Underwater Diving' , 'Yoga')
);

-- Check the result
'SELECT * FROM person;

i-- revoke the changes
:RG_LBACK;

Hint: Be carefull and deactivate AUTOCOMMIT.

In many cases applications want to store rowsenddtabase without knowing whether this rows preshoexist in the database or not.
If the rows exist, they must use the UPDATE comméinubt, the INSERT command. To do so the follogvgonstruct is often used:

.
- pseudocode :
IF (SELECT COUNT(*) = 0 ...) THEN !
! I NSERT ... :
\ELSE |
! UPDATE
1
1
1

This situation is unpleasant in many ways:

m There are two roundtrips between application an®iSBeither SELECT + INSERT or SELECT + UPDATE.

= The application must transfer one row after theeotA 'bulk storing' is not possible because thalwation of the criterion whic
decides between INSERT and UPDATE may lead tordifferesults from row to row.

m The syntax is spread across three SQL statemehissisTerror-prone.

To overcome the disadvantages the SQL standardededi MERGE command, which contains the completie shown above in one
single statement. The MERGE performs an INSERThddRDATE depending on the existence of individuas at the target table.

e e e e e e L
1

- Define target, source, match criterion, INSERT a nd UPDATE within one single command :
IMERGEI NTO <target_table> <target_table_alias> -- denote the target table .
. USI NG <source_table> <source_table_alias> -- denote the source table .
! ON (<match_criterion>) -- define the 'match criterion' which compares the source and f
' -- target rows with the same syntax as in any WHERE clause .
1 VWHEN MATCHEDTHEN !
WUPDATE SET columnl = valuel [, column2 = value2 ..] -- a variant of the regular UPDATE command f
! WHEN NOT MATCHEDTHEN

INSERT (columnl [, column2 ...]) VALUES (valuel [, value2 ...]) -- a variant of the regular INSERT command !
:, :
L o o o o e e o e o o e e o e o e oo -
Description

The target table is named after the MERGE INTOWkeyd, the source table after the USING key word.

The comparision between target rows and source, whish is necessary to decide between INSERT dMOATE, is specified after the
ON key word with a syntax, which is identical teetByntax of a WHERE clause. If this comparisionahas, the UPDATE will be
performed, else the INSERT. In simple cases thepamision compares Primary Key or Foreign Key colanBut it is also possible to
use very sophisticated conditions on any column.

In the 'MATCHED' case a variant of the UPDATE feli It differs from the regular UPDATE commandliat it has no table name (the

67 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

table name is already denoted after the MERGE INAM@) no WHERE clause (it uses the match criterfter she ON key word).

In the 'NOT MATCHED' case a variant of the INSERIIdws. For the same reason as before the targé is not named within the

INSERT.

Example

Create a table 'hobby_shadow' to store some ohtitgby' rows. The subsequent MERGE command sheibmpe an INSERT or 8

UPDATE depending on the existence of correlatirvgsto

1

- store every second row in a new table 'hobby_sha dow'

(CREATE TABLE hobby_shadow AS SELECT * FROM hobby where MOD(id, 2) = O;
{SELECT * FROM hobby_shadow;

1

- INSERT / UPDATE depending on the column ‘id".

IMERGEI NTO hobby_shadow t -- the target

1 USI NG (SELECT id, hobbyname, remark

. FROM hobby) s -- the source

. ON (t.id = s.id) -- the 'match criterion’

+ VWHEN MATCHEDTHEN
\UPDATE SET remark = concat(s.remark,
' WHEN NOT MATCHEDTHEN

Il NSERT (id, hobbyname, remark)
[N

' Merge / Update')

VALUES (s.id, s.hobbyname, concat(s.remark,
v

:COM\/I T;

1
\-- Check the result
:SELECT * FROM hobby_shadow;

)

' Merge / Insert'

The MERGE command handddl rows, but there is only 1 roundtrip between #pplication and the DBMS. Some of the rows are
handled by the INSERT part of MERGE, others byURDATE part. This distinction may be observed by lhst part of the colun

remark’.

Use Case

Typical use cases for the MERGE command are Bfdcesses. Often those processes have to aggsematevalues for a group
criterion (eg: a product line) over a time peridtie first access per product line and period haegert new rows with given values,

subsequent accesses have to update them by imgyeasies.

Extentions

The SQL standard defines some more features wileiMERGE command.

WHEN clause

The WHEN MATCHED and WHEN NOT MATCHED clauses maye lextended by an optional query expression e

(place_of_birth = 'Dallas’)

" The same is possible with WHEN NOT MATCHED in co

mbination with INSERT

. As a consequence, it's possible to use a sefi®¢HEN MATCHED / WHEN NOT MATCHED

clauses.
T
1 1
.. 1
1 VHEN MATCHEDAND (t.hobby_name I N ('Fishing' , 'Underwater Diving')) THEN '
:UPDATE SET remark = concat(‘Water sports: ' , t.remark) '
1 WHEN MATCHEDAND (t.hobby_name I'N ('Astronomy' , 'Microscopy' , 'Literature')) THEN '
\UPDATE SET remark = concat('Semi-professional leisure activity: ' , t.remark) .
' WHEN MATCHEDTHEN !
\UPDATE SET remark = concat('Leisure activity: , t.remark) f
1 :
1
1
1

DELETE

Within a WHEN MATCHED clause it is possible to us@ELETE command instead of an UPDATE to removentiaéched row. This
feature may be combined with the previous preseatednsion by an optional query expression. In 3t standard the DELETE

command is not applicable to the WHEN NOT MATCHHEBuUse.

-- Update 'Fishing' and 'Underwater Diving'. Delete

\ VHEN MATCHEDAND (t.hobby_name I N ('Fishing'
:UPD/—\TE SET remark = concat(‘'Water sports: '

i WHEN MATCHEDTHEN

DELETE

, 'Underwater Diving'
, t.remark)

Caveat

all others which have a match between source and t

)

THEN

The MERGE command is clearly defined by standard..StThe command itself as well as the extensionsritesd before are

68 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

implemented by a lot of DBMS. Deviating from thearstlard most implementations unfortunatelly useedifit and/or addition
keywords and - sometimes - different concepts. Ekerintroductive key words MERGE INTO may diffeofn the standard.

Exercises

A) Create a new table 'contact_merge' with the sstnoeture as ‘contact'.
B) Copy row number 3 from 'contact’ to ‘contact_geér

C) Use the MERGE command to insert/update all EHsldiesses from ‘contact' to 'contact_merge' addael e-mail-protocol name to

the contact values (prepend column contact_valufdgtring 'mailto:").
Click to see solution

1

i-- Create table and copy one row

:CREATE TABLE contact_merge AS SELECT * FROM contact WHERE id = 3;
SELECT * FROM contact_merge;

1

- INSERT / UPDATE depending on the column 'id'.

MERGEI NTO contact_merge t - the target
! USI NG (SELECT id, person_id, contact_type, contact_value

FROM contact

VWHERE contact_type = ‘email') s -- the source

ON (t.id = s.id) -- the 'match criterion’
1 VWHEN MATCHEDTHEN
\UPDATE SET contact_value = concat(‘'mailto:’ , t.contact_value)
: WHEN NOT MATCHEDTHEN
| NSERT (id, person_id, contact_type, contact_value) VALUES (s.id, s.person_id, s.contact_type, concat(
I

H
COM T,

1

\-- Check the result

:SELECT * FROM contact_merge;

Hint: Be carefull and deactivate AUTOCOMMIT.

‘mailto:’

, s.contact_value))

Because the DELETE command deletes rows as a aholeot partly, the syntax is very simple. Its ctuge was shown on a previous
page The page on hand offers only one addition: TheBRH clause isn't limited to simple conditions llke= 10' but may contain

subquery. This gives the command much more fletibil

The use of subqueries as part of a DELETE commaiutgitical to its use within an UPDATE or SELEG3memand.

There is another command for the deletion of roMie TRUNCATE command is very similar to DELETE. TROATE deletesll rows

of a table and shows better performance. But itoasiechanism to choose individual rows.

Example

The example command deletes contact informatiam fsersons which are born in San Francisco.

1

- Delete rows depending on a criteria which reside s in a different table.
[DELETE FROM contact

WHERE person_id I N

' (SELECT id

FROM person

WHERE place_of_birth = '‘San Francisco'

)i

- It's only a test. Restore the rows.
1ROLLBACK;
1

Correlated subqueries in combination with DELETEhomands are not supported by all implementations.

It often happens that the DBMS rejects DELETE comaissbecause Foreign Key constraints will be vidlatering its execution. E.g.:
the command tries to delete a person to whom aacbotr hobby information is known, the commandsfééls a whole). To overcame

such situations there are different strategies:

= Delete all dependent rows prior to the intended row

» Define the Foreing Key constraint as DEFERRED (It e check not before COMMIT) and delete the degieg rows

before or after the intended one.

= Define the Foreing Key constraint as CASCADE. lis ttase the depending rows will be deleted aut@auiti

Exercise

Delete hobby information for family Goldstein.

69 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Click to see solution

\DELETE FROM person_hobby
\VHERE person_id I N
(SELECT id
FROM person
WHERE lastname = 'Goldstein’
);

1

1

1

1

1

:

1

- Refrain from deleting the hobby itself - because :

- a) The hobby may be allocated to a different p erson.

- b) After the information in person_hobby is de leted, there is no longer the possibility to get
! to old assignment between person and hobby.

1
1
1

-- It's only a test. Restore the rows.
IROLLBACK;
1

L e e e mf e cmmcmc e cmcmmccmmccmmcccmmccmmcc - e mcc e mcc - -mce-—meec-—-mecec—-mee—-mememem e —mememmmem e mmmemmm e m e mm e m——— === -

The TRUNCATE TABLE command deletedl rows of a table without causing any triggeredactiUnlike the DELETE command it
contains no WHERE clause to specify individual rows

With respect to the TRUNCATE TABLE command most D8ghow significant better performance than with BEE command. This
results from the facts the DBMS can empty the tédotel its indexes) as a whole. It's not necessaagtess individual rows.

m There is - per definition - no WHERE clause.

= No trigger action will be launched - per definition

= The transaction locks the complete table.

m If there is an FK-constraint from tahbigto t2, the commandrRUNCATE TABLE t2' will fail. This holds true independent from the
question whether any row o1 refers actually to one of the rows & or not. The DBMS checks only the existence of the
FK-constraint definition.

The syntax of the TRUNCATE TABLE command is venmygie.

Fr TSI ST ST T ST T T TS S ST S S S S s s s T
ETRUNCATE TABLE <tablename>; E
Lo e e e e e e e E e E e E e E e E e E e E e E e f e mE e E fE e E e E e E e e e e e e e e e e e e e E e == = -4
Example

:—— Delete ALL rows of the table ‘myTable*

ITRUNCATE TABLE myTable;

1-- In most DBMS ROLLBACK is not possible - in oppos ite to situations with a DELETE command.
1
g 4

An Analogy

To illustrate the difference between the TRUNCATABLE command and the DELETE command (without a WHERause) one ci
imagine a trucker, who wants to empty a trailek dfisand at a construction site. To do so he Wwaspossibilities. Either he empties the
trailer in that he tilts him - this correspondstii® TRUNCATE TABLE command. Or he climbs onto thailer and throws down one
grain of sand after the next - this correspondi¢ocDELETE command.

Exercises

Delete all rows of table ‘person_hobby' using tlit ETE command.

\erify that there are no rows left in ‘person_hdbby

Delete all rows of table 'hobby' using the TRUNCATABLE command.

What will happen? (Consider that there is an FKstaint from the table empty ‘person_hobby' to tyalp

Click to see solution

I Delete all rows of 'person_hobby' with a DELETE command
'DELETE FROM person_hobby;

1COWM T;

1

1

- Are there any rows?

SELECT count (¥) FROM person_hobby;
1

E—— Try TRUNCATE TABLE command:

\TRUNCATE TABLE hobby;

- An exception will be thrown. Although there is n o row in 'person_hobby' refering a row in ‘hobby’,
- the definition of the FK constraint exists. This is the reason for the exception.

T T T T T T T T T T T e -

70 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

What will happen in the above example, if the TRUNE TABLE command is replaced by a DELETE command?
Click to see solution

:-- As there is no row in 'person_hobby' refering to 'hobby’, the DELETE command deletes all rows in 'h obby'".
{DELETE FROM hobby;
1ICOWM T;

1
T T . -

The original data of the example database candmnstructed as shown on the example database agea p

Advanced Topics

One of the basic steps during database developoyetes is the fixing of decisions about the talileiture. To do so there is the
CREATE TABLE statement with which developers defiables together with their columns and constraints

Because a lot of features may be activated by ehem@and, its syntax is a little bit complex. Thiggpahows the most important parts.
The syntax is not straight forward. At some poibtis possible to use alternative formulations kpress the same purpose, e.g. the
Primary Key may be defined within the column déiimi as a column constraint, at the end of the carmdras a table constraint or :
separate stand-alone command 'ALTER TABLE ADD CORAINT ...;".

1

ICREATE TABLE <tablename> (

! <col utm_nane> <data_type> <default_value> <identity_specification> <column_constraint>,
<col utm_nane> <data_type> <default_value> <column_constraint>,

‘

HES

' <table_constraint>,
1 <table_constraint>,
'
!
v
v

-

L e e e e m e c e e mffmm e mfcm e mcmmmcc e mc e mcccmmcce e m e m e e e e e e c e m e e e e e e e m e e e e e mm e e mmm e mmm e mm e mm e ————————— -

General Description

After the introductory key words CREATE TABLE thabiename is specified. Within a pair of parenthesést of column definitions
follows. Each column is defined by its name, dgteet an optional default value and optional comsts&or this individual column.

After the list of column definitions developers capecifiy table constraints like Primary and Fomelgeys, Unique conditions a
general column conditions.

An first example was shown at the page Create plsiitable and a second one here:

e e e e e e 4
1

ICREATE TABLE test_table (:
1 -- define columns (name / type / default value / co lumn constraint '
v oid DECIMAL PRI MARY KEY, !
' part_number CHAR10) DEFAULT 'n/a’ NOT NULL, '
\ part_name VARCHAS00), .
| state DECIMAL DEFAULT -1, !
b define table constraints (eg: 'n/a’ shall correl ate with NULL) 1
1 CONSTRAI NT test_check CHECK ((part_number = ‘n/a' AND part_name IS NULL) OR .
. (part_number = ‘n/a’ AND part_name |S NOT NULL)) !
px :
L e m e e e e m e e e e e m e -

The table consists of 4 columns. All of them hawata type and some a default value. The coluhatts as the Primary Key. The table
constraintest_check guarantees thaart_name is mandatory ipart_number is recorded.

Column Definition

Data Type
The standard defines a lot of predefined data tygeasracter strings of fixed and variable size rabter large objects (CLOB), binary
strings of fixed and variable size, binary larggeots (BLOB), numeric, boolean, datetime, interxat|. Beyond there are complex types

like: ROW, REF(erence), ARRAY, MULTISET and useffidded types (UDT). The predefined data types aptained on the next page.
To keep things simple we use on this page only CHMERCHAR and DECIMAL.

Default Value

A column can have a default value. Its data typeesponds to the type of the column. It may berstant value like the number -1
the string 'n/a’, or it is a system variable ouraction call to determine dynamic values like teermame or the actual timestamp.

The default clause affects those INSERT and MERGEmands, which do not specify the column. In oample database thperson

71 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

table has the columneight with the default value 0. If we omit this colunman INSERT command, the DBMS will store the vaue

1

v This INSERT command omits the ‘weight' column. T herefore the value '0' (which is different from

\-- the NULL value) is stored in the weight column.

il NSERT | NTO person (id, firstname, lastname, date_of_birth, place_of _birth, ssn)

VALUES (11, ‘Larry' 'Goldstein’ , date '1970-11-20" , 'Dallas’ , '078-05-1120");
1COWM T;

1

I This SELECT retrieves the row ...
:SELECT *

IFROM person

WHERE id = 11

'ANC weight = 0;

1

- ... but not this one:

:SELECT *

{FROM person

WHERE id = 11

:ANI: weight 'S NULL;
Tt 2

Identity Specification

The identity specification serves for the generation of a series of uniqueegsawhich acts as the Primary Key to the tablesrdhe
standard defines the syntax as: "GENERATED { ALWAYBY DEFAULT } AS IDENTITY". Unfortunatelly most BMS vendors do
not support this formulation. Instead they offdfaedient syntaxes and even different concepts teigga primary key values. Some u
combination of generators/sequences and triggéreroa special data type or different key words.

An overview about the wide spread of implementatisravailable in the wikibook SQL Dialects RefarenAuto-increment_column.
Column Constraint

The column constraint clause specifies conditiohlwvall values must meet. There are differentmolconstraint types:

NOT NULL
Primary Key
Unique
Foreign Key
Check values

TheNOT NULL phrase defines, that it is not allowedstore the NULL value in the column.

1
i-- The column col_1 is per definition not allowed t o hold the NULL value :
ICREATE TABLE t1 (col_1 DECIMAL NOT NULL); .
1 f
i-- This INSERT command will fail :
I NSERT | NTO t1(col_1) val ues(NULL); .
1 f
- The same applies to the following UPDATE command :
' NSERT | NTO ti(col_1) val ues(5); :
WUPDATE t1 SET col_1 = NULL; !
1

a1

The PRIMARY KEY phrase defines that the column actsheesPrimary Key of the table. This implies that twdumn is not allowed to
store a NULL value and that the values of all rawes distinct from each other.

1

ICREATE TABLE 2 (col_1 DECIMAL PRI MARY KEY);

1

I This INSERT will fail because a primary key colu mn is not allowed to store the NULL value.
'NSERT | NTO t2(col_1) VALUES(NULL);

1

\-- This INSERT works

:I NSERT | NTO t2(col_1) VALUES(5);

1
\-- But the next INSERT will fail, because only one row with the value '5' is allowed.
:I NSERT | NTO t2(col_1) VALUES(5);

The UNIQUE constraint has a similar meaning as the P&ARV KEY phrase. But there are two slight differeace

First, the values of different rows of a UNIQUE wwin are not allowed to be equal, which is the saseith PK. But they are allow
to hold the NULL value, which is different from PKhe existence of NULL values has an implicatios. thAe terrmull = null neve
evaluates tdrue (it evaluates taunknown) there may exist multiple rows with the NULL valire a column which is defined to be
UNIQUE.

Second, only one PK definition per table is allowiedcontrast, there may be many UNIQUE constrdmsdifferent columns).

72 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibébks, open boo...

\CREATE TABLE t3 (col_1 DECIMAL UNI QUE);
1

- works well

I NSERT | NTO t3(col_1) VALUES(5);

:—— fails because there is another row with value 5

il NSERT | NTO t3(col_1) VALUES(5);

1

1

- works well

I NSERT | NTO t3(col_1) VALUES(nul I);
\-- works also

I NSERT | NTO t3(col_1) ~ VALUES(nul |);
1

i-- check the results

:SELECT * FROM t3;

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = -

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

The FOREIGN KEY condition defines that the column cadhonly those values, which are also stored inffarént column of (the
same or) another table. This different column lealset UNIQUE or a Primary Key, whereas the valuethefforeign key column itst
may hold identical values for multiple rows. Thensequence is that one cannot create a row withtaicevalue in this column before
there is a row with exactly this certain value lie treferred table. In our example database we hasmntact table whose colun
person_id refers to the id of persons. It makes sense thatcannot store contact values before storingppeogriate person.

Foreign Keys are the technique to realise 1:micglships.

- A table with a column which referes to the 'id'

'CREATE TABLE t4 (col_1 DECIMAL REFERENCES person(id));
1

\-- This INSERT works as in table 'person’ of our ex

:I NSERT | NTO t4(col_1) VALUES(3);

1
\-- This statement will fail as in 'person’ there is
:I NSERT | NTO t4(col_1) VALUES(99);

column of table 'person’

ample database there is a row with id = 3.

no row with id = 99.

T T T T T T T T T T T e -

Column checks inspect the values of the columretowhether they meet the defined criterion. Withich column checks only the

actual column is visible. If a condition covers taromore colums (eg.: col_1 > col_2) a table chmclst be used.

-- 'col_1' shall contain only values from 1 to 10.
-- A hint to MySQL users: MySQL accepts the syntax

1
\-- This INSERT works:
I NSERT | NTO t5(col_1) VALUES(3);

1
\-- This statement will fail:
:I NSERT | NTO t5(col_1) VALUES(99);

Table Constraint

of column checks - but it ignores them silently.

CREATE TABLE t5 (col_1 DECIMAL CHECK (col_1 BETWEEN 1 AND 10));

Table constraints defines rules which are manddtwrthe table as a whole. Their sematic and syateexlaps partially with the previous

shown column constraints.

Table constraints are defined after the definitidrall columns. The syntax starts with the key w@@NSTRAINT and includes the
possibility to denominate them with a meaningfuineat6_pk, t6_uk andt6_fk in the next example. In the case of any exceptiost
DBMS shows this name as part of the error message if you havn't defined one it uses its intemahing conventions which may be

very cryptic.

Primary Key, UNIQUE and Foreign Key

In the same manner as shown in the column conraént Primary Key, UNIQUE and Foreign Key coratis can be expressed as table

constraints. The syntax differs slightly from th@uwmn constraint syntax, the semantic is identical.

:—— A table with a PK column, one UNIQUE column and
ICREATE TABLE t6 (
' col_1 DECIMAL
col_2 CHAR10),
col_3 DECIMAL

CONSTRAI NT t6_uk UNI QUE (col_2),

NOT NULL and Simple Column Checks

a FK column.

CONSTRAI NT t6_pk PRI MARY KEY (col_1), -- 't6_pk' is the name of the constraint

CONSTRAI NT t6_fk FOREI GN KEY (col_3) REFERENCES person(id)

In a similar way as shown in the column constrapag NOT NULL conditions and simple column checlks be expressed as table

expressions.

73 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

ICREATE TABLE t7 (

' col_1 DECIMAL

col_2 DECIMAL

CONSTRAI NT t7_col_1_nn
CONSTRAI NT t7_col_2_check

CHECK (col_1
CHECK (col_2

I'S NOT NULL),
BETWEEN 1 and 10)

=

General Column Checks

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

If a condition affects more than one column it mustexpressed as a table constraint.

CREATE TABLE t8 (
col_1 DECIMAL
col_2 DECIMAL
col_3 DECIMAL
col_4 DECIMAL
-- col_1 can hold only those values which are great
CONSTRAI NT t8_check_1 CHECK (col_1 > col_2),
-- If col_3 is NULL, col_4 must be NULL also

er than col_2

CONSTRAI NT t8_check_2 CHECK ((col_3 IS NULL AND col_4 1S NULL) OR
I'S NOT NULL AND col_4 IS NOT NULL))
);
-- This two INSERTs work as they meet all condition s
NSERT | NTO t8 VALUES(1, O, null, null);

NSERT | NTO t8 VALUES(2, 0, 5, 5);

1
1
L
1
1
1
1
1
1
1
1
1
1
1
|
H (col_3
r
¥
1
1
'
1
1
:
1
- Again: MySQL ignores check conditions silently
1
1
1
Ll
1

-- This INSERT fails because col_1 is not greater t han col_2

| NSERT | NTO t8 VALUES(3, 6, null, null);

1

\-- This INSERT fails because col_3 is not null and col_4 is null

:I NSERT | NTO t8 VALUES(4, 0, 5, nul l);

Column Constraints vs. Table Constraints

As you have seen some constraints may be definpdrasf the column definition, which is calledc@umn congraint, or as a separate
table congtraint. Table constraints have two advantages. Firsy, éne a little bit more powerful.

Second, they do have their own name! This helpsnderstand system messages. Furthermore it openpassibility to manage
constraints after the table exists and containa.ddte ALTER TABLE statement can deactivate, atéivax delete constraints. To do so,

you have to know their nan

Clean Up

Exercises

Create a table 'company' with columns 'id' (numemignary key), 'name’ (strings of variable sizetap200), ‘isin' (strings of length 12,

not nullable, unique values).

Create a solution with column constraints only andther one with table constraints only.

Click to see solution

- column constraints only

\CREATE TABLE company_1 (

: id DECIMAL PRI MARY KEY,

+ name VARCHARO00),

1\ isin | CHAR12) NOT NULL UNI QUE
W

i table constraints only
ICREATE TABLE company_2 (

CONSTRAI NT company_2_check_isin CHECK (isin I'S NOT NULL)

: id DECIMAL

1 name VARCHARO00),

1 isin CHARS),

! CONSTRAI NT company_2_pk PRI MARY KEY (id),
1 CONSTRAI NT company_2_uk UNI QUE (isin),
:

l

r

74 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Create a table ‘accessory' with columns 'id' (nienprimary key), 'name' (strings of variable sigeto 200, unique), 'hobby_id' (decimal,
not nullable, foreing key to column 'id' of tallebby").
Create a solution with column constraints only andther one with table constraints only.

Click to see solution

'
- column constraints only

(CREATE TABLE accessory_1 (
yid DECIMAL PRI MARY KEY,

' name VARCHARO00) UNI QUE,
\ hobby id DECIMAL NOT NULL REFERENCES hobby(id)
W

- table constraints only

\CREATE TABLE accessory_2 (

. id DECIMAL

1 name VARCHARO00),

1 hobby_id DECIMAL

' CONSTRAI NT accessory_2_pk PRI MVARY KEY (id),

1 CONSTRAI NT accessory_2_uk UNI QUE (name),

1 CONSTRAI NT accessory_2_check_1 CHECK (hobby_id IS NOT NULL),

! CONSTRAI NT accessory_2_fk FOREI GN KEY (hobby_id) REFERENCES hobby(id)
1,
1
1
I
1

-- Test some legal and illegal values
Il NSERT | NTO accessory_1 VALUES (1, ‘Fishing-rod’ , 2);
'COWM T;

The SQL standard knows three kinds of data types

= predefined data types
= constructed types
» user-defined types.

This page presents only th@redefined data types. Constructed types are one of ARRAY, MULTISET, REF(erence) or ROW.
User-defined types are comparable to classes in object-oriented Eggwith their own constructors, observers, musatorethods,
inheritance, overloading, overwriting, interfacesi &o on.

Overview

The standard groups predefined data types intastyith similar characteristics.
m Character Types

» Character (CHAR)
» Character Varying (VARCHAR)
= Character Large Object (CLOB)

= Binary Types

= Binary (BINARY)
= Binary Varying (VARBINARY)
= Binary Large Object (BLOB)

= Numeric Types

= Exact Numeric Types (NUMERIC, DECIMAL, SMALLINT, IREGER, BIGINT)
» Approximate Numeric Types (FLOAT, REAL, DOUBLE PRESION)

Datetime Types (DATE, TIME, TIMESTAMP)
Interval Type (INTERVAL)

Boolean

XML

Character types hold printable characters, bingrgg any binary data. Both may have a fixed orabéei size with an upper limit. If the
upper limit exeeds a certain value the type iargél object’ with special methods and functions.

Exact numeric types hold numeric values withouitsligfter the decimal or with a firm number of thgafter the decimal. Please note
that the standard does not define a sepatata type 'auto-increment' for generating primary keys. @éast he defines the phrase
'GENERATED ALWAYS AS IDENTITY" as part of the CREATTABLE statement, see CREATE TABLE statement dpdncrement-
columns.

75 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Approximate numeric types hold numeric values waithimplementation defined precision (after the ahad).

Temporal types hold values for INTERVAL (a certagnge on the time bar), DATE (year, month, dayMHEIwith and without
TIMEZONE (name of timezone, hour, minute, secontluiding fraction) and TIMESTAMP with and without IEZONE (name ¢
timezone, year to second including fraction).

The boolean data type holds the two valuas andfal se.

Part 14 of the SQL standard extends the list ofigiired data types by introducing the data type X{racle calls it XMLType)
together with a bunch of particular functions. @ohs of this type hold XML instances.

In the outdated SQL-2 standard there was a da&'Bljp'. This data type is no longer part of thenstard.

Most DBMS implement the majority of predefined dayaes, but there are some exceptions. Also theingadiffers slightly. At
overview about the major implementations is avéglai the wikibook SQL_Dialects_Reference.

Data types are used within the CREATE TABLE statetnaes part of column definitions - or during CASJeoations.

;
ICREATE TABLE <tablename> (i
' <colum_nane> <data_type> ... , .
1 <col um_nanme> <data_type> ... , !
: !
! 1
! 1

Character

A series of printable characters - which is a gtrican be stored withicharacter string types. If all rows of a table use the same fi
size for the strings, the data typecCisAR(<n>) where <n> is the size of the strings. If the siagies from row to row, the data type
VARCHAR(<n>) defines thatup to <n> characters can be stored in the columns<igo defines the upper limit for this column. The
maximum value fokn> depends on the used DBMS implementation. If appbos need to store longer strings than it isaadlb by this
upper system limit, the data typeoBmust be used. AlsoLoBhas its own upper limit, but this is significantiyeater than the upg
limit of VARCHAR

e e e e e e 1
1

- A table with columns of fixed and variable size strings and a CLOB string :
\CREATE TABLE datatypes_1 ('
: id DECIMAL PRI MARY KEY, :
v col_1 CHAR10), -- exactly 10 characters |
: col_2 VARCHARL50), -- up to 150 characters .
1 col_3 CLOB -- very large strings (MySQL denotes this data type 1 'LONGTEXT') !
:); '
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - -

Hint: Unlike other programming languages SQL doeisdistinguish between éharacter data type and astring data type. It knows only
thecharacter string data types CHAR, VARCHAR and CLOB.

Binary

Binary data types are similar to character datasyphey differ in that they accept a differentganf bytes. Binary data types accept
all values.

:' """ T
1-- A table with columns of fixed and variable size binary data and a BLOB :
ICREATE TABLE datatypes_2 (:
'oid DECIMAL PRI MARY KEY, '
v col_1 BINARY(10), -- exactly 10 byte 1
| col_2 VARBINARY(150), --up to 150 byte '
1 col_3 BLOB -- very large data: jpeg, mp3, ... '
) :
O A

A hint to Oracle users: The data typIiARY is not supported, the data typerBINARYis denoted agAwand is deprecated. Oracle
recommends the use BfOB

Exact Numeric

Exact numeric types hold numeric values withouitsligfter the decimal or with a firm number of tigafter the decimal. All exact
numeric types are signed.

NUMERIC(<p>,<s>) andDECIMAL(<p>,<s>) denotes two types which are nearly the same. ppecision) defines a fix number of
digits within the type and <s> (scale) defines hmuch of them resides behind the decimal place. Miamalues with more than (p - s)
digits before the decimal place cannot be storerammeric values with more than s digits after deeimal place are truncated to s
digits after the decimal place. p and s are optidhenust always be: p s> 0 and p > 0.

76 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

SMALLINT, INTEGER and BIGINT denotes data typeshutit a decimal place. The SQL standard did nonhddfieir size, but the size
of SMALLINT shall be smaller than the size of INTE® and the size of INTEGER shall be smaller thansike of BIGINT.

i A table using five exact numeric data types
'CREATE TABLE datatypes_3 (

Vid DECIMAL PRI MARY KEY,

1 col_1 DECIMAL(G5,2), -- three digits before the decimal and two behind
' col_2 SMALLINT, -- no decimal point

1 col_3 INTEGER -- no decimal point

1 col_4 BIGINT -- no decimal point. (Not supported by Oracle.)

v

v

L e e e mf e cmmcmc e cmcmmccmmccmmcccmmccmmcc - e mcc e mcc - -mce-—meec-—-mecec—-mee—-mememem e —mememmmem e mmmemmm e m e mm e m——— === -

Approximate Numeric

Approximate numeric types hold numeric values withimplementation defined precision (after the mhat). All approximate numeric
types are signed. Their primary use cases aretsicieomputations.

There are three typeBLOAT (<p>) , REAL andDOUBLE PRECISION where p denotes the guaranteed precision ofttbaT data type.
The precision oREAL andDOUBLE PRECISIONIs implementation defined.

1

- A table using the approximate numeric data types

(CREATE TABLE datatypes_4 (

id DECIMAL PRI MARY KEY,

col_1 FLOAT2), -- two or more digits after the decimal place
col_2 REAL

col_3 DOUBLE PRECI SI ON

=

Temporal

Data types with respect to temporal aspectsmayes, TIME, TIMESTAMP andINTERVAL.

DATE stores year, month and dayme stores hour, minute and secomMESTAMPStores year, month, day, hour, minute and second.
Seconds can contain digits after the decimae andTIMESTAMPcan contain the name of a TIME ZONE.

The SQL standard defines two kinds of INTERVALseTirst one is an interval with year and month, $keond one is an interval w
day, hour, minute and second.

1

i-- A table using temporal data types
ICREATE TABLE datatypes_5 (
void DECIMAL PRI MARY KEY,

'

'

'
! ‘
' col_1 DATE -- store year, month and day (Oracle: plus hour, mi nute and seconds) :
1 col_2 TIME, '
1 col_3 TI MESTAMP(9), -- a timestamp with 9 digits after the decimal of s econds !
! col_4 TINMESTAMP W TH TIME ZONE, -- a timestamp including the name of a timezone '
1 col_5 INTERVAL YEAR TO MONTH, .
1 col_6 INTERVAL DAY TO SECOND(6) -- an intervall with 6 digits after the decimal of seconds !
px :
L e m e e e e m e e e e m e m e -

A hint to Oracle users: The data typ#®iE is not supported. UseAaTEinstead.

A hint to MySQL users: The use of TIME ZONE as pafrtlata types is not supported. MySQL implemendiffarent concept to handle
time zones. Fractions of seconds are not supporteridata type@NTERVAL is not supported, but there is a data valeERVAL.

Boolean

SQL has a 3-value-logic. It knows the boolean vaite , false andunknown. Columns of the boolean data type can store orikeof
two valuesrue oOrfalse .unknown is represented by storing no value, which is thit Nindicator.

\-- A table with one column of boolean
:CRE/—\TE TABLE datatypes_6 (

void DECIMAL PRI MARY KEY,

1 col_1 BOOLEAN -- not supported by Oracle

)
g -

Part 14 of the SQL standard extends the list odigfired data types by introducing the data type XWhe standard also defines a wide
range of particular functions for this data type.

77 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

\-- A table with one column of data type XML :
ICREATE TABLE datatypes_7 (.
v id DECIMAL PRI MARY KEY, '
col_1 XML |
|
'

A hint to Oracle users: The data tyyeLis denoted asMLType.

A hint to MySQL users: The data typeiLis not supported.

Domains

In the context of data types the standard kndovsains. The purpose of domains is to constrain the sgalid values that can be sto
in a column. The domain-concept is a very earlylpoessor of user-defined types and may be outdated.

Clean Up

'DROP TABLE datatypes_1;
{DROP TABLE datatypes_2;
'DROP TABLE datatypes_3;
IDROP TABLE datatypes_4;
\DROP TABLE datatypes_5;
'DROP TABLE datatypes_6;
IDROP TABLE datatypes_7;

Exercises

Create a table 'company’ with columns 'id' (humgmianary key), 'name’ (strings of variable sizeta200), 'isin' (strings of length 12),
'stock_price' (numeric with 2 digits before andft2iathe decimal), ‘description_text' (a very lastgng) and description_doc (any binary
format).

Click to see solution

ICREATE TABLE company (

1

1
: id DECIMAL PRI MARY KEY, :
1 name VARCHARO00), '
1 isin CHAR12), h
! stock_price DECIMAL(4,2), .
1+ description_text CLOB, !
1 description_doc BLOB |

1
: !

Foreign Keys define a directed reference from aidet (the child) to another table (the parent).sTieference acts as long as the
involved columns of the two tables contain ideriticues. It couples one row of the child tableatgsingle row of the parent table
row of the parent table may be coupled by many raivtke child table.

E.g.: You may have the tahbdiepartment with columnid and the tablemployee with columndept_id. If you want to assign an employee
to a distinct department, you store the departrteini-its columndept_id. This can be done in every case - independent &oyn
Foreign Key definition. But in such cases peopleemfhave two additional requirements: First, empésyshall only be assigned to
departments which really exist. Second, as longnagloyees are assigned to a distinct departmesihait be impossible to delete this
department. The main purpose of Foreign Keys guyantee these two requirements.

In other words: Foreign Keys guarantee thabrphanswill arise.

Foreign Key vs. Join

Within RDBMs identical values are used to link rogidifferent - and sometimes of the same - tatdether. Because this linking works
on the basis of values and not of any link or sgleeference it has no direction. In general wétba technique dOIN. Foreign Keys
have a very similar concept because they alsadinis with identical values together. But thereiamgortant differences:

= Foreign Keys have a direction. It is important tmW which one of the two affected tables is théddigsible and which one is
the parent table.

= Joins must be expressed within every DML statemeticth is interested in this join (with the exceptiof views). It
contrast Foreign Keys are part of table definitioh§ DML commands bear them in mind without exwieg them within
DML statement.

78 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

- As part of CREATE TABLE command
ICREATE TABLE <t abl e_nanme> (

4
1

1

1

D |
1

i CONSTRAI NT <constr ai nt _nane> FOREI GN KEY (< col unm_nanme>) REFERENCES <parent_table_name> (<other_column_name>) '
. 1
: !
1 1
1

1

1

1

1

1

a1

- As part of ALTER TABLE command

ALTER TABLE <t abl e_nanme> ADD CONSTRAI NT <constraint_name> ... ; -- same as above

'ALTER TABLE <t abl e_name> DROP CONSTRAI NT <constrai nt _nane>; -- throw the definition away

1

L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— -
Rules

» FK-constraints can be defined during table deéini{ CREATE TABLE) or afterwards (ALTER TABLE). Omis page we

focus on the CREATE TABLE statement. The syntathef ALTER TABLE statement is very similar.

FK-constraints belong to the child table definition

Despite an existing FK-constraint it is possiblattrows of the child table don't belong to any parew. This occurs if the
column value of the child row is NULL. If you watd avoid such situations, define the column as 'NNOJLL".

Although the FK-constraints belong to the childiégahey also have consequences for the parem salsh that rows of the
parent table, which have existing rows in the ctalole, can not be deleted.

The denoted parent table must exist.

The denoted column of the parent table must Heriteary Key or a column which is UNIQUE.

It is perfectly all right to use the same tablgagent and child table within one FK-constraing:dexercises.

One table may be subject of a lot of FK-contraints.

Example

The example defines the tabldspartment andemployee. The Foreign Key definition oémployee declaresdepartment as the parent
table ofemployee.

=
i-- The parent table: DEPARTMENT

ICREATE TABLE department (

void DECIMAL,

. dept_no CHAR10),

1 dept_name VARCHARO00),

1 CONSTRAI NT dept_pk PRI MARY KEY (id)
D;

1

- The child table: EMPLOYEE

ICREATE TABLE employee (

'oid DECIMAL,
emp_name VARCHARO00),
dept_id DECIMAL,

CONSTRAI NT emp_pk PRI MARY KEY (id),
CONSTRAI NT emp_dept_fk FOREI GN KEY (dept_id) REFERENCES department(id)

V

- This INSERT will fail because actually there is no department with id 10.

I'NSERT | NTO employee (id, emp_name, dept_id) VALUES (1, 'Mike Baker' , 10);

1ICOW T,

1

1

- It's necessary to store the department first.

il NSERT | NTO department (id, dept_no, dept_name) VALUES (10, 'D10' , 'E-Bike Development');
I NSERT | NTO employee (id, emp_name, dept_id) VALUES (1, 'Mike Baker' , 10);

'COW T;

1

i The department may have a lot of employees

'NSERT | NTO employee (id, emp_name, dept_id) VALUES (2, 'Elenore McNeal' , 10);

il NSERT | NTO employee (id, emp_name, dept_id) VALUES (3, 'Ted Walker' , 10);

cow T;

1

- This DELETE will fail because actually there are employees within the department.

DELETE FROM department WHERE dept_name = 'E-Bike Development'

1ICOMM T;

1

L e m e e e e e m e e e 2

This kind of modelling allows the representatiorh@rarchical tree structures. One or many childeso(rows) belong to a single parent
node (row). In the context of DBMS this kind of asistion is called a 1:m relationship.

n:m Relationship

In the real world there are more association typas 1:m relationships. Often there are so calledrelationships where objects (rows)
belong to more than 1 other object (row). Therdi®y heaning of parent/child tables gets lost. Inexample database there is a table
hobby and another tablgerson. One person may pursue multiple hobbies. At tineesime multiple persons may pursue the same hobby.
This can be designed by creating a third table &éetwthe two original tables. The third table halusid's of the first and second table.
So one can decide which person pursues which hobby.

79 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

The technique to realize this n:m situation isghme as shown in the previous chapter with itsaksociation - it is only used twice. We
define two Foreign Keys which start from the 'tainlehe-middle’ and refers to the two other tablesa technical sense we can say, that
the 'table-in-the-middle' is the child table foe thwo parent tableger son andhobby. person andhobby are at the same logical level.

CREATE TABLE t1 (
id DECIMAL
name VARCHAK®0),

CONSTRAI NT t1_pk PRI MARY KEY (id)

ICREATE TABLE t2 (
Vid DECIMAL,
name VARCHA®0),

1

1

S

1 CONSTRAI NT t2_pk PRI MARY KEY (id)
i
{CREATE TABLE t1_t2 (

Void DECIMAL,

' t1_id DECIMAL

v t2_id DECIMAL

1 CONSTRAINT t1_t2_pk PRI MARY KEY (id), -- also this table should have its own Primary Key
! CONSTRAI NT t1_t2_unique UNI QUE (t1_id, t2_id), -- every link should occur only once

1 CONSTRAINT t1_t2_fk_1 FOREI GN KEY (t1_id) REFERENCES t1(id),

1
1
1
v

CONSTRAI NT t1_t2_fk_2 FOREI GN KEY (t2_id) REFERENCES t2(id)

ON DELETE / ON UPDATE

So far we have assumed that rows of the parerg tbinot be deleted if a row in the child tablesexivhich refers to this parent row.
This is the default, but all in all the SQL stardiaefines five options to handle this parent/chitdation in various ways. The options
extend the constraint definition. They are:

= ON DELETE CASCADE: If a row of the parent tabledsleted, then all matching rows in the referentéide are deleted.

= ON DELETE SET NULL: If a row of the parent tabledeleted, then all referencing columns in all matghrows of the
child table are set to NULL.

= ON DELETE SET DEFAULT: If a row of the parent talidedeleted, then all referencing columns in altechiang rows of the
child table are set to the column’s default value.

= ON DELETE RESTRICT: It is prohibited to delete awof the parent table if that row has any matchimgs in the chil
table. The point in time when checking occurestmadeferred until COMMIT.

= ON DELETE NO ACTION (the default): It is prohibitetd delete a row of the parent table if that rovs bay matchir
rows in the child table. This holds true in ALL easeven if checking is deferred (see next chapter)

Analog to the ON DELETE option there is an ON UPEAGption. It defines the same five options for tlase of changing a columr
the parent table which is referred by the columa ohild table.

= ON UPDATE CASCADE: Any change to a referenced caoluin the parent table causes the same change to the
corresponding referencing column in matching rofuithe child table.

= ON UPDATE SET NULL: Any change to a referenced auiuin the parent table causes the correspondiregemcin
column in matching rows of the child table to betsenull.

= ON UPDATE SET DEFAULT: Any change to a referencemlumn in the referenced table causes the correspg
referencing column in matching rows of the refeiegtable to be set to its default value.

= ON UPDATE RESTRICT: It is prohibited to change avrof the parent table if that row has any matchings in the chil
table. The point in time when checking occurestmadeferred until COMMIT.

= ON UPDATE NO ACTION (the default): It is prohibited change a row of the parent table if that row &ay matchir
rows in the child table. This holds true in ALL easeven if checking is deferred (see next chapter)

If ON DELETE or ON UPDATE are not specified, thefalgdt action NO ACTION will occur. In some systeriee NO ACTION is
implemented in the sense of the RESTRICT option.

An Example:

CREATE TABLE t1_t2 (

1

1

)

'

.

' CONSTRAINT t1_t2_fk_1 FOREI GN KEY (t1_id) REFERENCES tl(id)
' ON UPDATE CASCADE ON DELETE RESTRI CT,
1

1

1

T

Hint 1: The concept of updating Primary Keys istcoversial.

Hint 2: Not all DBMS support all options.

80 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

IMMEDIATE / DEFERRED

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

There is an additional option to decide at whanpdi time the evaluation of the Foreign Key deifoni shall occur. The default
behaviour is to check it with each UPDATE and DEIEEGommand. The second possibility is deferringcheck until the end of the
transaction, which is the COMMIT command. The pgipof this deferring is to put applications in gasition to modify parent tables

before child tables (which may be helpful if they utilizgbernate).

To define this option the constraint definition mbe extended by the key words [NOT] DEFERABLE, ethare pre- or postfixed by
INITIALLY IMMEDIATE (the default) or INITIALLY DEFE RRED to specify the initial state after the CREATABLE point in time.

CREATE TABLE t1_t2 (

CONSTRAI NT t1_t2_fk_1 FOREI GN KEY (t1_id) REFERENCES ti(id)
ON UPDATE CASCADE DEFERRABLE | NI TIALLY | MVEDI ATE
ON DELETE RESTRI CT DEFERRABLE | NI TI ALLY DEFERRED,

Hint: MySQL does not support the DEFERRABLE optibnt the Foreign Key checking can be activateddeattived dynamically by

'SET foreign_key_checks = 0/1;'

The Chicken-Egg Problem

Sometimes applications run into cyclic dependendiakle A contains a reference to table B and viesa, e.g.: A tableeam contains
the columnsd, team name andteam leader (which is an id to a player) and the taplayer contains the columrisl, player_name anc

team id.

CREATE TABLE team (

id DECIMAL

team_name VARCHAS0),

team_leader DECIMAL -- ID of a player
CONSTRAI NT team_pk PRI MARY KEY (id)

CREATE TABLE player (

id DECIMAL

player_name VARCHA®0),

team_id DECIMAL

CONSTRAI NT player_pk PRI MARY KEY (id)

1

ALTER TABLE team ADD CONSTRAI NT team_fk FOREI GN KEY (team_leader) REFERENCES player(id);

:/-\LTER TABLE player ADD CONSTRAI NT player_fk FOREI GN KEY (team_id) REFERENCES team(id);

L e e e e e e ccefm e mccccmrmmm e cccc e ;e e ;e e ;e e _e ;e e e e e e e e e e m e —mmmm e ——mmmm————————————— -

So far, so bad. When the first team-row shall Iserired, the player-row is missed. When the plageris inserted first, the team-row is

missed.

As we have seen above, there is a DEFER optiongUkis option the FK-constraints must be definechsthat they are not evalua

immediate with the INSERT commands. They shall\muated after all INSERTs at the COMMIT point iimé.

i Throw the above definitions away ...

:ALTER TABLE team DROP CONSTRAI NT team_fk;

WALTER TABLE player DROP CONSTRAI NT player_fk;
- ... and use DEFERRABLE

!ALTER TABLE team ADD CONSTRAI NT team_fk

FOREI GN KEY (team_leader) REFERENCES player(id) DEFERRABLE | NI TI ALLY DEFERRED;

1
{ALTER TABLE player ~ADD CONSTRAINT player_fk

' FOREI GN KEY (team_id) REFERENCES team(id) DEFERRABLE | NI TI ALLY DEFERRED;

I NSERT | NTO team (id, team_name, team_leader) VALUES (1, 'Wwild Tigers' , 1)

I NSERT | NTO player (id, player_name, team_id) VALUES (1, ‘'Johnny Crash’ , 1)
- No checking of Foreign Keys up to here
1ICOMM T; -- Commit includes the check of Foreign Keys

DROP TABLE / TRUNCATE TABLE

Foreign Keys have implications to DROP TABLE andUNCCATE TABLE commands. As long as a Foreign Keyersfa parent table,
this table cannot be dropped (remove structuredatd) or truncated (remove data only). This halds even if there is no actual r

refering any row in the parent table - the exiseeotthe Foreign Key is sufficient to refuse DROf ZRUNCATE.

81 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

To use DROP or TRUNCATE it is necessary to dropciestraint first.

Hint: Some implementations offer a DISABLE/ENABLBromand to deactivate constraints temporarily.

Exercises

Is it possible that the parent table of a FK-caistrcontains 1 row and the child table is empty?

Click to see solution

Is it possible that the child table of a FK-conitr@ontains 1 row and the parent table is empty?

Click to see solution

\Yes. Although the main purpose of FK-constraints is the prevention of children without parents (orphan s), this situation may occur.
\If the column of the child row contains the NULL va lue, this row relates to no parent row
:because ‘null = <any value>' evaluates always to UN KNOWN and never to TRUE, even if that <any value> i s the NULL value.

b e e e e e e e e e e E e E e E e E e E e E e EE e fEfEfE mE mE e E e E e e e E e E e = m - - -

Create a tablggenealogy which stores information about people and theichastors. The columns are: id, first_name, lastenam

birth_name, father_id, mother_id.

Click to see solution

ICREATE TABLE genealogy (

. id DECIMAL PRI MARY KEY,

1+ first_name VARCHARL00),

1 last_name VARCHARLOO),

! birth_name VARCHARL00),

1 father_id DECIMAL

 mother_id DECIMAL

%

L e e e e c e c e e e mcccfCfmm e e cccmmm e e e e ;e e ;e e e ;e e e e e e e e e mm e e e e mm e m e mmm e m e mmmmmm—— e mm————————————————

Extend the tablgeneal ogy by two FK-contraints such that the columns ‘fatidrand ‘'mother_id' refer to other rows of thisléa

Click to see solution

1
(ALTER TABLE genealogy ~ADD CONSTRAI NT gen_fk_1 FOREI GN KEY (father_id) REFERENCES genealogy(id);
:ALTER TABLE genealogy ADD CONSTRAI NT gen_fk_2 FOREI GN KEY (mother_id) REFERENCES genealogy(id);

Insert some data into 'genealogy’, e.g.: data froon personal family.

Click to see solution

- For the first rows store NULL in ‘'father_id" and ‘mother_id"!

il NSERT | NTO genealogy (id, first_name, last_name, birth_name, father _id, mother_id)
: VALUES (1, 'Mike' ‘Miller' , 'Miller , nul |, nul 1);
'NSERT | NTO genealogy (id, first_name, last_name, birth_name, father _id, mother_id)
1 VALUES (2, ‘Eve’ , ‘Miller' , 'Summer' , nul |, nul 1);

I NSERT | NTO genealogy (id, first_name, last_name, birth_name, father _id, mother_id)
' VALUES (3, ‘Marry' ‘Dylan’ ‘Miller* s 1, 2);

il NSERT | NTO genealogy (id, first_name, last_name, birth_name, father _id, mother_id)
. VALUES (4, ‘Henry' ‘Dylan’ ‘Dylan’ nul |, 3);
1ICOW T;

The ALTER TABLE command modifies column definitioasd table constraints 'on the fly'. This meanstieg definitions are extended,

changed or deleted or existing data is casteddiffeaent type or existing data is evaluated agaims new definitions.

1

- change column definitions

ALTER TABLE <table_name> { ADD | ALTER } [COLUMWN] < col urm_name> <column_definition>;
ALTER TABLE <t abl e_nanme> { DROP } [COLUWN] < col um_nane>;

1

- change table constraints

ALTER TABLE <t abl e_name> { ADD | ALTER } CONSTRAI NT <constraint_name> <constraint_definition>;
:ALTER TABLE <t abl e_name> { DROP } CONSTRAI NT <constraint_nanme>;

The following examples are based on the test tdble

82 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

T TS S S E T
ICREATE TABLE t1 (:
Void NUMERIC PRI MARY KEY, '
' ocol_1 CHAR4) !
); \
r 1
L e e e e e e e e e e e E e E e E m E mE Em E m e E e e e m e m e m - m e mm— e m o m = e e = e e e = e e e = = = e = e = e = e = e = e = e = = =)

The syntax of the ADD COLUMN and ALTER COLUMN phessare similar to the one shown in the create fadde.
Add a Column

Existing tables can be extended by additional cokimith the ADD COLUMN phrase. Within this phradeaptions of the origin:
Create Table statement are available: data typauli&#alue, NOT NULL, Primary Key, Unique, Foreiffiey, Check.

!-- add a new column with any characteristic
'ALTER TABLE t1 ADD COLUWN col_2 VARCHAR00) CHECK (I ength(col_2) > 5); -- Oracle: The key word 'COLUMN" is not allowed.
1

Alter the Characteristic of a Column

With the ALTER COLUMN phrase some characteristitam existing column can be changed

= data type
» DEFAULT clause
» NOT NULL clause.

The new definitions must be compatible with the ekdsting data. If you change for example the dge from VARCHAR to
NUMERIC this action can only be successful if ipssible to ca all existing VARCHAR data to NUMERIC - the casting'ejz' will
fail. Casting in the direction from NUMERIC to VARAR will be successful as long as the width of YA&RCHAR s large enought to
store the result.

Hint: Concerning the change of the characterigtfiasolumns some implementations ignore the synfakeo SQL standard and use of
keywords like 'MODIFY".

Change the Data Type

[t ittt ittt ittt ittt 1
:ALTER TABLE t1 ALTER COLUWN col_1 SET DATA TYPE NUMERIG :
1 1
g 4

oo o oo T T T T o T T S mmmmm————-------- b
:ALTER TABLE t1 ALTER COLUMWN col_1 SET DEFAULT 'n/a’ :
1 1
g 4

__ 1
:ALTER TABLE t1 ALTER COLUWN col_1 SET NOT NULL; :
IALTER TABLE t1 ALTER COLUWN col_1 DROP NOT NULL; :
U !
Drop a Column

Columns can be dropped from existing tables.

Fr T ST T T T ST T TS TS TS T T TS T E TS S S ST ST S sE s T
EALTER TABLE t1 DROP COLUMN col_2; -- Oracle: The key word 'COLUMN' is mandatory. :
L o o e A
Hint: As an extention to the SQL standard someaemgntations offer a RENAME or SET INVISIBLE command

Table Constraints

Table constraints can be added, modified or dropplee syntax is similar to that shown on the crealde page.

Add a Table Constraint

L e T
EALTER TABLE t1 ADD CONSTRAINT t1_col_1_unique UNI QUE (col_1); E
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - a4

83 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Alter a Table Constraint

Fr T ST T T T ST ST ST ST ST ST ST ST ST ST T T T T ST T T ST ST T TS TS ST TS TSI TS TS T e S s T e s e T

1

:ALTER TABLE t1 ALTER CONSTRAI NT t1_col_1_unique UNI QUE (col_1); |
1

L e e e e e e c e mmmccfCrcmfm e cccc e e e e m e ;e e e e e ;e ;e ;e e ;e ;e e e e e e m e mm e e e e e e e e e e e e e m e m e e e e mmm e mmmmmm e mmm—————— e ——————— A

Hint: Concerning the change of table constrainteesimplementations ignore the syntax of the SQhddad and use other keywords
like 'MODIFY".

Drop a Table Constraint

F T T T T T T T ST ST T T ST ST ST ST ST ST ST T T ST ST T T ST T T ST ST ST ST ST TS TS TS TS TS T s Ss T s i
:ALTER TABLE t1 DROP CONSTRAI NT tl1_col_1_unique; -- MySQL: Not supported. There is only a 'DROP FORE IGN KEY". :
1 1
e -

Hint: As an extention to the SQL standard someaemgintations offer an ENABLE / DISABLE command fonstraints.

Exercises

Add a column 'col_3' to the table 't1": numerict noll.

Click to see solution

Fr T ST T T T ST T TS TS TS T T TS T E TS S S ST ST S sE s T

1

:ALTER TABLE t1 ADD COLUWN col_3 NUMERICNOT NULL; :
1

T T . 4

Add a Foreign Key from table 't1' column ‘col_3table 'person’ column ‘id".

Click to see solution

T ST T ST ST TS S S ST S s s i
EALTER TABLE t1 ADD CONSTRAINT t1_col 3 fk FOREI GN KEY (col_3) REFERENCES person (id); E
L e e e e e e e e e e e E e E e E m E mE Em E m e E e e e m e m e m - m e mm— e m o m = e e = e e e = e e e = = = e = e = e = e = e = e = e = = =)

Fr T ST T T T T T TSI TS T ST T ST T E TS S ST S S S S s s s i
1

DROP TABLE <t1>; :
1 1
L e e e e e e e e e e e E e E e E m E mE Em E m e E e e e m e m e m - m e mm— e m o m = e e = e e e = e e e = = = e = e = e = e = e = e = e = = =)

The command handles the table as a whole. It willfine any trigger. But it considers Foreign Kegfiditions. If any other table referes
to the table to be dropped, the DROP TABLE commaitidail. The Foreign Key definition must be droggb first.

As the DROP TABLE command handles the table as@eyfi is very fast.

Regular tables are containers to store data ftwoetex or longer time periode and to offer thostada a lot of processes. In contrast,
sometimes there is the requirement to handle daita ghort time and only for local purposes. Thiagcomplished by the provisior
TEMPORARY TABLES. They are subject to the SQL synitathe same way as regular tables.

The common characteristic of all temporary tabdeghat every session (connection) get®its incarnation of the temporary table
without any side effect to other sessions. Thigldeto the situation that every session sees omgettdata, which it has inser
previously. The data isot sharedbetween different sessions, even if they usedhgedable name at the same time. Every sessiorswork
on a different incarnation. A second common chasistic is that with the termination of the sessidindata of the temporary table is
thrown away automatically. An explicit DELETE or DR TABLE is not necessary.

The concept of temporary tables is similar to theoept of arrays of records within programming leages. The advantage over arrays
is the availability of all DML statements known 3L, eg.: if you need some intermediate data, youretrieve it from a regular table
and store it in a temporary table with one singisett+Subselect command. The advantage over retgides is that the overheac
logging and locking might be saved.

There are three slightly different types of tempypitables:

= Global temporary tables
» Local temporary tables
» Declared local temporary tables.

\CREATE GLOBAL TEMPORARY TABLE <t abl e_name> (...)
ICREATE LOCAL TEMPORARY TABLE <tabl e_nane> (...

ON COW T { PRESERVE | DELETE } ROWS J;
ON COW T { PRESERVE | DELETE } ROWS I;

84 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

DECLARE LOCAL TEMPORARY TABLE <table_name> (..) [ON COMM T { PRESERVE | DELETE } ROVS];
1

L e e e e e E e E e E e f e E e E e f e m e mEmE e e e E e e e E e — e e e == = -

If the phrase 'ON COMMIT DELETE ROWS'is used, tfata is automatically thrown away with every COMMIdmmand, else at the
end of the session (or with a DELETE command).

Global Temporary Tables (GTT)

If a GTT is created, thidefinition keeps alive beyond the end of the defining ses&orn other session within this schema sees the
definition. Therefore the GTT can be defined siemétous with regular tables and applications daedrto create GTTs by itself (but
they can do it). Up to this point GTTs don't diffeom regular tables. The distinction relates te data. As with all temporary tables
every session gets its own incarnation of the tablk cannot access data from any other sessitre Bession terminates, all data f

the table is thrown away automatically.

A typical use case is an application which neetlsngporary protocoll about its own activities likecsessful actions, exceptions, ... to
perform recovery activities later on. This inforioatis not of interest for other sessions. Moreavenay be deleted at the end ¢
transaction or at the end of the session.

Another use case is an application which want doesan intermediate result set and iterate absuinitgle rows to performs actions
depending on the columns values.

. The table may be defined by a different session long time before.
:CREATE GLOBAL TEMPORARY TABLE templ (

'ots TI MESTAMP,

1 action CHAR100),

, state CHARS50)
r
L

ION COVWM T PRESERVE ROWS;
1

-
'-- Insert some data

I NSERT | NTO templ VALUES (current_timestanp, 'node-l-requestsended.' , 'OK");

I NSERT | NTO templ VALUES (current_timestanp, 'node-2-requestsended.' , 'OK");

'NSERT | NTO templ VALUES (current_tinestanp, 'node-l-answer received.' , 'Failed");

il NSERT | NTO templ VALUES (current _tinestanp, 'node-2-answer received.' , 'OK");

\SELECT count (*) FROM templ WHERE state = 'OK';

1

1COMM T;

{SELECT count (*) FROM templ; --In this example all rows should have survived th e COMMIT command

- After a disconnect from the database and establi shing of a new session the table exists and is empt y.

L o o o o e e o e o e e e e e e o e o 4

Local Temporary Tables (LTT)

Thedefinition of a LTT will never survive the duration of a dess The same applies to itista, which accords to the behaviour of
temporary tables. In consequence every sessiondatise its own LTT before it can store anythingpiit. Multiple sessions can use the
same table name simultaneously without affectirdnezther, which - again - accords to the behavidall temporary tables.

i The table must be defined by the same session (c onnection) which stores data into it.
:CREATE LOCAL TEMPORARY TABLE temp2 (

v ts TI MESTAMP,

1 action CHAR100),

| state CHARS50)

1,

)

JON COW T PRESERVE RO\S;

e After a disconnect from the database and establi shing of a new session the table will not exist.

T T T T T T T T T T T e -

The SQL-standard distinguishs between SQL-sessindsmodules within SQL-sessions. It postulates thds are visible only withi
that module, which has actually created the takie. tables are not shared between different modiild®e same SQL-session. But the
LTTs definition occurs in the information schematiu DBMS.

Declared Local Temporary Tables (DLTT)

The main concept of DLTT is very similar to thatldfT. The difference is that in opposite to theinigbn of a LTT the definition of
DLTT will not occur in the information schema ofettbBMS. It is known only by the module where itdisfined. You can imagine
DLTT as some kind of a module-local variable.

i The declaration must be defined by the same modu le which stores data into the table.

'DECLARE LOCAL TENMPORARY TABLE temp3 (
v ts TI MESTAMP,

1 action CHAR100),

| state CHARS50)

1,

JON COWM T PRESERVE RO\S;

- After a disconnect from the module and entering the module again the declaration will not exist.

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = -

Implementation Hints

85 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

MySQL:

= Omit the key words LOCAL/GLOBAL and the ON COMMIhmse. Temporary tables are always LOCAL and theCOWMMIT
acts always in the sense of PRESERVE ROWS.
m GTT and DLTT are not supported.

Oracle:

m LTT and DLTT are not supported.

Indexes are a key feature of all SQL databasesy previde quick access to the data. Therefore almlbémplementations suppor
CREATE INDEX statement.

Nevertheless the CREATE INDEX statemel not part of the SQL standard The reason for this is unknown. Possibly it dediberate
decision against all implemenation issues. Or sults from the wide range of different syntaxedized by vendors and the lack
finding a compromise.

On this page we offer some basic ideas concerndexies and the syntax which is common to a greabeuof implementations.

F T T T T T T T ST ST T T ST ST ST ST ST ST ST T T ST ST T T ST T T ST ST ST ST ST TS TS TS TS TS T s Ss T s i
1

ICREATE [UNI QUE] | NDEX <index_name> ON <t abl e_name> (<col um_nane> [, < col unm_nane>]); :
1 1
[T T T T T T T T T T T e -

The Concept of Indexes

DBMSs offer quick access to data stored in thditeta One might think that such high-speed acsedse to fast hardware of mod
computers: millions of CPU cycles per second, s in the range of milliseconds, access to RAMiwimicro- or nanoseconds, etc.
That is true, but only partly so. Instead, the afsiatelligent software algorithms, especially retcase of handling large amounts of data,
is the dominant factor.

Consider a request to the DBMS to determine, whieithaot a person with a certain name can be fawrdtable with 1 million entries.
With a primitive, linear algorithm the system has¢ad 500,000 rows (on average) to decide thetigne¥he binary search algorithm
implements a more sophisticated strategy which arsthe question after reading 20 rows or lesshitncase this choice of algorit|
leads to a factor of 25,000 in performance. In ptdereally grasp the magnitude of this improvemgoi may want to multiply you
salary by 25,000.

Admittedly this comparision between the linear ascand the binary search algorithm is a littlesbitple. First, DBMS usually re.
blocks containing multiple rows and not single ro®at this didn't change the situation. If a bladatains 100 rows, modify the above
example from 1 million to 100 million rows. Secorlde binary seach algorithm assumes that the datedered. This means that du
data entry there is an additional step for sortiiregactual input into the existing data. This aggptdnly once and is independent from the
number of read accesses. In summary there is adalitivork during data entry and much less workrdudata access. It depends on the
typical use of the data whether the additional wenkorthwhile.

The index is an additional storage holding datactvhis copied or deducted from the original datdahie table. He consists only
redundant data. What parts make up the index? In the case obitery search stategy the index holds the originales of the tables
column plus a backreference to the original ronmiyst cases he is organized as a balanced treehsittblumns value as the trees key
and the backreference as additional informatiorefmh key.

The binary search algorithm is one of a lot of methfor building indexes. The common charactegsticindexes are that they consists
only of redundant information and use additionabrees in sense of CPU cycles, RAM or disc spadeoffar better performance !
gueries on large data amounts. If they are useshwll tables or there are too much indexes forsdree table it is possible that the
disadvantages outweighs the benefits.

Basic Index

If an application use to retrieve data by a certaiterion - e.g. a person name for a phone bo@kicgtion - and this criterion consists
a tables column, this column should have an index.

F T T T T T T T ST ST ST T T ST T T ST ST ST ST ST ST ST ST ST T T ST ST T T ST ST T TS TS ST TS TS TS T E T e S s T s e e i
1 1
:CREATE | NDEX person_lastname_idx ON person(lastname); 1

1
L e e e e e e c e mmmccfCrcmfm e cccc e e e e m e ;e e e e e ;e ;e ;e e ;e ;e e e e e e m e mm e e e e e e e e e e e e e m e m e e e e mmm e mmmmmm e mmm—————— e ——————— A

The index has its own freely selectable narperson_lastname_idx in this example - and is build on a certain colurha certain table.
The index may be defined and created directly aiterCREATE TABLE statement (when there is no dathe table) or after some
a huge number of INSERT commands. After it is @ddhe DBMS should be in the state to answer durestike the following quicke
than before.

86 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

\SELECT count (*)

JFROM person

WHERE lastname = 'Miller'
1

[T T T T T T T T T T T e -

The index is used during the evaluation of the WIHESause. But it is not sure that the index is uSde DBMS has the choice
between on the one hand readingpaflson rows and counting such where the lastname iseMdlr on the other hand reading the ir
(possibly with binary search) and counting all r@aéth value 'Miller'. Which strategy is used degeron a lot of decisions. If, 1
example, the DBMS knows that about 30% of all roastains 'Miller' it may choose a different stratéigan if it knows that only 0.3%
contains 'Miller".

A table may have more than one index.

F T T T T T T T ST ST ST T T ST T T ST ST ST ST ST ST ST ST ST T T ST ST T T ST ST T TS TS ST TS TS TS T E T e S s T s e e i

1

:CREATE | NDEX person_firstname_idx ON person(firstname); :
1

L e e e e e e c e mmmccfCrcmfm e cccc e e e e m e ;e e e e e ;e ;e ;e e ;e ;e e e e e e m e mm e e e e e e e e e e e e e m e m e e e e mmm e mmmmmm e mmm—————— e ——————— A

1
:SELECT count (*)
{FROM person

\VWHERE lastname = ‘Miller’
:ANI: firstname = 'Henry
T T . -

Again, the DBMS has more than one choice to redridhe expected result. It may use only one of W ihdexes, read the result
rows and look for the missing other value. Or &de both indexes and count the common backrefese@ueit ignores both indexes,
reads the data and counts such rows where bogmiasitapply. As mentioned it depends on a lot ofsitans.

Multiple Columns

If an application typically searchs in two columwithin one query, e.qg. for first- and lastname, it can befulk® build one index fc
both columns. This strategy is very different frima above example where we build two independelexies, one per column.

F T T T T T T T ST ST ST T T ST T T ST ST ST ST ST ST ST ST ST T T ST ST T T ST ST T TS TS ST TS TS TS T E T e S s T s e e i
1

ICREATE | NDEX person_fullname_idx ON person(lastname, firstname); :
1 1
T T T T T T T T T T T e -

In this case the key of the balanced tree is theai@nation of last- and firstname. The DBMS canthss index for queries which ¢
for last- and firstname. It can also use the infiexqueries for lastname only. But it cannot use itidex for queries for firstname only.
The firstname can occur at different places withim balanced tree. Therefore it is worthless fohsyueries.

Functional Index

In some cases an existing index cannot be usedueries on the underlying column. Suppose the gteeerson names should be
case-insensitive. To do so the application comadrisser-input to upper-case and use the UPPEiRtiDN to the column in scope.

E—— Original user input was: 'miller*

SELECT count (¥)

JFROM person

:V\HERE UPPER(lastname) = 'MILLER" ;

As the criterion in the WHERE clause looks only émpercase characters and the index is build iasa-sensitive way, the key in the
balanced tree is worthless: 'miller' is sorted akgy different place than 'Miller'. To overcomeethroblem one can define an index,
which uses exactly the same strategy as the WHEREicn.

Fr T ST T T T ST T TS TS TS T T TS T E TS S S ST ST S sE s T

1

:CREATE | NDEX person_uppername_idx ON person(UPPER(lastname)); -- not supported by MySQL :
1

g 4

Now the 'UPPER()' query can use this so-calledtfanal index

Unique Index

The Primary Key of every table is unique, which meghat no two columns can contain the same v&8ometimes one column or the
concatenation of some columns is also unique. Boirenthis criterion you can define a UNIQUE CONSTRA or you can define ¢
index with the additional UNIQUE criterion. (Oft&iNIQUE CONSTRAINTS silently use UNIQUE INDEX in tHeackground.)

P TS T T T T T T T T TS ST T T T TSI E TS S S S S S S ss s s T
1 1
:CREATE UNI QUE | NDEX person_lastname_unique_idx ON person(lastname); 1

1
g 4

Unique indexes can only be created on existing, dfatfae column in scope really has nothing butquei values (which is not the cas
our database example).

87 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Drop an Index

Indexes can be dropped by the command:

Fr T ST T T T T T TSI TS T ST T ST T E TS S ST S S S S s s s i

1

DROP | NDEX <index_name>; |
1

L e e e e e e e e e e e E e E e E m E mE Em E m e E e e e m e m e m - m e mm— e m o m = e e = e e e = e e e = = = e = e = e = e = e = e = e = = =)

For multiuser systems like DBMSs it is necessargramt and revoke rights for manipulating its obljedhe GRANT command defines
which user can manipulate (create, read, change, dr) which object (tables, views, indexes, seges, triggers, ...).

T TS S S E T
1

:GRANT <privilege_name> i
ON <object_name> .
Hiel [<user_name> | <role_name> | PUBLI C] '
[W TH GRANT OPTI ONJ; !
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - iy

225 T

1
REVOKE <privilege_name> 1
'ON <object_name> '
:FROM [<user_name> | <role_name> PUBLI C]; .
g 4

The example statement grants SELECT and INSERR&ble person to the usehibernate. The second statement removes the gri

rights.

r "" T
1

IGRANT SELECT, | NSERT ON person TO hibernate; f

:REVO(E SELECT, | NSERT ON person FROM hibernate; :
1

L e e e e e e c e mmmccfCrcmfm e cccc e e e e m e ;e e e e e ;e ;e ;e e ;e ;e e e e e e m e mm e e e e e e e e e e e e e m e m e e e e mmm e mmmmmm e mmm—————— e ——————— -

Privileges

Privileges are actions which users can perform. 3Q& standard supports only a limited list of peges whereas real implementations
offer a great bunch of different privileges. That Gonsists of: SELECT, INSERT, UPDATE, DELETE, CRIE <object_type>, DROP
<object_type>, EXECUTE,

Object Types

The list of object types to which privileges maydyanted is short in the SQL standard and longdat implementations. It consists
tables, views, indexes, sequences, triggers, puvesd... .

Roles / Public

If there is a great number of users connectingp¢oRBMS, it is helpful to group users with identidghts to a role and grant privileges
not to the individuell users but to the role. Tosdp the role must be created by a CREATE ROLEestant. Afterwards users are joil
with this role.

- Create arole

i (MySQL supports only predefinded roles with spec ial semantics).

ICREATE ROLE department_human_resouces;

1

i Enrich the role with rights

:GRANT SELECT, | NSERT, UPDATE, DELETE ON person TO department_human_resouces;
(GRANT SELECT, | NSERT ON hobby TO department_human_resouces;
IGRANT ~ SELECT, | NSERT, UPDATE, DELETE ON person_hobby TO department_human_resouces;
1

:—— Join users with the role

IGRANT department_human_resouces TO user_1;

IGRANT department_human_resouces TO user_2;

1

L e m e e e m e e e 4

__ 1
1

\-- Everybody shall be allowed to read the rows of ' person' table. :
:GRANT SELECT ON person TO PUBLIC; '
L o o o o o o e oo o e oo e e oo e e e mmmmemmeoo o 2
Grant Option

If a DBA wants to delegate the managing of riglatsspecial users, he can grant privileges to thetheattend the statement with the

88 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

phrase 'WITH GRANT OPTION'. This enables the usergrant the received privileges to any other user.

- User 'hibernate’ gets the right to pass the SELE CT privilege on table ‘person’ to any other user.
:GRANT SELECT ON person TO hibernate W TH GRANT OPTI ON;

Structured Query Language/Like Predikate

There are use cases in which an application warterhpare rows or columns not with a fix valueg::éWHERE status = 5' - but witt
result of a query which is evaluated at runtimefirét example of such dynamic queries are subgsemeich results in exactlgne
value: '... WHERE version = (SELECT MAX(version))'.. Additionally sometimes there is the need tonpare against a set, wh
containamultiple values: '... WHERE version <comparision> (SELE@Tsion FROM t1 WHERE status > 2 ...)".

To do so, SQL offers some special comparision nugtHzetween the table to be queried and the refulteosubquery: IN, ALL,
ANY/SOME and EXISTS. They belong to the group otatledpredicates.

= The IN predicate retrievs rows which correlatehte tesulting values of the subquery.

= The ALL predicate (in combination with <, <=, =, >= or <>) retrievs rows which correlate ah values of the subquery
(boolean AND operation).

= The ANY predicate (in combination with <, <=, =, >= or <>) retrievs rows which correlate aay value of the subquery
(boolean OR operation). The key word SOME can ledl s a synonym for ANY, so you can exchange oaéstgthe
other.

m The EXISTS predicate retrievs rows, if the subguetyieves one or more rows.

IN
The IN predicate - as descripted in a previous wrapaccepts a set of values or rows.

1
:SELECT *

{FROM person

MHERE id I N

' (SELECT person_id FROM contact); -- Subquery with potentially a lot of rows.

The subquery selects a lot of values. Therefaeeribt possible to use operators like '=' or "ReyTwould merely compare single values.
But the IN predicate handles the situation and @egperson.id with every value otontact.person_id regardless of the number
contact.person_id values. This comparisons are mutally linked ingbase of boolean OR operations.

The IN predicate can be negated by adding the lag WOT.

§

ALL

The ALL predicate compares every row in the seriselmolean ANDwith every value of the subquery. It needs - intcast to the I
predicate - an additional operator, which is one<pk=, =, >=, > or <>,

:SELECT *

FROM person

WVWHERE weight > ALL

v (SELECT weight FROM person where lastname = ‘'de Winter');
1

Common hint: If there is no NULL special markertiire subquery it is possible to replace the ALL pratt by equivalent (and more
intuitive) operations:

89 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

ZT_FF Substitution
<ALL < (SELECT MIN()...)
<= ALL |<= (SELECT MIN() ...)
'="or 'IN', if subselect retrieves 1 value.
=ALL Else: A single value cannot be equal to differesiugs at the same time. (x = a AND x = b) evaluabe'alse' in all

cases.

>= ALL |>= (SELECT MAX() ...)

> ALL > (SELECT MAX() ...)
'<>'or 'NOT IN', if subselect retrieves 1 value.
Else: 'NOT IN'. (x <> a AND x <> b).

<> ALL

MySQL hint: Because of query rewrite issues the ®NEULL_GROUP_BY mode shall be disabled, e.g. by twnmmand: set
sql_mode="ANSI".

ANY/SOME

The key words ANY and SOME are synonyms, their rivegis the same. Within this wikibook we prefer tige of ANY.

The ANY predicate compares every row in the sefisetmolean ORwith every value of the subquery. It needs - intcast to the II

predicate - an additional operator, which is one<pk=, =, >=, > or <>,

L e 1

1

ISELECT * :

{FROM person !

WVWHERE weight > ANY '

' (SELECT weight FROM person where lastname = ‘de Winter'); |
1

L e e e e e e e e e e e E e E e E m E mE Em E m e E e e e m e m e m - m e mm— e m o m = e e = e e e = e e e = = = e = e = e = e = e = e = e = = =)

Common hint: If there is no NULL special markertlire subquery it is possible to replace the ANY jwate by equivalent (and more
intuitive) operations:

<op>
ANY

<ANY < (SELECT MAX() ...)

<= ANY |<= (SELECT MAX() ...)
‘=" or 'IN', if subselect retrieves 1 value.
Else:'IN'. (x =a OR x = b).

>= ANY |>= (SELECT MIN() ...)

>ANY > (SELECT MIN() ...)
'<>"or 'NOT IN/, if subselect retrieves 1 value.

Substitution

= ANY

<> ANY | E|se: A single value is always different from tworore different values under an OR conjunctions¥xa OR x <> b)
evaluates to 'true' in all cases.

MySQL hint: Because of query rewrite issues the ®NEULL_GROUP_BY mode shall be disabled, e.g. by twnmmand: set
sql_mode="ANSI".

EXISTS

The EXISTS predicate retrievs rows, if the subquesirieves one or more rows. Meaningful examplgscglly use a correlated
subquery.

1

:SELECT *

1IFROM contact cl
WHERE EXI STS

: (SELECT *

' FROM contact c2

. VWHERE c2.person_id = cl.person_id -- correlation criterion between query and subquery

' AND c2.contact_type = 'icq");
g -

The example retrieves all contacts for such persehigh have an ICQ-contact.

The EXISTS predicate can be negated by addingekierord NOT.

90 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

z
m
T
m
z
9
m
pas
[}
=
[0}

In the chapter Grouping we have seen that the kay 'eBROUP BY creates groups of rows within a resett Additionally aggregat
functions likesum() computes condensed values for each of those groups

As GROUP BY can work for more than one single calutmere is often the requirement to compute suctdensed values also
'super-groups', which arise by omitting successive column after the next from the GROUP BY speatffon.

Example Table
To illustrate the situation we offer an exampleléadnd typical questions to such kind of tables.

'CREATE TABLE car_pool (

-- define columns (name / type / default value / nu llable)

id DECIMAL NOT NULL,

producer VARCHAIS0) NOT NULL,

model VARCHARS0) NOT NULL,

yyyy DECIMAL NOT NULL CHECK (yyyy BETWEEN 1970 AND 2020),
counter DECIMAL NOT NULL CHECK (counter >= 0),

CONSTRAI NT car_pool_pk PRI MARY KEY (id)

=

il NSERT | NTO car_pool VALUES
I'NSERT | NTO car_pool VALUES
Il NSERT | NTO car_pool VALUES
I NSERT | NTO car_pool VALUES
I NSERT | NTO car_pool ~ VALUES
il NSERT | NTO car_pool VALUES
:I NSERT | NTO car_pool VALUES
! NSERT | NTO car_pool VALUES

VW', '‘Golf" 2005, 5);
VW', ‘Golf* 2006, 2);
VW', ‘Golf* 2007, 3);
VW', '‘Golf* 2008, 3);
VW', '‘Passat’ , 2005, 5);
VW', 'Passat’ , 2006, 1);
VW', ‘Beetle’ , 2005, 1);
VW', ‘Beetle’ , 2006, 2);

PNoUrONMNPOOOINOITA®ONE
2

(
(
(
(
(
(
(
|
I NSERT | NTO car_pool VALUES (
(
(
(
(
(
(
(
(

il NSERT | NTO car_pool VALUES s ‘Beetle’ , 2008, 4);
1 ‘Toyota' , 'Corolla’ , 2005, 4);
'NSERT | NTO car_pool ~ VALUES (1 ‘Toyota' , 'Corolla’ , 2006, 3);
il NSERT | NTO car_pool VALUES (1 ‘Toyota' , 'Corolla’ , 2007, 2);
I NSERT | NTO car_pool VALUES (1 ‘Toyota' , 'Corolla’ , 2008, 4);
'NSERT | NTO car_pool VALUES (1 ‘Toyota' , 'Prius' , 2005, 1);
il NSERT | NTO car_pool VALUES (1 ‘Toyota' , 'Prius' , 2006, 1);
I NSERT | NTO car_pool VALUES (1 ‘Toyota" , 'Hilux' 2005, 1);
:I NSERT | NTO car_pool VALUES (1 ‘Toyota" , 'Hilux' 2006, 1);
il NSERT | NTO car_pool VALUES (1 ‘Toyota' , ‘'Hilux' , 2008, 1);
1
ICOW T;
L e e e mf e cmmcmc e cmcmmccmmccmmcccmmccmmcc - e mcc e mcc - -mce-—meec-—-mecec—-mee—-mememem e —mememmmem e mmmemmm e m e mm e m——— === -

In the table there are two different car produ6enodels and 4 years. Typical questions to sudbedabe:

= Number of cars per producer or per model.
= Number of cars per combination of some criteriess: [producer plus model or producer plus year.
= Total number of cars (without any criteria).

ROLLUP
As we have seen, the key word GROUP BY offers coseé data for exactly one grouping leyebducer plusmodel in this case.

'\SELECT producer, model, sum(counter) as cnt
IFROM car_pool

1GROUP BY producer, model
JORDER BY producer, cnt desc;
[

:Toyota Corolla 13

Toyota Hilux 3

:Toyota Prius 2

VW Golf 13

VW Beetle 7

:VW Passat 6

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = -

In such situations one would like to know also tieeresponding values for upper groups: preducer or for the whole table. This ¢
be achieved by submitting slightly different SELECT

\SELECT producer, sum(counter) as cnt
JFROM car_pool

1GROUP BY producer

JORDER BY producer, cnt desc;

__

:Toyota 18

VW 26

L.

-

{SELECT sun(counter) as cnt
:FROM car_pool;

91 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

27
iN

In principle it is possible, to combine such SELEGAa UNION or to submit them sequentially. But &ese this is a stand:
requirement SQL offers a more elegant solution, elarthe extention of the GROUP BY with the ROLLUBykword. Based on the
results of the GROUP BY it offers additional rowes &€very superordinate group, which arises by amgitthe grouping criterias one ai

the other.

e e b
\SELECT producer, model, sum(counter) as cnt

IFROM car_pool

\GROUP BY ROLLUP (producer, model); -- the MySQL syntax is: GROUP BY producer, model WI TH ROLLUP

1
1
1
1
1
‘
Toyota Corolla 13 .
Toyota Hilux 3 '
:Toyota Prius 2 |
"Toyota 18 < -- the additional row per first producer .
VW Beetle 7 '
:VW Golf 13 1
VW Passat 6 .
vw 26 <- the additional row per next producer !
' 44 <-- the additional row per all producers |

1

The simple GROUP BY clause creates rows at thd t#veroducer plusmodel. The ROLLUP key word leads to additional rows véher
first themodel and themmodel andproducer are omitted.

CUBE

The ROLLUP key word offers solutions where a hiehdral point of view is adequate. But in data waxede applications one likes to
navigate freely through the aggregated data, nlyt foom top to bottom. To support this requiremethe SQL standard offers the key
word CUBE. It is an extention of ROLLUP and offadditional rows foall possible combinationsof the GROUP BY columns.

In the case of our above example with the two calpnoducer andmodell the ROLLUP has created rows fprdducer-only' and 'no
criteria’ (= complete table). Additional to thatUBE creates rows formmodel-only'. (If different producer would use the same
model-name, such rows will lead to only 1 additional fow

{SELECT producer, model, SUMCcounter) AS cnt

:FROM car_pool

\GROUP BY CUBE (producer, model); -- not supported by MySQL
[

1
1
1
1
:
f 1
iToyota Corolla 13 .
Toyota Hilux 3 '
Toyota Prius 2 |
iToyota - 18 .
VW Beetle 7 '
VW Golf 13 i
VW Passat 6 .
1
1
1
1
1
1
1
1
1
1
1
1
1
1

YW - 26

- Beetle 7 <

~ Corolla 13 < -

- Golf 13 < -- additional rows for 'model-only’

- Hilux 3 < -

- Passat 6 <

- Prius 2 <

:- - 44

L o o o o o o o o e e e ememeooo - -

If there are tree grouping columns c1, c2 andte8key words leads to the following grouping.

GROUP BY: (c1, c2,c3)
GROUP BY ROLLUP: (c1, c2, c3), (c1, c2), (c1) and ()
GROUP BY CUBE: (cl, c2, c3), (c1, c2), (c1, c3),,(c2), (c1), (c2), (c3) and ()

The window functions discussed on this page are a special and veryrfidvextension to 'traditional' functions. They quute thei
result not on a single row but on a set of rowsi{ar to aggregate functions acting in correlatidgth a GROUP BY clause). This set ¢
rows - and this is the crucial point - 'moves'stidés' over all rows, which are determined byWhHERE clause . This 'sliding window' is
called aframe or - in terms of the official SQL standard - thindow frame'.

Here are some examples:

m A very easy example is a 'sliding window' consgtii the previous, the current and the next row.

= One typical area for the use wiindow functions are evaluations about arbitrary time series. If)ave the time series of market
prices of a share, you can easily compute the Mp#&irerage of the last n days.

= Window functions are often used in data warehouse and other Oagications. If you have data about sales gbtucts ove
a lot of periods within a lot of regions you canngute statistical indicators about the revenuess €kaluations are more
powerful than simpl&ROUP BY clauses .

In opposite toGROUP BY clauses , where only one output row per group exists, withdow functions all rows of the result set ret;

92 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

their identity and are shown.

Syntax

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

Window functions are listed between the two key wogis ECTandFROMat the same place where usual functions and calamlisted.

They contain the key word OVER.

- Window functions appear between the key words SE LECT and FROM
SELECT

' <window_function>,

FROM <tablename>

-- They consist of three main parts:

- 1. function type (which is the name of the fun
- 2. key word 'OVER'

- 3. specification, which rows constitute the 's
<window_function> := <window_function_type> OVER <windo

ction)

:<Wind0w7function7type> := ROW_NUMBER() | RANK() | LEAD(<
1

SUM< col um>) | M N(< col um>) |

<window_specification> := [<window_partition>] [<windo

'
:<window_partition> := PARTITION BY <col um>
<window_order> = ORDER BY <col um>
i<window_frame> 1= see below

'

Overall Description

Concerning window functions there are some

similar concepts. In order to be able to signifitan

differ the concepts from each other, it is necgssar

to use an exact terminology. This terminology is
introduced in the next 8 paragraphs, which also

roughly - reflect the order of execution. The goal

of the first seven steps is the determination ef th Rows
actual frame and the eighth step acts on it.

1. The WHERE clause returns a certain number
of rows. They constitutes thresult set

2. The ORDER BY clause (syntactically behind
the WHERE clause) re-orders thaesult set
into a certain sequence.

3. This sequence determines the order in whict
the rows are passed to tRELECT clause .
The row, which is actually given to the
SELECT clause , is called theurrent row.

4. The WINDOW PARTITION clause divides the
result setinto window partitions (We will
use the shorter terrpartition as in the
context of our site there is no danger of
confusion). If there is no wiNDOW
PARTITION clause , all rows of theresult

liding window' (partition, order and frame)
w_specification>
col um>) | LAG(< col um>) |
' FIRST_VALUE(<col um>) | LAST_VALUE(< col um>) | NTH_VALUE(< col um>, <n>) |
MAX(< col um>) |

w_order>] [<window_frame>]

} Frame 1

} Frame n

AVGE(< col utm> | COUNT(< col um>)

SQL Window Functions act on (sliding)
Window Frames, which are part of
Window Partitions, Result Sets, Tables.

Partition 1

) Result Set Table

Partition m

set constitutes ongartition . (This partitions are equivalent to groups created by &ROUP BY clause .) Partitions are distinct
from each other: there is no overlapping as evenyaf theresult setbelongs to one and only opartition .

5. TheWINDOW ORDER clause orders the rows of eagartition (which may differ from th@RDER BY clause).

6. The WINDOW FRAME clause defines which rows of the actupartition belong to the actuatindow frame (We will use the
shorter ternframe). The clause defines ofiame for every row of theresult set This is done by determine the lower and u
boundary of affected rows. In consequence thereagnmany (mostly different) frames as number ofsrawthe result set. The
upper and lower boundaries are newly determindeld eery row of the result set! Single rows mayplaet of more than one
frame. The actuaframe is the instanciation of the 'sliding window'. ttsvs are ordered according to the\DOW ORDER clause.

7.1f there is nOWINDOW FRAME clause, the rows of the actughrtition constituteframes with the following default boundaries: The
first row of the actugpartition is their lower boundary and tloeirrent row is their upper boundary. If there is woNDOW FRAME
clause and NOWINDOW ORDER clause, the upper boundary switches to the last row efabtuapartition . Below we will explail

how to change this default behaviour.

8. The <window_function_type>s act on the rows ofdleeualframe.

93 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Example Table

We use the following table to demonstrate windomcfions.

CREATE TABLE employee (

-- define columns (name / type / default value / co lumn constraint)
id DECIMAL PRI MARY KEY,
emp_name VARCHAR0) NOT NULL,
dep_name VARCHAR0) NOT NULL,

age DECIMAL(3,0) NOT NULL,

-- define table constraints (it's merely an example table)

1
1
l
1
1
1
1
‘
1
' salary DECIMAL(7,2) NOT NULL,
‘
1
' CONSTRAI NT empoyee_uk UNI QUE (emp_name, dep_name)

L

1

1

il NSERT | NTO employee VALUES (1 '‘Matthew' , 'Management' , 4500, 55);
I NSERT | NTO employee VALUES (2 ‘Olivia’ , 'Management’ , 4400, 61);
' NSERT | NTO employee VALUES (3 ‘Grace' , ‘Management' , 4000, 42);
il NSERT | NTO employee VALUES (4 Jim' 'Production’ , 3700, 35);
I NSERT | NTO employee VALUES (5, ‘Alice’ 'Production’ , 3500, 24);
!I'NSERT | NTO employee VALUES (6, ‘Michael' , 'Production’ , 3600, 28);
Il NSERT | NTO employee VALUES (7 ‘Tom' , ‘Production’ , 3800, 35);
I NSERT | NTO employee VALUES (8 ‘Kevin' 'Production’ , 4000, 52);
I NSERT | NTO employee VALUES (9, ‘Elvis" ‘Service' 4100, 40);
I NSERT | NTO employee VALUES (10, ‘Sophia® , ‘'Sales' , 4300, 36);
I NSERT | NTO employee VALUES (11, ‘Samantha’ , 'Sales’ , 4100, 38);
1ICOWM T,

A First Query

The example demonstrates how the boundaries 'stidesthe result set. Doing so, they create oamér after the nexane per rowof
the result set. These frames are part of partititvespartitions are part of the result set anddiselt set is part of the table.

1

SELECT id,

1 emp_name,

. dep_name,

. -- The functions FIRST_VALUE() and LAST_VALUE() exp lain itself by their name. They act within the actu al frame.
1 FIRST_VALUE(id) OVER (PARTITION BY dep_name ORDER BY id) AS frame_first_row,

. LAST_VALUE(id) OVER (PARTITION BY dep_name ORDER BY id) AS frame_last_row,
1

1

1

1

1

1

COUNT(*) OVER (PARTITION BY dep_name ORDER BY id) AS frame_count,
-- The functions LAG() and LEAD() explain itself by their name. They act within the actual partition.
LAG(id) OVER (PARTITION BY dep_name ORDER BY id) AS prev_row,
! LEAD(id) OVER (PARTITION BY dep_name ORDER BY id) AS next_row
[FROM employee;
\-- For simplification we use the same PARTITION and ORDER definitions for all window functions.
- This not necessary. You can use divergent defini tions!
L e m e e e e m e e e e m e m e -

Please notice how the lower boundary (FRAME_FIRSIWR and the upper boundary (FRAME_LAST_ROW) charfges) row to
row.

ID EMP_NAME DEP_NAME FRAME_FIRST_ROW FRAME_LAST_ROW ERAM E_COUNT PREV_ROW | NEXT_ROW

1 Matthew Management 1 1 1 - 2
2 |Olivia Management 1 2 2 1 3
3 | Grace Management 1 3 3 2 -
4 |Jim Production | 4 4 1 - 5
5 | Alice Production | 4 5 2 4 6
6 Michael Production | 4 6 3 5 7
7 Tom Production | 4 7 4 6 8
8 Kevin Production | 4 8 5 7 -
10 Sophia Sales 10 10 1 - 11
11 Samantha Sales 10 11 2 10 -
9 Elvis Service 9 9 1 - -

The query has ne/HERE clause . Therefore all rows of the table are part of tesuit set. According to th&INDOW PARTITION clause ,
which is 'PARTITION BY dep_name’, the result sedigded into the 4 partitions: 'Management', 'Ricttbn’, 'Sales' and 'Service'. The
frames run within these partions. As there issmODOW FRAME clause the frames start at the first row of the actuatipan and runs up
to the current row.

You can see that the actual number of rows withirame (column FRAME_COUNT) grows from 1 up to them of all rows within the
partition. When the partition switches to the neme, the number starts again with 1.

The columns PREV_ROW and NEXT_ROW shows the idhefprevious and next row within the actual pantitiAs the first row has

94 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

no predecessor, thaJLL indicator

Basic Window Functions

We present some of th&indow_function_type>

is shown. This applies correspondingly to the lagt and its successor.

lot of additional functions and overloaded variants

Signature

FIRST_VALUE(<column>)

LAST_VALUE(<column>)

oo
LAG(<column>, <n>) ':’\(Z;tl’l:iftiii)n
oo
LEAD(<column>, <n>) ':’\;trl':iftiil)n

ROW_NUMBER()
RANK()

NTH_VALUE(<column>,

<n>)

SUM(<column>)
MIN(<column>)

MAX(<column>)

AVG(<column>)
COUNT(<column>)

Here are some examples:

1
'SELECT id,

ID EMP_NAME DEP_NAME ROW_NUMBER_IN_FRAME SECOND_ROW._IN_ FRAME TWO_ROWS_AHEAD

1 Matthew Management 1
2 | Olivia Management 2
3 | Grace Management 3
4 |Jim Production | 1
5 | Alice Production | 2
6 Michael Production | 3
7 Tom Production | 4
8 Kevin Production | 5
10 Sophia Sales 1
11 Samantha Sales 2
9 Elvis Service 1

emp_name,
dep_name,
ROW_NUMBER()

Scope
Actual Frame The column valuglee first row within the frame.

Actual Frame

Meaning / Return Value

Actual Frame The column valuetbg last row within the frame.

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

functions and their meaning. The standard as agethost implementations know

The column value of the predecessor row (the rowtwis before the current row).

The column value of the n.-th row before the currew.

The column value of the successor row (the row wigafter the current row).

The column value of the n.-th row after the curnent.

Actual Frame A numeric sequence of the within the frame.

A numeric sequence of the row within the frament@=l values in the specified order

evaluate to the same number.

Actual Frame The column value of the n.-th row witthe frame.

Actual Frame As usual.

OVER (PARTITIONBY dep_name ORDER BY id) AS row_number_in_frame,

NTH_VALUE(emp_name, 2) OVER (PARTITION BY dep_name ORDER BY id) AS second_row_in_frame,
LEAD(emp_name, 2) OVER (PARTITION BY dep_name ORDER BY id) AS two_rows_ahead

FROM employee;

The three example shows:

95 sur 121

Olivia
Olivia
Alice
Alice
Alice
Alice

Samantha

= The row number within the actual frame.
= The employee name of the second row within theaddtame. This is not possible in all cases. a)rigvist frame within the

series of frames of a partition consists of ontpw. b) The last partition and its one and onlyrfeahas only one row.

Grace

Michael
Tom

Kevin

= The employee name of the row which is two rowsaahef the current row. Similar as in the previcokimn this not possible

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

96 sur 121

all cases.

= Please notice the difference in the last two colofrthe first row. The SECOND_ROW_IN_FRAME-columwontains the NULL
indicator. The frame which is associated with this contains only 1 row (from the first to the amt row) - and the scope of the
nth_value() function is 'frame’. In contrast, th& ®_ROW_AHEAD-column contains the value 'Grace'sNalue is evaluated by
the lead() function, whose scope is the partitibimé partition contains 3 rows: all rows within ttiepartment 'Management'. Only
with the second and third row it becomes imposgibigo 2 rows 'ahead'.

Determine Partition and Sequence

As shown in the above examples, tiiDOW PARTITION clause defines the partitions by using the key words PARDN BY and the
WINDOW ORDER clause defines the sequence of rows within the partiigrusing the key words ORDER BY.

Determine the Frame

The frames are defined by theNDOW FRAME clause, which optionally follows th@vINDOW PARTITION clause and thewINDOW ORDER
clause .

With the exception of the lead() and lag() funcsipwhose scope is the actual partition, all othedaw functions act on the act
frame. Therefore it is an elementary decision, Whiows shall constitute the frame. This is doneebtablishing the lower and up
boundary (in the sense of theNDOW ORDER clause). All rows within this two bounds constitute thetaal frame. Therefore theinDoOw
FRAME clause consists mainly of the definition of the two boanids - in one of four ways:

m Define a certain number ebws before and after the current row. This leads twastant number of rows within the serie
frames - with some exceptions near the lower apeéupoundary and the exception of the use of tNBQUNDED' key word.
= Define a certain number gfroups before and after the current row. Such groupsbaile by the unique values of the precel
and following rows - in the same way aSELECT DISTINCT ... Oor GROUP BY The resulting frame covers all rows, whose values
fall into one of the groups. As every group maybbiéd out of multiple rows (with the same valud)e thumber of rows per frame

iS not constant.

m Define arange for the values of a certain column by denotingxanimerical value, eg: 1.000 (for a salary) orda@s (for a time
series). The thereby defined range runs from tfferdnz of the current value and the defined vaipeo the current value (the
FOLLOWING-case builds the sum, not the differerd) rows of the partition, whose column values fatio this range, constitute
the frame. Accordingly the number of rows withie tihame may differ from frame to frame - in oppesi therows technic.

= Omit the clause and use default values.

In accordance with this different strategies thare three key words 'ROWS', 'GROUPS' and 'RANGHtvkeads to the different
behaviour.

Terminology

The WINDOW FRAME clause uses some key words whose semantic hopefullyodess in the following block, where the ordered sowi
a partition are visualised.

Rows in a partition and the according key words
<-- UNBOUNDED PRECEDING (first row)

<-- 2 PRECEDING
<-- 1 PRECEDING
<-- CURRENT ROW
<-- 1 FOLLOWING
<-- 2 FOLLOWING

<-- UNBOUNDED FOLLOWING (last row)

The term UNBOUNDED PRECEDING denotes the first iiova partition and UNBOUNDED FOLLOWING the last ro@ounting fron
the CURRENT ROW there are <n> PRECEDING and <n> [FOWING rows. Obviously this PRECEDING/FOLLOWIN
terminology works only, if there is\®lINDOW ORDER clause Which creates an unambiguous sequence.

The (simplified) syntax of th&/INDOW FRAME clause iS:

:<window_frame> = [ROWS | GROUPS | RANGE] BETVEEN
[UNBOUNDED PRECEDING | <n> PRECEDING CURRENT ROW] AND
1 [UNBOUNDED FOLLOWING | <n> FOLLOWING QURRENT ROW]

1

1

i SUMsalary) OVER (PARTITION BY dep_name ORDER BY salary

. ROWS BETVWEEN UNBOUNDED PRECEDINGD CURRENT ROW as growing_sum,
1
1

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

In this case thevINDOW FRAME clause starts with the key word 'ROWS. It defines thevdo boundary to the very first row of the

partition and the upper boundary to the actual fidvis means that the series of frames grows framdrto frame by one additional r
until all rows of the partition are handled. Aftemds the next partition starts with an 1-row-fraanel repeats the growing.

ROWS
The ROWS syntax defines a certain number of rowsdoess.

1
'SELECT id, dep_name, salary,

' SUMsalary) OVER (PARTITION BY dep_name ORDER BY salary
. ROWS BETWEEN 2 PRECEDINGAND CURRENT ROW AS sum_over_lor2or3_rows

The example acts on a certain number of rows, nathel two rows before the current row (if existwghin the partition) and the
current row. There is no situation where more ttimae rows exists in one of the frames. The winflovetion computes the sum of the
salary over these maximal three rows.

The sum is reset to zero with every new partitighich is the department in this case. This holds also for the GROUPS and RANGE
syntax.

The ROWS syntax is often used when one is intedeist¢he average about a certain number of rowis tie distance between two
rows.

GROUPS

The GROUPS syntax has a similar semantic as the 8&itax - with one exception: rows with equal ealwithin the column of the
WINDOW ORDER clause count as 1 row. With other words, the GROUPS syimunts the number of distinct values, not the rema
rows.

1

i-- Hint: The syntax 'GROUPS' (Feature T620) is not supported by Oracle 11 :

ISELECT id, dep_name, salary, '

' SUMsalary) OVER (PARTITION BY dep_name ORDER BY salary !

! GROUPSBETWEEN 1 PRECEDINGAND 1 FOLLOWING) AS sum_over_groups '
1
1
1

The example starts with the key word GROUPS anéhéefthat it wants to work on 3 distinct valuestlod column 'salary'. Possibly
there are more than three rows satisfying thigigait- in opposite to the equivalent ROWS strategy.

The GROUPS syntax is the appropriate strategyéflmas a varying number of rows within the timeqeeunder review, eg.: one ha
varying number of measurement values per day ainteiested in the average or the variance ovezekwr month.

RANGE

At a first glance the RANGE syntax is similar t@ tROWS and GROUPS syntax. But the semantic is diffigrent! Numbers <n> give
in this syntax did not specify any counter. Thegdfy thedistance from the value in the current row to the lowerupper boundary.
Therefor the ORDER BY column shall be of type NUMERDATE or INTERVAL.

1

:SELECT id, dep_name, salary,

' SUMsalary) OVER (PARTITION BY dep_name ORDER BY salary

. RANGEBETWEEN 100 PRECEDING AND 50 FOLLOWING) AS sum_over_range

This definition leads to the sum over all rows whitave a salary from 100 below and 50 over theahctwv. In our example table this
criteria appies in some rare cases to more thawl r

Typical use cases for the RANGE strategy are $itnatwhere someone analyzes a wide numeric rangjeegmects to meet only fe
rows within this range, e.g.: a sparse matrix.

Defaults
If the WINDOW FRAME clause is omitted, its default value is: 'RANGE BETWEENNBOUNDED PRECEDING AND CURREN

ROW'. This leads to a range from the very first minthe partition up the current row plus all rowih the same value as the current
row - because the RANGE syntax applies.

If the WINDOW ORDER clause is omitted, thevINDOW FRAME clause is not allowed and all rows of the partition catuse the frame.

If the PARTITION BY clause is omitted, all rows of the result set constittles one and only partition.

97 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

A Word of Caution

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

Although the SQL standard 2003 and his successdirsedvery clear rules concerning window functissesyeral implementations did not
follow them. Some implement only parts of the stdd which is their own responsibility -, but othseems to interpret the standau

a fanciful fashion.

As far we know, the ROWS syntax is implemented ddad conform - if it is implemented. But it seenmatt the RANGE synt:
sometimes implements what the GROUPS syntax oS@le standard requires. (Perhaps this is a misreptason and only the public
available descriptions of various implementationssinot reflect the details.) So: be carefull, yestr system and give us a feedbac

the discussion page.

Exercises

Show id, emp_name, dep_name, salary and the aveatgy within the department.

Click to see solution

2 T
1 1
[1
i-- To get the average of the department, every fram e must be build by ALL rows of the department. .
- 1
'SELECT id, emp_name, dep_name, salary, :
' avg(salary) OVER (PARTITION BY dep_name ORDER BY dep_name .
' -- all rows of partition (=department) .
. ROWS BETWEEN UNBOUNDED PRECEDING'D UNBOUNDED FOLLOWING)s avg_salary 1
IFROM employee; .
- 1
- It's possible to omit the 'window order' clause. Thereby the frames include ALL rows of the actual partition. N
- See: 'Defaults’ above. .
I 1
{SELECT id, emp_name, dep_name, salary, .
' avg(salary) OVER (PARTITION BY dep_name) as avg_salary .
FROM employee; !
1
- 1
- The following statements leads to different resu Its as the frames are composed by a growing number of rows. .
1
- 1
'SELECT id, emp_name, dep_name, salary, '
' avg(salary) OVER (PARTITION BY dep_name ORDER BY salary) as avg_salary '
IFROM employee; |
. 1
- It's possible to sort the result set by arbitrar y rows (test the emp_name, it's interesting) E
1
" 1
ESELECT id, emp_name, dep_name, salary, .
' avg(salary) OVER (PARTITION BY dep_name) as avg_salary !
JFROM employee |
'ORDER BY dep_name, salary; .
R i
Does older persons earn more money than younger?
To give an answer show id, emp_name, salary, ag¢henaverage salary of 3 (or 5) persons, whichineaesimilar age.
Click to see solution
5 T
1

ISELECT id, emp_name, salary, age, 1
. AVG(salary) OVER (ORDER BY age ROWS BETWEEN 1 PRECEDINGAND 1 FOLLOWING) AS mean_over_3, .
' AVG(salary) OVER (ORDER BY age ROWS BETWEEN 2 PRECEDINGAND 2 FOLLOWING) AS mean_over_5 '
\FROM employee; |
\-- As there is no restriction to any other criterio n than the age (department or something else), ther eis .
1-- no need for any PARTITION definition. Averages a re computed without any interruption. !
L o o e e e e _-
Extend the above question and its solution to sth@aresults within the four departments.
Click to see solution
C T 1
(SELECT id, emp_name, salary, age, dep_name, !
! AVCG(salary) OVER (PARTITION BY dep_name ORDER BY age ROWS BETWEEN 1 PRECEDINGAND 1 FOLLOWING) AS mean_over_3, .
1 AVG(salary) OVER (PARTITION BY dep_name ORDER BY age ROWS BETWEEN 2 PRECEDINGAND 2 FOLLOWING) AS mean_over_5 '
[FROM employee; |
- Averages are computed WITHIN departments. '
L o e e o o o e —eeem !
Show id, emp_name, salary and the difference tcakery of the previous person (in ID-order).
Click to see solution

___ .

-- For mathematician: This is a very first approxim
\SELECT id, emp_name, salary,
. salary - LAG(salary)
IFROM employee;

:-- And the difference of differences:
'SELECT id, emp_name, salary,
(LAG(salary) OVER (
(LAG(salary) OVER (
(LAG(salary, 2) OVER (

OVER (ORDER BY id) as diff_salary

ORDER BY id) - salary)
ORDER BY id) - salary) -
ORDER BY id) - LAG(salary) OVER (

98 sur 121

ation to first derivate.

ORDER BY id))

AS diff_salary_1,

AS diff_salary_2

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Show the 'surrounding' of a value: id and emp_nafra persons ordered by emp_name. Supplementreachvith the two emp_names
before and the two after the actual emp_name érusual alphabetical order).

Click to see solution

\SELECT id,

! LAG(emp_name, 2) OVER (ORDER BY emp_name) AS before_prev,
' LAG(emp_name) OVER (ORDER BY emp_name) AS prev,

. emp_name AS act,

1

1

LEAD(emp_name) OVER (ORDER BY emp_name) AS follower,
1 LEAD(emp_name, 2) OVER (ORDER BY emp_name) AS behind_follower
JFROM employee
:OQDER BY emp_name;

b o e o o e o e e e o e e e e e e e e e e e o e mmm e — = -

Sometimes the rows afne table are structured in such a way that they sgpriea hierarchy or a networkthin this table. Typical use
cases are management structures, bill of matdeatsachine consists of a number of smaller machingsor network structures (e.g.:
flight plans).

To retrieve particular rows and all rows that ctate to them, one can use set operations in coitameith subqueries to merge th
together to one result set. But this techniquemidd as one must exactly know the number of kvApart from the fact that the
number of levels changes from case to case, theeladh syntax differs from level to level. To ovame this restrictions SQL offer:
syntax to express queries imegursive manner. They retrieve the rows of all affecteclsyindependent from their number.

Syntax

The SQL standard uses a special form ofnitsH clause , which is explained on the previous page, to defiscursive queries. The
clause occurs before a SELECT, INSERT, UPDATE oL BEE key word and is part of the appropriate comthan

Hint: ThewITH clause (with or without the 'RECURSIVE' key word) is ofteeferred to as a ‘common table expression (CTE)'.

Hint: Oracle supports the syntax of the SQL staddamce version 11.2. . MySQL does not support n&@gos at all and recomme
procedural workarounds.

e e e e e e L
1
- The command starts with a 'with clause’, which ¢ ontains the optional 'RECURSIVE' key word. :
W TH [RECURSI VE] intermediate_table (temp_column_name [,...]) AS .
1 (SELECT ... FROM real_table -- initial query to a real table 1) '
! UNI ON ALL 3) '
v SELECT ... FROM intermediate_table -- repetitive query using the intermediate table 2) .
1) 1
. The 'with clause' is part of a regular SELECT. :
- This SELECT refers to the final result of the ‘w ith clause'. 4) .
(SELECT ... FROM intermediate_table !
Lo consider the semicolon: the command runs from th e 'WITH" up to here. '
1
L o o o o e e o e o o e e o e o e oo -

The evaluation sequence is as follows:

1. The initial query to a real table or a view is exi@@zl and creates the start point for step 2.

2. Usually the repetitive query consists of a joinviEtn the real table or view and the result sethupl so far. This step is repee
until no new rows are found.

3. The result sets from step 1. and 2. are mergedHege

4.The final SELECT acts on the result of step 3.

Example Table

To demonstrate recursive queries we define an ebearaple. It holds information about persons ar@rthncestors. Because ancestors
are always persons, everything is stored in theestale.father_id and mother_id acts as references to the rows where father'
mother's information is stored. The combinatiorfiadhfier_id, mother_id andfirsthame acts as a criterion, which uniguely identifies sow
according to those three values (we supose, thiehtsagive their children different names).

ICREATE TABLE family_tree (

1

1
b define columns (name / type / default value / nu llable) '
v id DECIMAL NOT NULL, !
1 firstname VARCHARG0) NOT NULL, |
1 lastname VARCHA50) NOT NULL, .
| year_of_birth DECIMAL NOT NULL, '
1 year_of_death DECIMAL '
v father_id DECIMAL .
 mother_id DECIMAL, i
1 -- the primary key :
1 CONSTRAI NT family_tree_pk PRI MARY KEY (id), .
1 -- an additional criterion to uniquely distinguish rows from each other !
! 1
: 1

99 sur 121 27/01/2016 00:2

CONSTRAI NT family_tree_uniq
-- two foreign keys (to the same table in this spec
CONSTRAI NT family_tree_fk1
CONSTRAI NT family_tree_fk2

-- plausibility checks

CONSTRAI NT family_tree_checkl
CONSTRAI NT family_tree_check2

=

-- a fictional couple

NSERT | NTO family_tree
NSERT | NTO family_tree
- their children

VALUES (1, ‘'Karl
VALUES (2, 'Lisa'

Structured Query Language/Standard Track Printkibdbks, open boo...

FOREI GN KEY (father_id)
FOREI GN KEY (mother_id)

CHECK (year_of_birth >= 1800
CHECK ((year_of_death >= 1800

I 'NSERT | NTO family_tree VALUES (3, 'Ruth’

il NSERT | NTO family_tree VALUES (4, 'Helen'
I'NSERT | NTO family_tree VALUES (5, ‘Carl
'NSERT | NTO family_tree VALUES (6, ‘'John'

-- some more people; some of them are descendants o
I'NSERT | NTO family_tree VALUES (7, 'Emily’

:I NSERT | NTO family_tree VALUES (8, 'Charly'

I NSERT | NTO family_tree VALUES (9, ‘'Deborah’
I'NSERT | NTO family_tree VALUES (10, 'Chess'

1ICOW T,

Basic Queries

UNI QUE (father_id, mother_id, firstname),

ial case) to ensure that no broken links arise
REFERENCES family_tree(id),
REFERENCES family_tree(id),

AND year_of_birth < 2100),
AND year_of_death < 2100)

‘Miller' , 1855, 1905, null, null);
‘Miller* , 1851, 1912, null, null);
‘Miller' , 1878, 1888, 1, 2);
‘Miller' , 1880, 1884, 1, 2);
‘Miller' , 1882, 1935, 1, 2);
‘Miller' , 1883, 1900, 1, 2);
f the Millers

‘Newton' , 1880, 1940, null, null);
‘Miller' , 1908, 1978, 5, 7);

, 'Brown’ 1910, 1980, null, null);
‘Miller* , 1948, null, 8, 9);

OR year_of_death

I'S NULL)

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

As afirst example we retrieve Mr. Karl Miller and ailstdescendants. To do so, we must retrieve hisrowrand define a rule, how to
‘navigate' from level to level within the familyet.

'-- Choose a name for the intermediate table and its
W TH intermediate_table (id, firstname, lastname)
1

L
' -- Retrieve the starting row (or rows)
SELECT id, firsthame, lastname

FROM family_tree

VWHERE firstname = ‘Karl'

AND lastname = 'Miller'
UNI ON ALL

-- Define the rule for querying the next level. In
SELECT f.id, f.firsthame, f.lastname

columns. The column names may differ from the name

AS

most cases this is done with a join operation.

-- the alias 'f' refers to the real table

s in the real table.

1

1

1

1

1

1

1

1

1

‘

1

1 FROM intermediate_table i -- the alias 'i' refers to the intermediate table

+ JON family_tree f ON f.father_id = i.id -- the join operation defines, how to reach the nex t level
s

O

:-- The final SELECT

iSELECT * FROM intermediate_table

[N

v

i You can use all language features of SQL to furt her process the intermediate table. (It isn't a rea | table,
- it is only an intermediate result with the struc ture of a table)

- Example: count the number of descendants.

1

\-- The 'with clause’ keeps unchanged

L.

i The final SELECT

{SELECT count (*) FROM intermediate_table

:;
e -

1
1-- This query retrieves only Mr. Karl Miller ...
\SELECT *

1

i

1
JFROM family_tree .
WHERE firstname = ‘Karl' \
ANC lastname = 'Miller' .
: UNI ON ALL :
- ... and his children 1
ISELECT * '
'FROM family_tree !
WVHERE father_id I'N (SELECT id 1
. FROM family_tree '
! WHERE firstname = ‘Karl' '
1 AND lastname = 'Miller' f
!) !
” 1
Ll
L e e e e e e c e mmmccfCrcmfm e cccc e e e e m e ;e e e e e ;e ;e ;e e ;e ;e e e e e e m e mm e e e e e e e e e e e e e m e m e e e e mmm e mmmmmm e mmm—————— e ——————— A

Every level has its own syntax, e.g. to retrievengdchildren we need a subquery within a subquery.

As asecond example we traverse the hierarchie in tpesiie direction: from a person to its male anassto comparision to the first
example two things changes. The start point ofjilery is no longer Mr. Karl Miller, as he has n@estor in our example table. And we
have to change the join condition by swapping id father_id.

-- Retrieve ancestors

-- Retrieve the starting row (or rows)
SELECT id, father_id, firstname, lastname
FROM family_tree

WHERE firstname = ‘Chess’

100 sur 121

W TH intermediate_table (id, father_id, firstname, lastname) AS

- now we need the 'father_id"

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

AND lastname = 'Miller'

UNI ON ALL
-- Define the rule for querying the next level.
SELECT f.id, f.father_id, f.firstname, f.lastname
FROM intermediate_table i

-- The final SELECT
SELECT * FROM intermediate_table

Notice the Level

!
1
1
1
1
!
1
1 JON family_tree f ON f.id = i.father_id -- compared with the first example this join operat ion defines the opposite direction
i
I
1
1
i
1
1

Sometimes we need to know to which level within ierarchy or network a row belongs to. To displaig level we include a pseudo-
column with an arbitrary name into the query. Weade the nambier_level (aslevel is a reserved word in the context of savepoints).

= e eeemeeeeeeeeoaooo-
- We extent the above example to show the hierarch y level
W TH intermediate_table (id, firsthame, lastname, hier_level) AS
(SELECT id, firstname, lastname, O as hier_level -- set the level of the start point to a fix number
+ FROM family_tree

VWHERE firstname = ‘Karl'

AND lastname = 'Miller’

UNI ON ALL
SELECT f.id, f.firstname, f.lastname, i.hier_level + 1 -- increment the level

FROM intermediate_table i
JO N family_tree f ON f.father_id = i.id

cmmmmmm -

"
:SELECT * FROM intermediate_table;

-- The with clause remains unchanged

SELECT * FROM intermediate_table WHERE hier_level < 2; -- restrict the result to the first two levels
i-- or, as with the above solution the intermediate result set is computed over ALL levels and later re stricted to the first two:
W TH intermediate_table (id, firstname, lastname, hier_level) AS
(SELECT id, firstname, lastname, O as hier_level
' FROM family_tree

WHERE firstname = ‘Karl'

AND lastname = 'Miller'

UNI ON ALL

1
1
1
‘
i SELECT f.id, f.firstname, f.lastname, i.hier_level + 1
1 FROM intermediate_table i

! JO N family_tree f ON f.father_id = i.id

1 WHERE hier_level < 1 -- restrict the join to the expected result
"

)
"
:SELECT * FROM intermediate_table;

g

Create Paths

Sometimes we want to build a path from the stanpioigt of the hierarchy or network to the actualreg. for a faceted classification
like 1.5.3 or for a simple numbering of the visited nodessTan be achieved in a similar way as the comguifrthe level. We neec

pseudo-column with an arbitrary name and appendhhealues to those that have already been formed.

FROM intermediate_table i
JO N family_tree f ON f.father_id = i.id

\-- Save the path from person to person in an additi onal column. We choose the name 'hier_path' as its name.
W TH intermediate_table (id, firstname, lastname, hier_level , hier_path) AS

(SELECT id, firstname, lastname, 0 as hier_level, firstname as hier_path -- we collect the given names

\ FROM family_tree

+ WHERE firstname = ‘Karl'

1 AND lastname = 'Miller'

. UNI ON ALL

1 -- The SQL standard knows only a two-parameter func tion concat(). We us it twice.

1 SELECT f.d, f.firstname, f.lastname, i.hier_level + 1, concat (c oncat (i.hier_path, A), f.firstname)
1

'

]

"
:SELECT * FROM intermediate_table;

Depth First / Breads First

There are two ways to traverse hierarchies andorksy You must decide which kind of nodes you wanprocess first: child nodes
(nodes of the next level) or sibling nodes (nodethe same level). The two methodes are caliegih first andbreath first. With the

key wordsDEPTH FIRST andBREADTH FIRST (the default) you can decide between the two agsia

:<With7clause>
{SEARCH [DEPTH FI RST| BREADTH FI RST] BY <col unm_name> SET <sequence_number>
:<se|ect_c|ause>

g

101 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

The key words occur between theTH clause

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

and thesELECT clause . As - in opposite to a tree in a programming laggulike JAVA

or C++ or like an XML instance - rows of a tableveano implicit order, you must define an orderthoe nodes within their level. This is
done behind they key word. At last you have to define - after 8&r key word - the name of an additional pseudo-coluwirere |

numbering over all rows is stored automatically.

1

W TH intermediate_table (id, firstname, lastname, hier_level
i(SELECT id, firstname, lastname, 0 AS hier_level
1

FROM family_tree

WHERE firstname = ‘Karl'

AND lastname = 'Miller'
UNI ON ALL

SELECT f.id, f.firstname, f.lastname, i.hier_level + 1
FROM intermediate_table i
JO N family_tree f ON f.father_id = i.id

)
- SEARCH BREADTH FIRST BY firstname SET sequence_n umber
{SEARCH DEPTH FI RST BY firstname SET sequence_number

:SELECT * FROM intermediate_table;

There are some notable remarks to the above query:

1.In opposite to the other queries on this page (&hvee implicitely have used the defaBREADTH FIRST), the family tree is
traversed in such a way that after every row ftédtrows are processed. This is significant aeldl.

2.If there is more than one row per level, the roves@dered according to tise definition:firstname in this case.

3. The rows have a sequence numbeguence_number in this case. You may use this number for anytadil processing.

Exercises

Retrieve Chess Miller and all fismale ancestors.

Click to see solution

= = e eeeemeeeeeeeeeao--
W TH intermediate_table (id, mother_id, firstname, lastname) AS
1
I(
' SELECT id, mother_id, firstname, lastname
FROM family_tree
WHERE firstname = ‘Chess’
AND lastname = 'Miller'

SELECT f.id, f.mother_id, f.firstname, f.lastname
FROM
JON

intermediate_table i

ON f.id = i.mother_id

1

1

1

:

i UNION ALL
1

:

' family_tree f
"

"
:SELECT * FROM intermediate_table;

Retrieve Chess Miller and all its ancestors: mald f@male.
Click to see solution

1

W TH intermediate_table (id, father_id, mother_id, firstname

1

(

| SELECT id, father_id, mother_id, firstname, lastname

FROM family_tree

VWHERE firstname =

AND lastname =
UNI ON ALL

SELECT f.id, f.father_id, f.mother_id, f.firstname, f.lastname

FROM intermediate_table i

-- extend the JOIN condition!

JO N family_tree f ON (f.id = i.mother_id

‘Chess’
‘Miller*

OR fid = ifather_id)

)
:SELECT * FROM intermediate_table;
1

, lastname)

To make the situation a little bit more transpameid a number to the previous query which showsitieal level.

Click to see solution

W TH intermediate_table (id, father_id, mother_id, firstname
1

SELECT id, father_id, mother_id, firstname, lastname, 0
FROM family_tree
WHERE firstname =
AND lastname =
UNI ON ALL

SELECT f.id, f.father_id, f.mother_id, f.firstname, f.lastname
FROM intermediate_table i

JO N family_tree f ON (f.id = i.mother_id

‘Chess’
‘Miller*

OR fid = i.father_id)

e mmm e ———— -

"
:SELECT * FROM intermediate_table;

, lastname, hier_level) AS

-- we start with '0"

, i.hier_level + 1

To make the situation absolutely transparent repihe level by some kind of path (child / paregtandparent / ...).

102 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Click to see solution

T
EW TH intermediate_table (id, father_id, mother_id, firstname , lastname, ancestry) AS E
I(1
\ SELECT id, father_id, mother_id, firsthame, lastname, firstname '
1 FROM family_tree '
1 WHERE firstname = 'Chess’ '
! AND lastname = 'Miller’ !
1 UNI ON ALL 1
1 SELECT f.id, f.father_id, f.mother_id, f.firstname, f.lastname , concat (concat (i.ancestry, ‘1"), ffirstname) .
' FROM intermediate_table i !
v JON family_tree f ON (f.id = i.mother_id OR f.id = i.father_id) |
I) :

1

1

:SELECT * FROM intermediate_table;
1

Retrieve all grandchildren of Karl Miller.

Click to see solution

e T
EW TH intermediate_table (id, father_id, mother_id, firstname , lastname, hier_level) AS E
I(1
\ SELECT id, father_id, mother_id, firstname, lastname, 0 -- we start with '0’ '
1 FROM family_tree |
1 WHERE firstname = ‘Karl' '
! AND lastname = 'Miller' !
1 UNI ON ALL 1
1 SELECT f.id, f.father_id, f.mother_id, f.firstname, f.lastname , i.hier_level + 1 .
' FROM intermediate_table i !
i JON family_tree f ON (f.father_id = i.id AND hier_level < 2) -- performance: abort joining after the second leve '
I) :
ESELECT * FROM intermediate_table VWHERE hier_level = 2; -- this is the restriction to the grandchildren '
Tt 4

Retrieve every person in the talidenily tree and show its firsthname and the firstname of ity ¥iest known ancestor in the male line.

Click to see solution

F T T T T T T T ST ST T T ST ST ST ST ST ST ST T T ST ST T T ST T T ST ST ST ST ST TS TS TS TS TS T s Ss T s i
1

W TH intermediate_table (id, father_id, firsthame, lastname, initial_row, hier_level) AS

:(-- The starting points are persons (more than one i n our example table) for which no father is known.

1

SELECT id, father_id, firstname, lastname, firsthame, 0
FROM family_tree

1

1

1

1
1 :
1 1
| VWHERE father_id I'S NULL '
: UNI ON ALL :
1 -- The start name is preserved from level to level f
1 SELECT f.id, f.father_id, f.firstname, f.lastname, i.initial_r ow, i.hier_level + 1 .
! FROM intermediate_table i !
1+ JON family_tree f ON f.father_id = i.id '
b] ‘
:SELECT * FROM intermediate_table; E
- Oor: !
1~ unchanged ‘with clause' .
:SELECT id, firstname, -->' | initial_row, in' , hier_level, ‘generation(s)’ FROM intermediate_table; '
L e e e e e e c e mmmccfCrcmfm e cccc e e e e m e ;e e e e e ;e ;e ;e e ;e ;e e e e e e m e mm e e e e e e e e e e e e e m e m e e e e mmm e mmmmmm e mmm—————— e ——————— A

a) How much descandants of Carl Miller are storetthé example table?
b) Same question as before, but differentiatedgwed.

Click to see solution

F T T T T T T T ST ST ST T T ST T T ST ST ST ST ST ST ST ST ST T T ST ST T T ST ST T TS TS ST TS TS TS T E T e S s T s e e i
:” a)
W TH intermediate_table (id, firstname, lastname, hier_level) AS
((SELECT id, firstname, lastname, 0 AS hier_level
+ FROM family_tree

WHERE firstname = ‘Karl'

AND lastname = 'Miller’

UNI ON ALL

SELECT f.id, f.firstname, f.lastname, i.hier_level + 1
FROM intermediate_table i
JO N family_tree f ON f.father_id = i.id

L

:SELECT count (*) FROM intermediate_table wher e hier_level > 0;

- b) Use the same WITH clause. Only the final SELE CT changes.

1

e

:SELECT hier_level, count (hier_level) FROM intermediate_table VWHERE hier_level > 0 GROUP BY hier_level;
g 4

The Problem

As mentioned in a previous chapter of this wikib@oid in wikipedia sometimes there is no value aolamn of a row, or - to say it the
other way round - the column stores tMeLL marker (a flag to indicate the absence of any data), tor use the notion of the SQL
standard - the column stores tHRELL value. This NULL marker is very different from the nuritevalue zero or a string with a lengtt
zero characters! Typically it occurs when an appiin yet hasn't stored anything in the columrhdf tow.

(A hint to Oracle users: For Oracle the NULL marlseidentical to a string of zero characters.)

The existence of the NULL marker introduceseav fundamental problem In the usual boolean logic there are the twocklgvalues

103 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

TRUE and FALSE. Every comparision evaluates to ohthe two - and the comparisions negation evatudethe opposite one. I
comparision evaluates to TRUE, its negation evakiad FALSE and vice versa. As an example, in tw@luboolean logic one of the
following two comparisions is TRUE and the otheed@FALSE: 'x < 5', 'x >= 5",

Imagine now the new situation that x holds the NUbarker. It is not feasible that 'NULL < 5'is tr(®. But if we say, 'NULL < 5'is
false (2), its negation 'NULL >= 5'is true (3)!(3) more feasible than (1)? Of course not. (1) @)chave the same 'degree of truth’, so
they shall evaluate to the same value. And thisevaiust be different from TRUE and FALSE.

Therefore the usual boolean logic is extended ligird logic value. It is nametdNKOWN . All comparisions to the NULL mark
results per definition in this new value. And theliknown statement 'if a statement is true, itgatien is false' gets lost because there is
a third option.

SQLs logic is an implementation of this so calledalent, ternary or three-valued logic (3VLJhe existence of the NULL marker
SQL is not without controversy. But if NULLs arecapted, the 3VL is a necessity.

This page proceeds in two stages: First it explirshandling of NULLs concerning comparsions, ging, etc. . Second it explains the
boolean logic for the cases where the new value OMH interacts with any other boolean value - inglgdtself.

Step 1: Evaluation of NULLs

Comparision Predicates, IS NULL Predicate

SQL knows the six comparision predicates <, <=3=,> and <> (unequal). Their main purpose is tlithmetic comparision of numeric
values. Each of them needs two variables or cotss{arfix notatior). This implies that it is possible that one or eb®th operants hc
the NULL marker. As stated before the common arrg gémple rule is: "All comparisions to the NULL mha&r results per definition
this new valueynkown).". Here are some examples:

NULL =5 evaluates to UNKNOWN.

5 = NULL evaluates to UNKNOWN.

NULL <=5 evaluates to UNKNOWN.

col_1 = 5 evaluates to UNKNOWN for rows where cohdlds the NULL marker.

col_1 = col_2 evaluates to UNKNOWN for rows whead & or col_2 holds the NULL marker.
NULL = NULL evaluates to UNKNOWN.

col_1 = col_2 evaluates to UNKNOWN for rows wheot & and col 2 holds the NULL marker.

The WHERE clause returns such rows where it eveduad TRUE. It does not return rows where it evialsao FALSE or to
UNKNOWN. In consequence it is not garanteed thatftitiowing SELECT will return the complete taltle

.
:—— This SELECT will not return such rows where col_ 1 holds the NULL marker. :
(SELECT * '
:FROM t1 !
WVHERE col_1 > :
R col_1 =5 '
10R col_1 < !

1

Of course there are use cases where rows with the Marker must be retrieved. Because the aritheratimparisions are not able to
do so, another language construct must do thdtjabthe| SNULL predicate.

T TS S S E T
1

- This SELECT will return exactly these rows where col_1 holds the NULL marker. E
(SELECT * '
IFROM t1 ;
:V\HERE col_1 IS NULL; !
L e e e e e e mc e fm e mccCrcmm e mcccmm e e m e ;e e e e ;e c ;e e e e ;e e e e e e e e e e e e e mm e mmm——— e mm—— e mm——— e mm—————— = —————— - iy

Other Predicates

For the other predicates there is no simple rulaib. They must be explained one after the other.

ThelN predicate is a shortcut for a sequence of ORaimms:

5 T
:—— Shortcut for: col_1 =3 OR col_1 =18 OR col_1 = NULL :
'SELECT * N
IFROM t1 '
WHERE col_1 IN (3, 18, NULL); -- the NULL case will never hit with the IN predica te! '
\-- a second example which is a little more complex .
e WHERE col_1 IN (SELECT col_x FROM t2 WHERE id < 10); !

1

Only the two comparisions 'col_1 = 3" and 'col_18=are able to retrieve rows (possibly many rowke comparision 'col_1 = NULL'
will never evaluate to TRUE. It's alway UNKNOW, evé col_1 holds the NULL marker. To retrieve thasmvs it's necessary - as
shown above - to use the 'IS NULL' predicate.

104 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

The subselect of aBXISTS predicate evaluates to TRUE if the cardipalf the retrieved rows is greater than 0, an&AQSE if the
cardinality is 0. It is not possible that the UNKM®I value occurs.

5 T
i-- The subselect to t2 can hit some rows - or not. If there are hits in the subselect, ALL rows of t1 :
- are returned, else no rows of t1 are returned. .
:SELECT * -- The select to table t1 '
FROM t1 '
WHERE EXI STS .
' (SELECT * FROM t2 WHERE id < 10); -- The subselect to table t2 !

1

The LIKE predicate compares a column with a regularreggion. If the column contains the NULL markeg tHKE predicate returns
the UNKOWN value, what means that the row is ntieeed.

Fr TS T T T T T T T T TS TS T T TS T TS S S SIS S SIS s s T
E—— The LIKE retrieves NO rows if col_2 contains the NULL marker. :
SELECT * '
IFROM 11 '
:V\HERE col_2 LIKE 'Hello %' '
g 4

Predefined Functions

The aggregate function€OUNT(<column_name>), MIN(<column_name>), MAX(<colu mn_name>), SUM(<column_name>) anc
AVG(<column_name>) ignores such rows where <column_name> containdtbiel. marker. On the other harm@buNT(*) includes a
rows.

If a parameter of one of the scalar functions UREER(), TRIM(), CONCAT(), ABS(), SQRT(), ... contains the NULL marker the
resulting value is - in the most cases - the NULdrker.

Grouping

There are some situations where column values@rgared to each other to answer the question, whétley are distinct. For usi
numbers and strings the result of such decisionbugus. But how shall the DBMS handle NULL mad@Are they distinct from ea
other, are they equal to each other or is theranmsaver to this question at all? To get resultschviaire expected by (nearly) every
user, the standard defines "Two null values aredisbinct.”, they build a single group.

SELECT DISTINCT col_1 FROM t1; retrieves one and only row for all rows wheat_1 holds the NULL marker.

... GROUP BY col_1 ...; builds one and only one group for all rows wheoke 1 holds the NULL marker.

Step 2: Boolean Operations within 3VL

After we have seen how various comparisions andigmées on the NULL marker produces TRUE, FALSE &aiKNOWN it's
necessary to explain the rules for the new logioer&/ NKNOWN.

Inspection

A first elementary operation is the inspection dfiah value: is it TRUE, FALSE or UNKNOWN? Analag® to thelS NULL predicate
there are three additional predicates:

» IS[NOT] TRUE
= IS[NOT] FALSE
= IS [NOT] UNKNOWN

1

- Check for 'UNKNOWN'

ISELECT *

IFROM t1

:V\HERE (col_1 = col_2) I'S UNKNOWN; -- parenthesis are not necessary
1
- ... is semantically equivalent to
:SELECT *

FROM t1

WHERE col_1 IS NULL

10R col_2 IS NULL;

In the abstract syntax of logical systemshall represent any of its truth values. Herem tlew predicates evaluate according to the
following table:

105 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

p IS TRUE |IS FALSE |IS UNKNOWN | IS NOT TRUE IS NOT FALSE IS NOT UNKNOWN
TRUE TRUE FALSE FALSE FALSE TRUE TRUE
FALSE FALSE | TRUE FALSE TRUE FALSE TRUE
UNKNOWN FALSE | FALSE TRUE TRUE TRUE FALSE

Please notice that all predicates leads to TRUEAQSE and never to UNKNOWN.
NOT
The next operation is the negation of the new valoevhich value evaluates 'NOT UNKNOWN'? The UNKW® value represents the

impossibility to decide between TRUE and FALSEislnot feasible that the negation of this imposigibleads to TRUE or FALSE.
Likewise it is UNKNOWN.

F T T T T T T T ST ST T T ST ST ST ST ST ST ST T T ST ST T T ST T T ST ST ST ST ST TS TS TS TS TS T s Ss T s i
- Which rows will match? (1)

\SELECT *

IFROM 1

WMHERE NOT col_2 = NULL; --'col_2 = NULL' evaluates to UNKNOWN in all cases , see above.
1

1

- Is this SELECT equivalent to the first one? (2)
SELECT *

IFROM t1

' EXCEPT

SELECT *

IFROM t1

:\/\HERE col_2 = NULL;

1

- No, it's different!! Independent from NULL marke rsin col_2, (1) retrieves
- absolutely NO row and (2) retrieves ALL rows.

The above SELECT (1) will retrieve no rows as 'NE& 2 = NULL' evaluates to the same as 'col_2 = NUbamely UNKNOWN.
And the SELECT (2) will retrieve all rows, as tharpafter EXCEPT will retrieve no rows, hence otie part before EXCEPT is
relevant.

In the abstract syntax of logical systemshall represent any of its truth values and N®its negation. Herein the following table

applies:
p NOT p
TRUE FALSE

FALSE TRUE
UNKNOWN | UNKNOWN

AND, OR

There are the two binary operations AND and ORyThealuate as follows:

p q PANDG = pORg
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE UNKNOWN UNKNOWN TRUE
FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE
FALSE UNKNOWN| FALSE UNKNOWN
UNKNOWN | TRUE UNKNOWN| TRUE
UNKNOWN FALSE FALSE UNKNOWN
UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN

The precedence of the operations is defined ad:USyaredicate, NOT, AND, OR.

Some Examples

- Add a new row to the test data base
Il NSERT | NTO person (id, firstname, lastname) -- Omit some columns to generate NULL markers
WVALUES (99, 'Tommy', ‘Test');

106 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

iCOMM T;
1

ESELECT *

IFROM person

- focus all tests to the new row
WHERE id = 99

ANC

! date_of_birth = NULL

JFROM person
WHERE id = 99

! date_of_birth I'S NULL

{FROM person
WVWHERE id = 99

! date_of_birth = NULL

'
:SELECT *

IFROM person

MVHERE id = 99

:AN[I

i

NOT

! date_of_birth I'S NULL

%

:—— Clean up the test database
{DELETE FROM person WHERE id = 99;
1COMM T;

-- (1): TRUE
-- (3): (1) AND (2) ==> TRUE AND UNKNOWN ==> UNKNOW

-- (2): UNKNOWN
-- no hit

-- (1): TRUE
-- (3): (1) AND (2) ==> TRUE AND TRUE ==> TRUE

- (2): TRUE
-- hit

-- (1): TRUE
-- (3): (1) OR (2) ==> TRUE OR UNKNOWN ==> TRUE

-- (2): UNKNOWN
-- hit

-- (1): TRUE
-- (4): (1) AND (3) ==> TRUE AND FALSE ==> FALSE

-- (3): NOT (2) ==> NOT TRUE ==> FALSE
-- (2): TRUE

-- no hit (same as AND date_of_birth IS NOT NULL)

N

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

A transaction is an embracing ohe or more SQL statements - especially of such statementighwhrite to the database such as
INSERT, UPDATE or DELETE, but also the SELECT comnmaha&an be part of a transaction. All writing stagesmustbe part of

transaction. The purpose of transactions is theaguee that the database changes only from onéstemtsstate to another consistent
state fading out all intermediate situations. Tuodds true also in critical situations such as lerprocessing, disc crash, power failure,
... . Transactions ensure thatabase integrity.

To do so they support four basic properties, whitm all are called th&CID paradigm.

Atomic All SQL statements of the transaction take@lar none.
The sum of all data changes of a transaction toamsf the database from one consistent state td@nobnsistent

Consistent
State.

Isolated The isolation level defines, which partardommited transactions are visible to other sassio
Durable The database retains committed changes etrensystem crashes afterwards.

Transaction Boundaries

As every SQL statement which writes to the datalmasst be part of a transaction, the DBMS silentdyts a transaction for every
them, if actually there is no transaction startdd. alternative is that the application/session tstar transaction explicitly by the

commandsTART TRANSACTION

All subsequent SQL commands are part of this tretisa The transaction remains until it is confidner rejected. The confirmati
takes place with the commaMmIT the rejection with the commambLLBACK Before the COMMIT or ROLLBACK command is
submitted, the DBMS stores the results of everyingristatement into an intermediate area whereribt visible to other sessions (see:
Isolation Levels). Simultaneously with the COMMIBromand all changes of this transaction ends ugéncommon database, are
visible to every other session and the transat¢éominates. If the COMMIT fails for any reasonh#ppens the same as when the se
submits a ROLLBACK command: all changes of thimsaction are discarded and the transaction teresn&tlease notice, tha
session can revert its complete writing actionsclviare part of the actual transaction, by subngjtthe single command ROLLBACK.

An Example:

1
- Begin the transaction with an explicit command (

ISTART TRANSACTION;

- Insert some rows

I NSERT ... ;

- Modify those rows or some other rows
IUPDATE ... ;

1-- Delete some rows

\DELETE ... ;

i-- If the COMMIT succeeds, the results of the above

1-- database and thus 'published' to all other sessi ons.

1COWM T;
1
1

107 sur 121

In general not necessary. Not supported by Oracle.)

3 commands have been transfered to the ‘common’

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

ISTART TRANSACTION;

I NSERT ... ;

:UPDATE s

DELETE ... ;

:—— Discard INSERT, UPDATE and DELETE
:ROLLBACK;

Savepoints

As transactions can cover a lot of statementslikely that runtime errors or logical errors arith some of such cases applications want
to rollback only parts of the actual transactiom @emmit the rest or resume the processing a setimed To do so, it is possible to
define internal transaction boundaries which redeall processing from the start of the transactipnto this point in time. Su
intermediate boundaries are calalepoints COMMIT and ROLLBACK statements terminate the cdetg transaction including its
savepoints.

- Begin the transaction with an explicit command
{START TRANSACTION;

-

I NSERT ... ;

:—— Define a savepoint

1ISAVEPOINT step_1;

1

Ll

'UPDATE ... ;

- Discard only the UPDATE. The INSERT remains.
JROLLBACK TO SAVEPOINT step_1;

- try again (or do any other action)

WUPDATE ... ;

i-- confirm INSERT and the second UPDATE

1ICOWM T;
g 2

During the lifetime of a transaction a savepoint ¢ released if it's no longer needed. (At the ehthe transaction it's implicitly
released.)

1
a ‘
. !
{RELEASE SAVEPOINT <savepoint_name>; '
1

1

1

!

\-- This has no effect to the results of previous IN SERT, UPDATE or DELETE commands. It only eliminates the

1-- possiblity to ROLLBACK TO SAVEPOINT <savepoint_n ame>.

1

e -

Transactions guarantees that the resultslio©f its statements are handled on a logical legebrse single operation. All writing
statements have a temporary nature until the COM&difimand terminates successful.

This behaviour helps to ensure the logical intggoit bussiness logic. Eg: If one wants to transi@me amount of money from one
account to another, at least two rows of the daalaust be modified. The first modification decesathe amount in one row and the
second one increases it on a different row. Iféhgm disc crash or power failure between thiswnite-operations, the application he
problem. But theatomicity property of transactions guaranties that none of the vajierations reaches the database (in the case of any
failure or a ROLLBACK) or all of them (in the caséa successfull COMMIT).

There are more detailed informations about the mitynproperty at Wikipedia.

Consistency

Transactions guarantees that the database isansistent state after they terminate. This consist@ccurrs at different levels:

» The data and all derived index entries are synzeahiln most cases data and index entries aredstdrdifferent areas
within the database. Nevertheless after the erdtafnsaction both areas are updated (or none).

Table constraints and column constraints may blateid during a transaction (by use of the DEFERREBey word) but
not after its termination.

There may be Primary and Foreign Keys. During asaation the rules for Foreign Keys may be violatey use of the
DEFERRABLE key word) but not after its termination.

Thelogical integrity of the database ri®t guaranteed! If in the above example of a bank aicthe application forgets to
update the second row, problems will arise.

Isolation

In most situations there are a lot of sessions ingrkimultaneously on the DBMS. They compete fairthesources, especially for the
data. As long as the data is not modified, thiziproblem. The DBMS can deliver the data to athafm.

108 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

But if multiple sessions try to modify data at ge&me point in time, conflicts are inescapable. hiethe timeline of an example with two
sessions working on a flight reservation systerssiga S1 reads the number of free seats for &:fligfiee seat. S2 reads the numbx
free seats for the same flight: 1 free seat. SArves the last seat. S2 reserves the last seat.

The central result of the analysis of such cordlistthat all of them are avoidable, if all trartgats (concerning the same data)

sequentially: one after the other. But it's obvithet such a behavior is less efficent. The ovgraiformance is increased if the DB

does as much work as possible in parallel. The S@hdard offers a systematic of such conflicts tiedcommandET TRANSACTION
to resolve them with the aim to allow parallel gi®ns as much as possible.

Classification of Isolation Problems

The standard identifies three problematic situation

= P1 Qirty read): "SQL-transaction T1 modifies a row. SQL-trangattT2 then reads that row before T1 perforr
COMMIT. If T1 then performs a ROLLBACK, T2 will havread a row that was never committed and that timay be
considered to have never existeldl"

= P2 (Non-repeatable read: "SQL-transaction T1 reads a row. SQL-transacfi@then modifies or deletes that row
performs a COMMIT. If T1 then attempts to reread thw, it may receive the modified value or disaotfet the row has
been deleted] Non-repeatable reads concern single rows.

= P3 Phantom): "SQL-transaction T1 reads the set of rows N #atisfy some search condition. SQL transactiorthE2
executes SQL-statements that generate one or meethat satisfy the search condition used by S@hsaction T1.
SQL-transaction T1 then repeats the initial reatth tie same search condition, it obtains a diffeceflection of rows." !
Phantoms concern result sets.

Avoidance of Isolation Problems

Depending on the requirements and access strafegy application some of the above problems mayolsable - others not. The
standard offers thBET TRANSACTION ... command to define, which are allowed to occur with transaction and which not. TRET
TRANSACTION ... command must be the first statement within a &atien.

i-- define (un)tolerable conflict situations (Oracle does not support all of them)
:SET TRANSACTIONI SOLATI ON LEVEL [READ UNCOWM TTED |

READ COW TTED |

REPEATABLE READ |

SERI ALI ZABLE];

The following table shows which problems may oowithin each level.

Isolation level | Dirty reads| Non-repeatable reads Phamms

Read Uncommitted may occur may occur may occur
Read Committed | - may occur may occur
Repeatable Read - - may occur
Serializable - - -

At Wikipedia there are more detailed informatitordaxamples about isolation levels and concurreoncyrol.

Durability
Transactions guarantees that every confirmed wpteration will survive (almost) every following diter. To do so, in most cases the

DBMS writes the changes not only to the databaseadiditionally to logdfiles, which shall reside oiffefrent devices. So it is possible -
after a disc crash - to restore all changes fratatabase backup plus these lodfiles.

There are more detailed informations about thelilityaproperty at Wikipedia.

Autocommit

Some DBMS offers - outside of the standard - an @CDMMIT feature. If it is activated, the feature submittoaatically a COMMI’
command after every writing statement with the egence that you cannot ROLLBACK a logical unitwafrk consisting of a lot «
SQL statements. Furthermore the use of the SAVER@didture is not possible.

In much cases the feature is activated by default.

References

109 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

1."ISO/IEC 9075-2:2011: Information technology -- Bhhse languages -- SQL -- Part 2: Foundation (SQloéation)".
http://www.iso.org/iso/catalogue_detail.ntm?csnumb8682.

Appendices

110 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

ACID

Attribute

Block

Clause

Column

Constraint

Cursor

Database

Database
Management
System (DBMS)

An acronym for the 4 propertiegomicity, consistency, isolation anddurability. Any transaction must conform
to them. Atomicity means that either all or no data modification wdlke place.Consistency ensures that
transactions transforms the database from one \sfte to another valid statésolation requires that
transactions will not affect each other, even éthun at the same timBurability means that the modifications
will keep into the database even if the systemhs@emediately after the transaction. g.v.: ACID

A set of properties (name, datatype, size, ...Jlusecharacterize the data items of entities. Augrof attributes
constructs an entity-type (or table), i.e.: alluesd of a certain column must conform to the sanbates|
Attributes are optionally complemented by constsain

Aggregation of one or more physical blocks of a sndevice. Usually a block contains numerous rowsnaf or
more tables. Sometimes one row is distributed acegeral blocks. g.v.: dirty block

A certain language element as part of ars&te E.g.: th&VHERE clause defines seach criterias.
A set of values of a single table which residn the same position within its rows.

Similar to attributes constraints define rules aigher level, data items must conform to. E.gltatlity, primary
and foreign key, uniqueness, default value, usén&@-criterias likeSTATUS < 10 .

A cursor is a mechanism by which the rows of agabhy be acted on (e.g., returned to a host progiagn
language) one at a time.

A set of tables. Those tables containdadarand the Data Dictionary.

A set of computer programs that controls the coeatnaintenance and usage of the database. q.MSDB

Data DictionaryA set of predefined tables where the DBMS stordarination about all user defined objects (tabldsws,

(DD)

constraints, ...).

Data Control

Language (DCL)

Data Definition

Language (DDL)

Data
Manipulation
Language (DML)

Dirty Block

Entity

Entity-type

Expression

Foreign key

Index

Junction table

Normalization

NULL

111 sur 121

A class of statements which defines the accestsrigidata, e.gsRANT ..., REVOKE, ...

A class of statements which defines logical andspiay design of a database, eQREATE TABLE ...

A class of statements which retrieves and manipslatata, e.gSELECT ..., INSERT ..., UPDATE ...,
DELETE ..., COMMIT, ROLLBACK

A block whose content has changed in mgmbut is still not written to disc.

An identifiable object like aemployee or adepartment. An entity is an instance of an entity-type. Usu#iiere
are many instances of a certain entity-type. Eenijty is stored in one row. Entities of same grijppe are
stored in rows of the same table. So entities dogieal construct and rows a physical implementati

A group of attributes describing the structure wiitees. As entities of same entity-type are staretbws of the
same table it can be said, that an entity-typeritesc a table. (Many people tend to use the tertityeas a
synonym for entity-type.)

A certain language element as part tftarsent. It can produce either scalar valuestable.

A value used to reference a primary key. It camip@ any primary key in the database, whethetsimin table
(eg: bill of materials) or another table. It carnmpao its own row.

An index is a construct containing copies of oadimalues and backreferences to their original ratisspurpose
is the provision of a fast access to the origimaadTo achieve this, an index contains some kircdbkpcation.

Remark: Indexes are not part of the SQL standaedeNheless they are part of nearly every DBMS.

If more than one row of table T1 refers to morentbae row of table T2 (many-to-many relationshipyyneed
an intermediate table to store this relationshipe Tows of the intermediate table contains the gmjnkeys of T1
and T2 as values. g.v.: Junction_table

Tables should conform to special rules - namigiyst-, Second- and Third-Normal Form. The process of
rearranging columns over tables is catedmalization.

If no value is stored in the column of a row, the staddays, that thaeull value is stored. As thisull value is a
flag and not a real value we use the tawth marker within this wikibook. Thenull marker is used to indicate the
absence of any data. For example it makes a differavhether a temperature is measured and stor@d as
degrees or whether the temperature is not measurédhence not stored. One consequence of the roésts
the null marker is that SQL must know not only the boolean vallRUJE and FALSE but also a third one:
UNKNOWN.

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

A language element which specifies a non arithmatiedition. E.g: [NOT] IN, [NOT] LIKE, IS [NOT] NUL,
[NOT] EXISTS, ANY,

Primary key A value or a set of values used to ifieatsingle row uniquely.

An often used statement which retrieves data frleendatabase. It is introduced by the keyword SELBGT
usually contains a predicate.

Predicate

Query
A reference between two different or the same erf@eferences are not implemented as links. Theg l@on
the values of the entities.

A method (and a mathematical theory) to model dattables (relations), the relationships among e#iwdr and
all operations on the data.

Relationship

Relational Model
One record in a table containing information abang single entity. A row has exactly one valuedach of its
columns - in accordance wiffirst Normal Form. This value may be NULL.

A single command which is executed by the DBMS.r&hare 3 main classes of statements: DML, DDL | and
DCL.

Table (=Relation) A set of rows of a certain entigpe, i.e. all rows of a certain table have theesatructure.
Three ValuedSQL knows three boolean values: TRUE, FALSE and NOKVN. See: NULL. g.v.: trivalent, ternary or three-

Row

Statement

Logic (3VL) valued logic (3VL).
A logical unit of work consisting of one or more difications to the database. The ACID criterium tbe
Transaction achieved. A transaction is either saved by t@vmIT statement or completely canceled by #®LLBACK
statement.

Implementation of a single data item within a certzolumn of a certain row. (You can think of aleeithin a
spreadsheet.)

A virtual table containing only its definition amtb real data. The definition consists of a querpne or more
real tables or views. Queries to the view are psed as queries to the underlying real tables.

Value

View

Some of the above terms correlate to each other tite logical and
implemention level.

Logical Design Implementation
entity-type table

entity row

? column

data item value

First versions of the SQL standard used a variablied SQLCODE to flag special processing situatitke exceptions, warnings
regular termination. SQLCODE is no longer parthaf standard and is replaced by SQLSTATE.

SQLSTATE values consist of 5 characters where iteetfvo denotes alassand the following three subclass The following table lists
such values of SQLSTATE which are part of the staddIimplementations usually use much more valbas those defined by the
standard.

SQLSTATE values belong to one of focategories "S" denotes "Success” (class 00), "W" denotesriilg" (class 01), "N" denotes
"No data" (class 02) and "X" denotes "Exceptiorthé classes).

112 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Cat.|Class Class Text Subclass Subclass Text

S |00 | successful completion 000 (no subclass)

W 01 |warning 000 (no subclass)

W 01 |warning 001 cursor operation conflict

W 01 |warning 002 disconnect error

W 01 |warning 003 null value eliminated in set function

W 01 |warning 004 string data, right truncation

W 01 |warning 005 insufficient item descriptor areas

W 01 |warning 006 privilege not revoked

W 01 |warning 007 privilege not granted

W 01 |warning 009 search condition too long for information schema
W 01 |warning 00A query expression too long for information schema
W 01 | warning 00B default value too long for information schema
W 01 |warning oocC result sets returned

W 01 |warning 00D additional result sets returned

W 01 |warning 00E attempt to return too many result sets

W 01 |warning 00F statement too long for information schema

W 01 |warning 012 invalid number of conditions

W 01 |warning 02F array data, right truncation

N |02 | nodata 000 (no subclass)

N |02 |nodata 001 no additional result sets returned

X |07 |dynamic SQL error 000 (no subclass)

X 07 dynamic SQL error 001 g;?gficz[[?::se does not match dynamic parameter
X |07 |dynamic SQL error 002 using clause does not miget specifications
X |07 |dynamic SQL error 003 cursor specification carbmexecuted

X |07 |dynamic SQL error 004 using clause required faradhgic parameters

X |07 |dynamic SQL error 005 prepared statement not socspecification

X |07 |dynamic SQL error 006 restricted data type attabuiolation

X |07 |dynamic SQL error 007 using clause required feultefields

X |07 |dynamic SQL error 008 invalid descriptor count

X |07 |dynamic SQL error 009 invalid descriptor index

X |07 |dynamic SQL error 00B data type transform functi@iation

X |07 |dynamic SQL error 0oC undefined DATA value

X |07 |dynamic SQL error 00D invalid DATA target

X |07 |dynamic SQL error 00E invalid LEVEL value

X |07 |dynamic SQL error O00F invalid DATETIME_INTERVAL_CIOE

X |08 | connection exception 000 (no subclass)

X |08 |connection exception 001 SQL-client unable toldstta SQL-connection
X |08 | connection exception 002 connection name in use

X |08 |connection exception 003 connection does not exist

X |08 |connection exception 004 SQL-server rejected éstabent of SQL-connection
X |08 |connection exception 006 connection failure

X |08 |connection exception 007 transaction resoluticknomwn

X 109 |triggered action exception 000 (no subclass)

113 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

XIX|X | X X | X | X | X X|X|X|X X

>

X

XIX|IX X XXX X XXX XXX X X|X|X| X X|X X X|X|X X X|X| XX

114 sur 121

0A
0A
oD
OE
OF
OF
oL
oM
oP
0S
oT
ouU
ov

ow

ow

0z
0z
21
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22

feature not supported 000
feature not supported 001
invalid target type specification 000
invalid schema name list specification 000
locator exception 000
locator exception 001
invalid grantor 000
invalid SQL-invoked procedure reference 000
invalid role specification 000
invalid transform group name specification 000

target table disagrees with cursor specification | 000
attempt to assign to non-updatable column
attempt to assign to ordering column

prohibited statement encountered during triggSB
execution

prohibited statement encountered during triggs&
execution

diagnostics exception 000
diagnostics exception 001
cardinality violation 000

data exception 000
data exception 001
data exception 002
data exception 003
data exception 004
data exception 005
data exception 006
data exception 007
data exception 008
data exception 009
data exception 00B
data exception oocC
data exception 00D
data exception 00E
data exception O00F
data exception 00G
data exception OOH
data exception 00P
data exception 00Q
data exception 010
data exception 011
data exception 012
data exception 013
data exception 014
data exception 015
data exception 016
data exception 018

000
000

https://en.wikibooks.org/w/ixgdp ?title=Structured_Query_Langua

(no subclass)
multiple server trarisast
(no subcjass
(noctars)
(no subclass)
invalid specification
(no subclass)
(nbddass)
(no subclass)
gobclass)
(no subclass)
s(razlass)
(no satx)

(no subclass)

modify table modified by data change delta table

(no subclass)

maximum number of stdakagnostics areas exceeded
(no subclass)

(no subclass)

string data, right truncation

null value, no indicator parame
numeric value out of range

null value not allowed

error in assignment

invalid interval format

invalid datetime format

datetime field overflow

invalid time zone displacemahie
escape character conflict

invalid use of escape character
invalid escape octet

null value in array target

zero-length character string

most specific type mismatch
sequence generator limit exested
interval value out of range

multiset value overflow

invalid indicator parameteusal
substring error

division by zero

invalid preceding or followsize in window function
invalid argument for NTILE ftion
interval field overflow

invalid argument for NTH_ VAL fiiction
invalid character value fot cas

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

XIX[IX|IXIX XXX XXX XXX X XX XX XXX XXX X XXX X|IX|X X X|X X X|X|X X X|X|X X|X XX

115 sur 121

22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
23
23
24
25
25
25
25
25
25
25
25
25
26
27
27
28
2B
2C
2D
2E
2F

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

data exception

integrity constraint violation
integrity constraint violation
invalid cursor state

invalid transaction state
invalid transaction state
invalid transaction state
invalid transaction state
invalid transaction state
invalid transaction state
invalid transaction state
invalid transaction state
invalid transaction state
invalid SQL statement name
triggered data change violation
triggered data change violation
invalid authorization specification
dependent privilege descriptors still exist
invalid character set name
invalid transaction termination
invalid connection name

SQL routine exception

019
01B
01C
Ol1E
O01F
01G
01H
01Ss
01T
01U
o1v
01w
01X
021
022
023
024
025
026
027
029
02D
02E
02F
02G
02H
000
001
000
000
001
002
003
004
005
006
007
008
000
000
001
000
000
000
000
000
000

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

invalid escape character

invalid regular expression

null row not permitted in table

invalid argument for naturgatithm

invalid argument for power fiorc

invalid argument for width betckinction

invalid row version

invalid Query regular expressio

invalid Query option flag

attempt to replace a zero4tesiging

invalid Query replacement gtrin

invalid row count in fetchffictause

invalid row count in resultseff clause
character not in repertoire

indicator overflow

invalid parameter value

unterminated C string

invalid escape sequence

string data, length mismatch

trim error

noncharacter in UCS string

null value substituted for nutaubject parameter

array element error

array data, right truncation

invalid repeat argument innapda clause

invalid sample size

(no subclass)

restrict viailan

(no subclass)

(no subclass)

active SQL-trangacti

branch transacticredy active

inappropriate acoasde for branch transaction
inappropriate isotatevel for branch transaction
no active SQL-tratiea for branch transaction
read-only SQL-tratiesa

schema and datarstait mixing not supported
held cursor requsase isolation level
(no subclass)
(no subclass)
modify tabtedified by data change delta table
(no sulssla

o fibclass)
(no subclass)

(no subclass)

(no subclass)

(no subclass)

27/01/2016 00:2

Structured Query Language/Standard Track Printkibdbks, open boo...

2F
2F
2F
2F
2H
30
33
34
35
36
36
36
38
38
38
38
38
39
39
3B
3B
3B
3C
3D
3F
40
40
40
40
40
42
a4

X IXIX|IXIX|IX|IX X XXX X XXX XX X X XX X X|X|X| X X|X X X|X|X

License

SQL routine exception

SQL routine exception

SQL routine exception

SQL routine exception

invalid collation name

invalid SQL statement identifier
invalid SQL descriptor name
invalid cursor name

invalid condition number
cursor sensitivity exception
cursor sensitivity exception
cursor sensitivity exception
external routine exception
external routine exception
external routine exception
external routine exception
external routine exception
external routine invocation exception
external routine invocation exception
savepoint exception

savepoint exception

savepoint exception
ambiguous cursor name

invalid catalog name

invalid schema name
transaction rollback
transaction rollback
transaction rollback
transaction rollback
transaction rollback

syntax error or access rule violation

with check option violation

GNU Free Documentation License

002
003
004
005
000
000
000
000
000
000
001
002
000
001
002
003
004
000
004
000
001
002
000
000
000
000
001
002
003
004
000
000

modifying SQL-data netrpitted
prohibited SQL-statenatempted
reading SQL-data noinit¢zd
function executed namestatement
(no subclass)
(no subclass)
(no subclass)
(no subclass)
(no subclass)
(no subclass)
request rejected
request failed
(no subclass)
containing SQL permitted
modifying SQL-datd permitted
prohibited SQL estant attempted
reading SQL-datgoeomitted
(no dasE)
nullueahot allowed
(no subclass)
invalid specification
too many
(no subclass)
(no subclass)
(no subclass)
(no subclass)
serialization failure
integrity constraint gibn
statement completion @mkm
triggered action excaptio
(no fads)

(no subclass)

\ersion 1.3, 3 November 2008 Copyright (C) 200M2®002, 2007, 2008 Free Software Foundation,dhttp://fsf.org/>

Everyone is permitted to copy and distribute varbabpies of this license document, but changingriot allowed.

0. PREAMBLE

https://en.wikibooks.org/w/ixgép ?title=Structured_Query_Langua

The purpose of this License is to make a manusibo®k, or other functional and useful documeneéftin the sense of freedom: to
assure everyone the effective freedom to copy aedutribute it, with or without modifying it, eitheommercially or noncommercially.

Secondarily, this License preserves for the ausimor publisher a way to get credit for their worlkjile/ not being considered responsible
for modifications made by others.

This License is a kind of "copyleft”, which meahstt derivative works of the document must themsebe free in the same sense. It
complements the GNU General Public License, whichdopyleft license designed for free software.

We have designed this License in order to useritrfanuals for free software, because free softwarsls free documentation: a free
program should come with manuals providing the sémedoms that the software does. But this Liceaseot limited to software

116 sur 121

27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

manuals; it can be used for any textual work, rélgas of subject matter or whether it is publishe printed book. We recommend this
License principally for works whose purpose israstion or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other warlariy medium, that contains a notice placed byctpyright holder saying it can be
distributed under the terms of this License. Suadbtice grants a world-wide, royalty-free licenselimited in duration, to use that w«
under the conditions stated herein. The "Documdrglw, refers to any such manual or work. Any memtdf the public is a licensee,
and is addressed as "you". You accept the liceingeu copy, modify or distribute the work in a wagquiring permission und
copyright law.

A "Modified Version" of the Document means any waréntaining the Document or a portion of it, eitle@pied verbatim, or wi
modifications and/or translated into another lamggua

A "Secondary Section" is a named appendix or atfnostter section of the Document that deals exaliigiwith the relationship of the
publishers or authors of the Document to the Doculseverall subject (or to related matters) andt@ios nothing that could f.
directly within that overall subject. (Thus, if tE®cument is in part a textbook of mathematicseeo8dary Section may not explain any
mathematics.) The relationship could be a mattéristbrical connection with the subject or withateld matters, or of legal, commercial,
philosophical, ethical or political position regarglthem.

The "Invariant Sections" are certain Secondaryi@estwhose titles are designated, as being thosevafiant Sections, in the notice
that says that the Document is released undertbénse. If a section does not fit the above didiniof Secondary then it is not
allowed to be designated as Invariant. The Documesyy contain zero Invariant Sections. If the Docnimgoes not identify any
Invariant Sections then there are none.

The "Cover Texts" are certain short passages ofthex are listed, as Front-Cover Texts or Back-&Zokexts, in the notice that says that
the Document is released under this License. AtFomver Text may be at most 5 words, and a Backe€dext may be at most 25
words.

A "Transparent" copy of the Document means a macteadable copy, represented in a format whosefisaion is available to the
general public, that is suitable for revising thecaiment straightforwardly with generic text editors(for images composed of pixels)
generic paint programs or (for drawings) some widslailable drawing editor, and that is suitable ifgput to text formatters or f
automatic translation to a variety of formats saléafor input to text formatters. A copy made in@herwise Transparent file format
whose markup, or absence of markup, has been adanghwart or discourage subsequent modificatipneaders is not Transparent.
An image format is not Transparent if used for anystantial amount of text. A copy that is not figparent” is called "Opaque".

Examples of suitable formats for Transparent copiekide plain ASCII without markup, Texinfo inpédrmat, LaTeX input format,
SGML or XML using a publicly available DTD, and stard-conforming simple HTML, PostScript or PDF igeed for huma
modification. Examples of transparent image forniattide PNG, XCF and JPG. Opaque formats includeretary formats that ci
be read and edited only by proprietary word pramesssSGML or XML for which the DTD and/or procesgitools are not generally
available, and the machine-generated HTML, PogiSoriPDF produced by some word processors forubytprposes only.

The "Title Page" means, for a printed book, thHe piage itself, plus such following pages as aedead to hold, legibly, the material this
License requires to appear in the title page. Farksvin formats which do not have any title pagesach, "Title Page" means the text
near the most prominent appearance of the wotlespreceding the beginning of the body of thd.tex

The "publisher" means any person or entity thdtidigtes copies of the Document to the public.

A section "Entitled XYZ" means a named subunitte Document whose title either is precisely XYZcontains XYZ in parentheses
following text that translates XYZ in another laage. (Here XYZ stands for a specific section nammtioned below, such as
"Acknowledgements”, "Dedications”, "Endorsements”,"History".) To "Preserve the Title" of such acgden when you modify the
Document means that it remains a section "Entkl¥d" according to this definition.

The Document may include Warranty Disclaimers nexthe notice which states that this License appi@the Document. These
Warranty Disclaimers are considered to be includgdeference in this License, but only as regaidslaiming warranties: any ott
implication that these Warranty Disclaimers mayéh@woid and has no effect on the meaning oflticiense.

2. VERBATIM COPYING

You may copy and distribute the Document in any iomad either commercially or noncommercially, praddthat this License, the
copyright notices, and the license notice sayirng lticense applies to the Document are reprodueel icopies, and that you add no
other conditions whatsoever to those of this Lieen®u may not use technical measures to obstrucowmtrol the reading or furth
copying of the copies you make or distribute. Hogreyou may accept compensation in exchange foesoff you distribute a large
enough number of copies you must also follow thedi@ns in section 3.

You may also lend copies, under the same condisitated above, and you may publicly display copies.

117 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

3. COPYING IN QUANTITY

If you publish printed copies (or copies in mediattcommonly have printed covers) of the Documeuainbering more than 100, ¢
the Document's license notice requires Cover Texis,must enclose the copies in covers that calegrly and legibly, all these Co
Texts: Front-Cover Texts on the front cover, andkB&over Texts on the back cover. Both covers raisst clearly and legibly identify
you as the publisher of these copies. The fronecowst present the full title with all words ogthitle equally prominent and visit
You may add other material on the covers in addit@opying with changes limited to the covers,cmglas they preserve the title of the
Document and satisfy these conditions, can beedeas verbatim copying in other respects.

If the required texts for either cover are too wailtous to fit legibly, you should put the first aniisted (as many as fit reasonably
the actual cover, and continue the rest onto adjguages.

If you publish or distribute Opaque copies of thecDment numbering more than 100, you must eithelude a machine-readable
Transparent copy along with each Opaque copy, aie sh or with each Opaque copy a computer-netdachtion from which the
general network-using public has access to downlesidg public-standard network protocols a compl&t@nsparent copy of the
Document, free of added material. If you use thtefeoption, you must take reasonably prudent ste@phen you begin distribution
Opaque copies in quantity, to ensure that this §garent copy will remain thus accessible at theedtébbcation until at least one yi
after the last time you distribute an Opaque caig¢tly or through your agents or retailers) adtthdition to the public.

It is requested, but not required, that you conthetauthors of the Document well before redistiitguany large number of copies, to
give them a chance to provide you with an updatedion of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version bétDocument under the conditions of sections 2 Zathove, provided that y
release the Modified Version under precisely thisehse, with the Modified Version filing the rot# the Document, thus licens
distribution and modification of the Modified Veosi to whoever possesses a copy of it. In addigon, must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if angijla distinct from that of the Document, and frahose of previous versions
(which should, if there were any, be listed in History section of the Document). You may use tmes title as a previous vers
if the original publisher of that version gives pession.

B. List on the Title Page, as authors, one or morsquesr or entities responsible for authorship ofrtfeglifications in the Modifie
\ersion, together with at least five of the priradiputhors of the Document (all of its principattaars, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publishéreoModified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your magifions adjacent to the other copyright notices.

F. Include, immediately after the copyright noticesicanse notice giving the public permission to tiee Modified Version under the
terms of this License, in the form shown in the Addum below.

G. Preserve in that license notice the full listsrofdriant Sections and required Cover Texts givehénDocument's license naotice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", PresetseTitle, and add to it an item stating at least title, year, new authors, ¢
publisher of the Modified \ersion as given on thigeTPage. If there is no section Entitled "Histoiy the Document, create one
stating the title, year, authors, and publishethef Document as given on its Title Page, then aditiean describing the Modifie
\ersion as stated in the previous sentence.

J.Preserve the network location, if any, given in Beeument for public access to a Transparent céplyeoDocument, and likewise
the network locations given in the Document forvayas versions it was based on. These may be placee "History" section.
You may omit a network location for a work that wasblished at least four years before the Docuritself, or if the origine
publisher of the version it refers to gives perimiss

K. For any section Entitled "Acknowledgements" or "i2ations”, Preserve the Title of the section, areserve in the section all the
substance and tone of each of the contributor aglenlgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Documemdltered in their text and in their titles. $aectnumbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Susbéction may not be included in the Modified version

N. Do not retitle any existing section to be Entitl&shdorsements"” or to conflict in title with any bwant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-mattegcsions or appendices that qualify as SecondaryidBscand contain no matel
copied from the Document, you may at your optiosigleate some or all of these sections as invarientlo this, add their titles to the
list of Invariant Sections in the Modified Versisticense notice. These titles must be distinanfemy other section titles.

You may add a section Entitled "Endorsements", idext it contains nothing but endorsements of yowdified \ersion by various
parties—for example, statements of peer review ar ttie text has been approved by an organizatidheaguthoritative definition of
standard.

118 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

You may add a passage of up to five words as atf&owmer Text, and a passage of up to 25 wordsBaca-Cover Text, to the end
the list of Cover Texts in the Modified Version. IQone passage of Front-Cover Text and one of Bamker Text may be added by
through arrangements made by) any one entity.elfDbcument already includes a cover text for theesaover, previously added by
you or by arrangement made by the same entity yewaeting on behalf of, you may not add anothet;ylou may replace the old o
on explicit permission from the previous publistieat added the old one.

The author(s) and publisher(s) of the Documentatdol this License give permission to use their @sufior publicity for or to assert
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documeatsased under this License, under the terms defmesgction 4 above f
modified versions, provided that you include in tmembination all of the Invariant Sections of dltlee original documents, unmodified,
and list them all as Invariant Sections of your barad work in its license notice, and that you pres all their Warranty Disclaimers.

The combined work need only contain one copy «f thtense, and multiple identical Invariant Secdiomay be replaced with a single
copy. If there are multiple Invariant Sections witle same name but different contents, make tleedfiteach such section unique by
adding at the end of it, in parentheses, the natkeooriginal author or publisher of that sectibknown, or else a unique number.
Make the same adjustment to the section titlekenlist of Invariant Sections in the license notié¢he combined work.

In the combination, you must combine any sectionstled "History" in the various original documenferming one section Entitl
"History"; likewise combine any sections Entitledcknowledgements”, and any sections Entitled "Defitimis”. You must delete
sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Documeamd other documents released under this Licears#,replace the individt
copies of this License in the various documentk wisingle copy that is included in the collectiprgvided that you follow the rules
this License for verbatim copying of each of thewwnents in all other respects.

You may extract a single document from such a codle, and distribute it individually under thisdeinse, provided you insert a cop'
this License into the extracted document, andviotlois License in all other respects regarding &gnb copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivativegshwother separate and independent documents oswiar&r on a volume of a storage
or distribution medium, is called an "aggregatethié copyright resulting from the compilation is msed to limit the legal rights of the
compilation's users beyond what the individual vsopermit. When the Document is included in an aggpes this License does not
apply to the other works in the aggregate whichnatethemselves derivative works of the Document.

If the Cover Text requirement of section 3 is aggiile to these copies of the Document, then iDtheument is less than one half of the
entire aggregate, the Document's Cover Texts majdmed on covers that bracket the Document withgnaggregate, or the electronic
equivalent of covers if the Document is in elecitoform. Otherwise they must appear on printed cevbat bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, yu may distribute translations of the Documendar the terms of section 4.
Replacing Invariant Sections with translations regguspecial permission from their copyright hoijdsut you may include translations
of some or all Invariant Sections in addition te thriginal versions of these Invariant Sectionsu Yieay include a translation of this
License, and all the license notices in the Docuemd any Warranty Disclaimers, provided that wgo include the original Engli
version of this License and the original versiohshose notices and disclaimers. In case of a digagent between the translation
the original version of this License or a noticed@claimer, the original version will prevail.

If a section in the Document is Entitled "Acknowgednents"”, "Dedications”, or "History", the requiremh (section 4) to Preserve its
Title (section 1) will typically require changinhe actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribtiee Document except as expressly provided underlfisense. Any attempt
otherwise to copy, modify, sublicense, or distrébittis void, and will automatically terminate yaights under this License.

However, if you cease all violation of this Licensken your license from a particular copyrightdeslis reinstated (a) provisionally,
unless and until the copyright holder explicitlydafinally terminates your license, and (b) permalyeif the copyright holder fails to
notify you of the violation by some reasonable ngejaior to 60 days after the cessation.

119 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Moreover, your license from a particular copyrigbtder is reinstated permanently if the copyrigbider notifies you of the violation by
some reasonable means, this is the first time yaue lieceived notice of violation of this Licenser(ny work) from that copyright
holder, and you cure the violation prior to 30 dafter your receipt of the notice.

Termination of your rights under this section doesterminate the licenses of parties who haveivedecopies or rights from you unc
this License. If your rights have been terminatad aot permanently reinstated, receipt of a copgaofie or all of the same mate
does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, eevigersions of the GNU Free Documentation Licensm ftime to time. Such ne
versions will be similar in spirit to the presenersion, but may differ in detail to address newbfgms or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distingaighiersion number. If the Document specifies thpadicular numbered version of this
License "or any later version" applies to it, yava the option of following the terms and condisi@ither of that specified version o
any later version that has been published (not dsf) by the Free Software Foundation. If the lroent does not specify a vers
number of this License, you may choose any versi@r published (not as a draft) by the Free Sofivarundation. If the Document
specifies that a proxy can decide which future ivessof this License can be used, that proxy'sipudthtement of acceptance ¢
version permanently authorizes you to choose thetion for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMCt&") means any World Wide Web server that pubfsbepyrightable works a
also provides prominent facilities for anybody thitehose works. A public wiki that anybody cantedian example of such a server. A
"Massive Multiauthor Collaboration” (or "MMC") coained in the site means any set of copyrightablésvithus published on the MMC
site.

"CC-BY-SA" means the Creative Commons Attributidm& Alike 3.0 license published by Creative Comsn@orporation, a not-for-
profit corporation with a principal place of busissein San Francisco, California, as well as futtwpyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Doentnin whole or in part, as part of another Docoime

An MMC is "eligible for relicensing" if it is licesed under this License, and if all works that winst published under this License
somewhere other than this MMC, and subsequentlyrgucated in whole or in part into the MMC, (1) haal cover texts or invariant
sections, and (2) were thus incorporated prior age¥inber 1, 2008.

The operator of an MMC Site may republish an MM@teined in the site under CC-BY-SA on the sameatditeny time before August
1, 2009, provided the MMC s eligible for relicemgi

How to use this License for your documents

To use this License in a document you have writieriyde a copy of the License in the document puiidthe following copyright ar
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/odifgdhis document

under the terms of the GNU Free Documentation l9eekersion 1.3

or any later version published by the Free Softvmendation;

with no Invariant Sections, no Front-Cover Texts] @ao Back-Cover Texts.
A copy of the license is included in the sectiotitkea "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Textd 8ack-Cover Texts, replace the "with... Texti&livith this:

with the Invariant Sections being LIST THEIR TITLR&th the
Front-Cover Texts being LIST, and with the Back-€oVexts being LIST.

If you have Invariant Sections without Cover Texis,some other combination of the three, mergeeho® alternatives to suit the
situation.

If your document contains nontrivial examples adgram code, we recommend releasing these examptesallel under your choice
free software license, such as the GNU GeneraidLigkense, to permit their use in free software.

120 sur 121 27/01/2016 00:2

Structured Query Language/Standard Track Printkib®bks, open boo... https://en.wikibooks.org/w/ixgdp?title=Structured_Query_Langua

Retrieved from "https://en.wikibooks.org/w/indexgttitle=Structured_Query_Language/Standard_Traékt&aldid=2749800"

m This page was last modified on 23 December 20146 41.
m Text is available under the Creative Commons Attidn-ShareAlike License.; additional terms maylgpBy using this site, you
agree to the Terms of Use and Privacy Policy.

121 sur 121 27/01/2016 00:2

