
LESSON 10
WEB SECURITY AND

PRIVACY

WARNING

The Hacker Highschool Project is a learning tool and as with any learning tool there are
dangers. Some lessons, if abused, may result in physical injury. Some additional dangers
may also exist where there is not enough research on possible effects of emanations from
particular technologies. Students using these lessons should be supervised yet encouraged
to learn, try, and do. However ISECOM cannot accept responsibility for how any
information herein is abused.

The following lessons and workbooks are open and publicly available under the following
terms and conditions of ISECOM:

All works in the Hacker Highschool Project are provided for non-commercial use with
elementary school students, junior high school students, and high school students whether
in a public institution, private institution, or a part of home-schooling. These materials may
not be reproduced for sale in any form. The provision of any class, course, training, or
camp with these materials for which a fee is charged is expressly forbidden without a
license, including college classes, university classes, trade-school classes, summer or
computer camps, and similar. To purchase a license, visit the LICENSE section of the HHS
web page at http://www.hackerhighschool.org/licensing.html.

The Hacker Highschool Project Project is an open community effort and if you find value in
this project, we ask that you support us through the purchase of a license, a donation, or
sponsorship.

2

Lesson 10: Web Security and Privacy

Table of Contents
WARNING...2
Contributors...4
Introduction and Objectives..5
How the Web Really Works...7

Reality Check...7
Security - Here to Save the Day...8
Game On: Who Hacked The Website?..9

Getting More Details...11
Mightier and Mitre-er...13

Browsing Behind Bars: SSL..13
Applied SSL..14
The Properties of Trust..15

Employing a Middleman: Proxies...16
Using Someone Else's Server...16
Using a Local Proxy..16
The Onion Router...16
SQL Injection - The Lion...22
Buffer Overflows - The Tiger...22
Cross Site Scripting (XSS) - The Bear...22
Bear Traps and Tiger Rugs...23
Using a Local Proxy for Web Application Testing..24

Building Secure Web Applications...27
Protecting Your Server...28

Feed Your Head: Understanding HTTP..33
Going Deeper...34

3

Lesson 10: Web Security and Privacy

Contributors

Pete Herzog, ISECOM

Marta Barceló, ISECOM

Chuck Truett, ISECOM

Kim Truett, ISECOM

Marco Ivaldi, ISECOM

Bob Monroe, ISECOM

Greg Playle, ISECOM

Cor Rosielle, ISECOM

Mario Platt

Monique Castillo

4

Lesson 10: Web Security and Privacy

Introduction and Objectives

What you do on the World Wide Web (the Web) is your own business, isn't it? You might
think so, but it's just not true. What you do on the web is about as private and anonymous
as where you go when you leave the house. You'd think your comings and goings are your
own business, and the people of ISECOM would agree with you. But in most countries
government and private investigators are free to follow you around, collecting data on
where you go, whom you meet, and what you say. The focus of this lesson is learning how
to protect yourself on the web and to do that, you will have to know where the dangers
are.

Web security is a whole lot more than making sure your browser doesn't collect tracking
cookies. In this lesson we hope to show you how deep the web actually goes. When most
people think of the Internet they think of the web. Since you have already read some of
the other lessons, you know that this isn't true. The world wide web is just a small fraction of
the digital communication structure we know as the Internet. With web security we have
to look at web servers, the software running on both the client and the server-side, as well
as all the services we depend on. Our phones are the most connected devices ever
made, yet few people understand the difference between Java and Javascript.

The code of most web applications is no longer just Hyper Text Mark Up Language (HTML),
either. Entire operating systems are being used to enhance your online experience to sell
you things or just collect personal information about you. Those pictures you post to your
friends on social media are being used by other entities. You are unknowingly part of the
largest privacy invasion ever created. And you are the one providing all the information.

Our focus here is not to scare you but rather educate you about how far web security
really goes. We will cover the foundation of web applications, their uses and misuses,
vulnerabilities, security practices plus some tricks of the hacking trade. As always, Hacker
Highschool is not here to teach you criminal techniques. We endeavor to show you how
to be security conscience. You must think on your own and learn on a continuous basis
about the world around you.

Your phone, computer, tablet, vehicle and even home appliances are connecting to the
internet whether you know it or not. Wouldn't you like to know what they are saying about
you along with the data that is being collected? We hope to show you ways to protect
your privacy and personal data. Perhaps you will take up the challenge and begin
teaching others as the Institute for Security and Open Methodologies (ISECOM) does.
Education is a powerful weapon.

5

Lesson 10: Web Security and Privacy

Fundamentals of Web Security

The focus of this lesson is learning how to protect your privacy on the web and how to
keep your own web sites safe against intelligent attacks. To do that, you will have to know
where the dangers are and how to bypass those dangers. Our topic here is going to
expose you to the massive security challenges facing web site owners. You probably
heard about attacks such as SQL injections, buffer overflows, cross site scripting and more.
This lesson is going to demonstrate what these attacks really mean to you as well as
methods to exploit/defend each web based vulnerability.

First off, you need to understand that the original idea behind the Internet was to link
academic organizations with certain U.S. Department of Defense (DoD) organizations. This
basically meant that the Internet (ARPANET) was built on the premise that security wasn’t
needed, since you already had to be either a research university or a government entity
to connect to the network. The original Internet linked a bunch of big computers all over
the U.S. to each other so security wasn’t really an issue, the availability and durability of
these connections were some of the real concerns.

This is where the Transport Control Protocol (TCP) was first introduced to deliver packets of
data from one big (really big, like we are talking about a computer the size of your
garage) computer to another big computer far away. Way back then, nobody thought
the Internet would ever get as large as it has today. Internet Protocol V4 (IP as in TCP/IP v4)
addressing used a 32 bit number sequence which limited addresses to a specific amount
of addressable devices (4,294,967,296 addresses, to be exact). Remembering that back
then there were only so many universities and defense organizations that would need an
IP address. The idea was to have a connection of computers that would provide
information to anyone connected to it. The logic back then was “why would anyone ever
want to limit the freedom of information exchange?”

Along came private companies that connected to the Internet. Soon, others followed
and more and more became all part of the Internet we see today. However, since
security wasn’t part of the original plans for the Internet, we have many security
challenges that keep us security experts nicely employed. Keep reading and you will have
the skills you need to earn a good paying job as well.

You may have heard the phrase “Keep It Simple, Stupid”, or KISS for short when it comes
to planning or performing a task. One fundamental law of engineering is that “complexity
causes failures” so you want to try and keep your design planning as simple as possible. In
security, we just shorten the whole phrase to “Complexity Breeds Insecurity”.

The World Wide Web has evolved into an extremely complex system of interconnected
computers, weird wires & cables, sloppy software, and a few really bad people who want
to take things that do not belong to them. This whole mess we think of as the web sits
poorly balanced on top of an ancient architecture built when security was not an issue
nor was it designed into the original plans. Think of the web as a single car train with
millions of other train cars stacked onto of each other’s roof, each using different
construction material, with the original train half leaning off the tracks.

Yes, security professionals have our work cut out for us. You can be sure that employment
in the security field will continue to rise in the years to come. Why? Because the Internet is
a bullet train moving at light speed and expanding even faster. Too many people
depend on the Internet each and every day to allow engineers time to rebuild the
Internet from scratch. We can’t repair the train’s engine while the whole thing is still
moving, so we lubricate the wheels a bit or we dust off some gauges. The Internet train
has to continue running until the neighbors build some other new Internet using spare
parts from the one we have now. Until then, work on your resume.

6

Lesson 10: Web Security and Privacy

How the Web Really Works

The web seems pretty simple: you get onto the Internet, open a browser, type in a website
URL, and the page appears. But the devil's in the details, and some of them can hurt you.
So how does the web really work?

A quick trip to the fine folks who make standards for the web, the World Wide Web
Consortium (W3C, at http://www.w3.org), will teach you all you want to know about how
the web works. Don't miss the history of the web at http://www.w3.org/History.html. The
problem seems to be that definitions and standards might teach you how to be safe. But,
probably not. The people who want to hurt you don't follow standards or laws.

Reality Check

So what really happens when you go to a website? Assuming you are already connected
to the Internet, here's how it works step by step:

1. You open your browser (Explorer, Firefox, Chrome, Opera, Safari, or any number of
other browsers out there).

2. You type in the Uniform Resource Locator (URL) into the browser's address line (the
website address, like ISECOM.org; the real nerds often call them URI for Uniform
Resource Indicators).

3. The website's URL is saved in the browser's history on the hard disk. Yes, there's a
record of everywhere you've been, right there on your hard drive.

4. Your computer asks your default Domain Name Server (DNS) to look up the IP
address of the website. The DNS connects the name www . ISECOM . ORG to the IP
address of 216.92.116.13. Use www . Whois . net to locate detailed information on a
web page and try a Reverse IP lookup to find the actual numbered address
instead of the site names.

5. Your computer connects to the website's server, at the IP address it was given by
the DNS, to TCP port 80 for “http://” websites, or TCP port 443 if you go to an
“https://” secure web site. If you use https:// there are more steps like getting
server certificates that we won't cover in this example.

6. Your computer requests the page you ask for (like History.html), or if you specify a
folder the web server sends a default page, usually index.html. It's the server that
decides this default file, not your browser.

7. Your IP address, the web page you are visiting and details about your browser are
likely to be stored on the web server and/or proxy servers in between (see below).

8. The requested web page is stored in the browsers cache. Yes, there's a copy of
every page you've visited, right there on your hard drive, unless the web server
explicitly asks your browser not to store it (cache is often disabled for protected
web pages served through HTTPS, or at least it should be).

9. Most web pages contain other elements, like pictures, ads, style sheets
(instructions to your browser on how the page should be displayed), Javascript
(little programs, to do checks or make the web page look fancy and smooth). All
these elements are retrieved in a similar manner as typing a URL by yourself.

10.The browser nearly instantaneously shows you what it has stored in your browser’s
cache. There's a difference between “perceived speed” and “actual speed”
during your web surfing. This is the difference between how fast something is
downloaded (actual) and how fast your browser and computer can render the
page and graphics to show them to you (perceived). Remember: Just because
you didn't see web page elements doesn't mean it didn't end up in your browser's
cache.

7

Lesson 10: Web Security and Privacy

http://www.whois.net/
http://www.whois.net/
http://www.whois.net/
http://www.whois.net/
http://www.whois.net/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/
http://www.isecom.org/

The World Wide Web (web) is a massive client-server network. Clients are typical users
who run web browsers to display or capture Internet data. Servers are web servers, such as
Internet Information Server (IIS) on Windows or Apache on Unix/Linux. So the browser asks
for a page, and the web server returns content in the form of Hyper Text Markup
Language (HTML) pages.

Security - Here to Save the Day

Where does security come in? Well, if you're running a public web server, it's sort of like a
retail store window. The front window is a great place to advertise and display your goods,
however you don't want that store window left open so passers-by can take things for
free. Ideally, you'd make sure that if someone throws a brick, your window doesn't shatter,
either! Unfortunately, web servers operate complex software, and you can't have
complex software without getting some bugs as well. Less scrupulous members of society
will exploit these vulnerabilities to access data they shouldn't have access to (like credit
card information, your medical records, and those pictures of you with the black eye that
your little sister gave you). More on these vulnerabilities later.

Your browser will have vulnerabilities as well, and to make things worse, the creators of
your web browser has its own agenda. Some bad Web sites can inject malicious code
into your browser, or employ malicious links that can infect your computer. And let’s not
forget social media sites that watch your every move as well as collect every picture you
post and every word you type. Last year, one specific social media site sold every bit of
data they collected on its users to seven different companies. That social media site didn’t
lose FACE with their users though, since this massive sale of personal data wasn’t listed in
many BOOKs at that time.

Exercises

10.1 Locate your browser's cache and temp files. Examine the directory and the files
inside. What is in those directories? How could this data be used against you? Is
there a way to prevent the browser from caching files, or to clear the temp and
cache when you close the browser?

10.2 Where can you find your browser's history file? Look at that history. What does it tell
you about yourself? Is there a way to prevent the browser from recording this
history? How can you clear this history?

10.3 Most on-line businesses collect a lot of information about you, which may seem
harmless yet it becomes a privacy concern over time. Install the Firefox add-on
called Ghostery. What does it do? What does it tell you?

10.4 Locate your favorite web sites and try to learn as much as you can about them.
Who owns those sites? Where are the web servers located (physical location)?
How long have those IP addresses been registered and who is listed as the
Registrant Name?

10.5 When does your favorite web site domain name expire and can you purchase
that domain name when it expires?

8

Lesson 10: Web Security and Privacy

Game On: Who Hacked The Website?

“It’s not like you were going to be the only person with access to the police web
site. I've known you for years now and I don’t even trust you with my electronics,”
Mokoa reasoned with Jace. He subconsciously braced himself next to the junky old
metal police desk just in case Jace decided to smack him again. That previous hit
almost cost them their relationship. Luckily Jace had learned the value of their
friendship then, and she wasn't about to screw that up again, ever.

Without looking up from the monitor Jace replied, “Agreed, but I didn’t give anyone
here any password information about their web site. I just set it up and figured that
they wanted me to maintain it. Hell, I built their entire network here for free. Nobody
ever asked me for admin rights or passwords except for individual user accounts. I am
root.”

As the two teens crowded into the former police interview room recently converted
into a server area, the puzzled hacker behind the keyboard was more interested in
recovering the web site post-attack. Mokoa was concerned about who had
accessed the police web console and created a back-up in the public
directory. Jace was working in the digital world while Mokoa was thinking in the real
world. They were a good team.

A blast of fresh air hit the small room as Officer Hank pushed into the room with the
teens. “Hey Jace, how’s it coming along and who is this handsome guy next to
you? Do I need to frisk him for weapons, like chocolate or flowers?” Hank asked in a
fatherly manner.

Mokoa stood up in reaction to the unexpected police officer standing over
him. Actually, Officer Hank was towering over Mokoa. Hank held out his meaty hands
to either shake Jace’s friend's hand or place it manly on his shoulder. Mokoa started
to introduce himself, “Hi I’m Mo.”

“Mokoa, yeah. I’ve seen you a few times. Jace tells me all about you. I think she likes
you,” Hank gave a light jab at Jace’s shoulder to soften his joke about her liking
Mokoa.

“Shut up you two, I’m trying to work here,” Jace growled back. Both guys stepped
back from the cranky girl and shared a laugh at her reaction.

Jace confronted Officer Hank while looking at the screen and not at him, “You
wanna tell me who in this building has admin access to this network besides me? Or
more to the point, who screwed up the web site? I worked my butt off trying to make
this network and web content perfect for you cops and all I get is this mess.”

The burly police officer interrupted Jace, “Hold on their Miss High and Mighty. First off,
you forgot to give anyone here the passwords to update the site. Secondly, we
needed to add more information to our network. And C, you haven’t been around
lately to help make those changes happen. So you need to just chill out and
remember that I’ve got a wooden baton and you don’t.”

Jace, put in her place, Mokoa thought with a slim smile. By a cop, too. I like this guy.

The flustered teen flopped back into the creaky old desk chair. She explained what
she knew about how the web attack happened, what she had to restore and how
the issue needed to be corrected. Hank squatted down next to her listening with
interest. Every now and then, Mokoa added additional details.

Officer Hank explained his situation, “The chief wants dynamic content as part of the
public web site. He wants things like traffic web cams, weather reports, most-wanted
criminals, community volunteer patrol details and all kinds of stuff. He wants our web
to give the users real-time information about events as they happen.”

Jace sat leaning against the dilapidated police interrogation desk to absorb all this.

9

Lesson 10: Web Security and Privacy

She asked, “Okay, we can do all that. Now I need to know how you guys want me to
implement the dynamic content. We could use Ruby on Rails, PHP, jQuery and HTML5
with push or pull data. What's your flavor?”

Hank just started back at Jace, blank look on his face.

A long pause, too long for Mokoa, was broken when Jace tilted her slender head and
continued the conversation in a slower voice, “There are plenty of security concerns
with any dynamic content we use. First, we have the top three application level
issues. They sound like a crappy movie script.”

Mokoa looked away. Jace spun around to face the computer screen. “Our biggest
three issues with dynamic content are SQL injection, cross-site scripting and leaving
unnecessary services running inside web applications. SQL injection is passing SQL
code into an application. Potential attack strings are built from fragments of SQL
syntax. They get executed on the database server side if the Web application doesn't
screen out potential code. For example, we can have problems if we don’t protect
ourselves against malicious input like a single-quote character, which could close the
SQL string and give the attacker unintended system and application access.”

Without taking a breath, Jace continued,” The easiest way to see how this works is to
type this string for the e-mail address and password in a web form input:

' OR '1' = '1
[note that there must be a space at the end]

“The condition will be satisfied by the always-true condition '1' = '1', the SQL statement
will show us everything in the current table and the login will succeed.”

Jace tossed her hair out of her face and pressed forward: “In order to eliminate this
vulnerability, we need to pass the name and password to the database in a way that
special characters aren't interpreted as part of the SQL command. The easiest way to
do this is to avoid constructing ad hoc SQL statements, and instead pass the e-mail
address and password as parameters to a stored procedure. Basically we tell the SQL
database what an email address should look like and only accept valid inputs.”

Hank and Mokoa hated feeling stupid around Jace but that was something they
were both getting used to. The police office tried, “Great to hear that you know so
much about these web security problems. But, can you fix all this stuff and give the
chief the type of web site he wants?”

She squared up her shoulders like a soldier given a proper order. Jace answered
back, “Hank, I’m on it. Don’t you worry. I’ll take care of everything, dude.”

Hank smirked and thought, That’s what I’m worried about, dude.

Game Over

Rattling the Locks

Assume you have put up your own web server to host your blog, personal website, photos
and whatnot. How could all that information be exploited and used against you? Let's
find out, shall we?

Standard HTML pages are transferred using Hyper Text Transfer Protocol (HTTP). It's a simple
text-based system for connecting to a server, making a request and getting an answer.
This means that we also can connect easily to a server using command line tools like
telnet and netcat, and get information about what software is running on a specific server.
Look at what you get when you run this simple two-line command:

netcat isecom.org 80 [now press <Enter>]
HEAD / HTTP/1.0 [now press <Enter> twice]

10

Lesson 10: Web Security and Privacy

HTTP/1.1 200 OK
 Date: Wed, 29 Feb 2012 23:25:54 GMT
 Server: Apache/2.2.22
 Last-Modified: Tue, 07 Feb 2012 18:41:18 GMT
 ETag: "3dad-4b8641fe22f80"
 Accept-Ranges: bytes
 Content-Length: 15789
 Identity: The Institute for Security and Open Methodologies
 P3P: Not supported at this time
 Connection: close
 Content-Type: text/html

Every web server and version will return different information at this request – an IIS
server will return the following:

netcat www.microsoft.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK
 Connection: close
Date: Fri, 07 Jan 2005 11:00:45 GMT
Server: Microsoft-IIS/6.0
P3P: CP="ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo
OUR SAMo CNT COM INT NAV ONL PHY PRE PUR UNI"
 X-Powered-By: ASP.NET
 X-AspNet-Version: 1.1.4322
 Cache-Control: public, max-age=9057
 Expires: Fri, 07 Jan 2005 13:31:43 GMT
 Last-Modified: Fri, 07 Jan 2005 10:45:03 GMT
 Content-Type: text/html
 Content-Length: 12934

Getting More Details

You can take this further and obtain more information by using the “OPTIONS” modifier in
the HTTP request:

netcat isecom.org 80 [now press <Enter>]
OPTIONS / HTTP/1.0 [now press <Enter> twice]

HTTP/1.1 200 OK
 Date: Fri, 07 Jan 2005 10:32:38 GMT
 Server: Apache/1.3.27 Ben-SSL/1.48 (Unix) PHP/4.2.3
 Content-Length: 0
 Allow: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH, PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK, TRACE
 Connection: close

This gives you all of the HTTP commands (or “methods”) to which the server will respond in
a specific directory (in this case “/”, the root directory of the web server or “document
root”).

Notice that HTTP is completely “in the clear”; everyone can see what you're browsing for.
Consider how this might be changed; look up and learn about “secure searching”.

Doing all of this by hand is rather tedious, and matching it manually against a database of
known signatures and vulnerabilities is more than anyone would want to do. Fortunately
for us, some very enterprising people have come up with automated solutions like nikto.

Nikto is a Perl script that carries out various tests automatically. It runs a scan and provides
a detailed report:

./nikto.pl -host www.hackerHigh School.org
- Nikto v2.1.5

11

Lesson 10: Web Security and Privacy

+ Target IP: 216.92.116.13
+ Target Hostname: www.hackerHigh School.org
+ Target Port: 80
+ Start Time: 2012-03-20 13:33:49 (GMT-6)

+ Server: Apache/2.2.22
+ ETag header found on server, fields: 0x2f42 0x4b8485316c580
+ Allowed HTTP Methods: GET, HEAD, POST, OPTIONS
+ /cgi-sys/formmail.pl: Many versions of FormMail have remote
vulnerabilities, including file access, information disclosure and email
abuse. FormMail access should be restricted as much as possible or a more
secure solution found.
+ /cgi-sys/cgiwrap/~bin: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~daemon: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~ftp: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~mysql: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~operator: cgiwrap can be used to enumerate user
accounts. Recompile cgiwrap with the '--with-quiet-errors' option to stop
user enumeration.
+ /cgi-sys/cgiwrap/~root: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~sshd: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~uucp: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~www: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap/~OYG3G: Based on error message, cgiwrap can likely be
used to find valid user accounts. Recompile cgiwrap with the '--with-quiet-
errors' option to stop user enumeration.
+ /cgi-sys/cgiwrap/~root: cgiwrap can be used to enumerate user accounts.
Recompile cgiwrap with the '--with-quiet-errors' option to stop user
enumeration.
+ /cgi-sys/cgiwrap: Some versions of cgiwrap allow anyone to execute
commands remotely.
+ /cgi-sys/Count.cgi: This may allow attackers to execute arbitrary
commands on the server
+ OSVDB-3092: /readme.txt: This might be interesting...
+ OSVDB-3093: /cgi-sys/counter-ord: This might be interesting... has been
seen in web logs from an unknown scanner.
+ OSVDB-3093: /cgi-sys/counterbanner: This might be interesting... has been
seen in web logs from an unknown scanner.
+ OSVDB-3093: /cgi-sys/counterbanner-ord: This might be interesting... has
been seen in web logs from an unknown scanner.
+ OSVDB-3093: /cgi-sys/counterfiglet-ord: This might be interesting... has
been seen in web logs from an unknown scanner.
+ OSVDB-3093: /cgi-sys/counterfiglet/nc/: This might be interesting... has
been seen in web logs from an unknown scanner.
+ 6474 items checked: 1 error(s) and 22 item(s) reported on remote host
+ End Time: 2012-03-20 13:50:22 (GMT-6) (993 seconds)

1 host(s) tested

12

Lesson 10: Web Security and Privacy

Note: Almost every one of these lines represents a possible vulnerability or
exploitable code. Using various options you can fine tune nikto to do exactly what
you need, including stealth scans, mutation and cookie detection.

Mightier and Mitre-er

Finding a vulnerability is all well and good but what you do with that information is a
whole different story. Security professionals will take the scan results of their own web
servers and patch, update, remove, repair or do whatever they need to in order to close
each vulnerability. The nice folks over at Mitre.org operate several databases
(http://mitre.org/work/cybersecurity.html) that collect and catalog every known
vulnerability you could imagine.

These databases are given scary names like “Common Weakness Enumeration (CWE)”
and “Common Vulnerabilities and Exposures” (CVE)” yet they are fairly simple to operate.
These systems are a collection of other tools and data with a search engine built into
each database. Each data repository is focused on different aspects of hardware,
software, services, system configurations, and compliance requirements.

Looking at the results nikto gave us earlier, you can see near the bottom of the log are the
letters OSVDB followed by a bunch of numbers. OSVDB stands for the Open Source
Vulnerability Database located at OSVDB.org. In the log results from nikto the numbers
after OSVDB identify a specific type of vulnerability.

Exercises

10.6 Install netcat on a Linux virtual machine or use a live Linux CD/DVD to boot up
your computer:
sudo apt-get install netcat [for Debian/Ubuntu family]
or
sudo yum install netcat [for Red Hat/Fedora family]

10.7 Install nikto on your Linux virtual machine:
sudo apt-get install nikto [for Debian/Ubuntu family]
or
sudo yum install nikto [for Red Hat/Fedora family]

10.8 Repeat the experiments above, targeting www . hacker h igh s chool . org.

Note: Do not try this on any other public or private web server, including your
school’s. Bad, bad idea.

Browsing Behind Bars: SSL

When the web started to take off, it wasn't long before everyone realized that HTTP in
plain text wasn't good for security. The next variation was to apply encryption to it. This
came in the form of Secure Sockets Layer/Transport Layer Security (SSL/TLS, simply called
SSL), a cryptographic suite encompassing secure ciphers implementing 40 to 128 bit (or
more) symmetric key encryption methods. A 40 bit key is not as secure than a 128 bit key,
and with specialized hardware, 40 bit is breakable within a reasonable period of time, like
during a lunch break (okay, maybe a bit more than that). The 128 bit key will take much
longer: cracking it with only brute force will require somewhere between a trillion years
and the total age of the universe. A streaming cipher suite like RC4 only offers protection
for about the square root of the key space, or half the length of the key; so a 128 bit key

13

Lesson 10: Web Security and Privacy

http://www.hackerhighschool.org/
http://www.hackerhighschool.org/
http://www.hackerhighschool.org/
http://www.hackerhighschool.org/
http://www.hackerhighschool.org/
http://www.hackerhighschool.org/
http://www.hackerhighschool.org/
http://www.hackerhighschool.org/
http://www.hackerhighschool.org/

offers protection of 64 bits, which can be cracked on a modern PC in relative short time –
think days. One thing to remember is that the stronger the key algorithm you use, the
longer it will take to encrypt and decrypt code. Use encryption sparingly or only apply as
much strength as you need for web surfing.

Along with SSL, an open source version is available called “OpenSSL” and can be found at
openssl.org. OpenSSL works alongside Transport Layer Security to provide an entire library
of cryptographic recipes. OpenSSL is a command line tool with many options to work with.
Turn to http://www.openssl.org/docs/apps/openssl.html for all the latest information on
the command interface and library updates.

For known HTTPS attacks there are more complex approaches using something called a
known cyphertext attack. This involves calculating the encryption key by analyzing a large
number of messages (over a million) to deduce the key. Along with cyphertext, you will
find multiple attack methods that are discovered every day.

Applied SSL

You shouldn’t rush to try and crack 128 bit encryption. Since SSL just encrypts standard
HTTP traffic, if we set up an SSL tunnel, we can query the server just as we did earlier.
Creating an SSL tunnel is a snap, especially since there are utilities like openssl and stunnel
made just for the job.

Exercises

10.9 Macs and Linux machines have openssl already installed. Try this command:

openssl s_client -connect www.hackthissite.org:443

This connection will only stay open a few seconds, but you can run any HTTP
command, like:

GET www.hackthissite.org/pages/index/index.php

10.10 Check to see if stunnel is installed on your Linux machine or on the live CD. If it's
not installed, install it. Go ahead and give it a test drive.

10.11 Once it's installed or at least running on your machine, run the command:

stunnel

This will tell you the location of the configuration file you need to create.

10.12 At that location, create stunnel.conf and enter this text (replace ssl.enabled.host
with the name of a real SSL server that you want to connect to):

client=yes
 verify=0 [psuedo-https]
 accept = 80
 connect = ssl.enabled.host:443
 TIMEOUTclose = 0

10.13 Once that's done you start stunnel with this command:

stunnel &

Stunnel will map your local computer port 80 (default HTTP port) to SSL/TLS port 443
(default SSL port) and uses plain text, so you can open another shell and connect to it
using any of the methods listed above, for instance:

netcat 127.0.0.1 80 [hit <Enter>]
HEAD / HTTP/1.0 [hit <Enter> twice]

HTTP/1.1 200 OK
 Server: Netscape-Enterprise/4.1
 Date: Fri, 07 Jan 2005 10:32:38 GMT
 Content-type: text/html
 Last-modified: Fri, 07 Jan 2005 05:32:38 GMT

14

Lesson 10: Web Security and Privacy

 Content-length: 5437
 Accept-ranges: bytes
 Connection: close

The Properties of Trust

The whole SSL-thing is designed around trust. The browsers contain certificates which are
really just long numbers that serve as keys. When you use SSL, the S in HTTPS, the certificate of
the browser is used to check the certificate of the server and see if it's a trustworthy web
server. The theory is that if the domain name matches the SSL certificate of the server as the
domain that we visited then it's trustworthy. Of course who says it's trustworthy is a whole
other problem. It wouldn't be the first time that a criminal infiltrated the certificate authorities
and got the keys to fake their own server certificates that your browser then tells you is
trustworthy. In another case, a known skeevy organization that was responsible for making
spyware paid its way into being a certificate authority and added to all the browsers. So trust
is a big deal on the web. It's another way to attack and it's another way that humans badly
understand how to protect against it going wrong.

ISECOM spent time researching trust and discovered 10 main properties. You can read more
about these properties in the OSSTMM. But basically, these are 10 things that need to be
evaluated to have logical (not emotional, gut-feeling) trust:

Our parent organization ISECOM pioneered the field of trust analysis: the study of reasons
we trust – and which reasons are actually good ones.

Figure 10.1: Trust Properties

15

Lesson 10: Web Security and Privacy

http://www.osstmm.org/

Exercises

10.14 Look at Property 8. Do you think reward is a valid reason to trust? Do you think it is
a GOOD reason to trust? Would you trust someone because they gave you
money? And now: Do you use Gmail? Do you trust the company that provides it
because it's free?

Employing a Middleman: Proxies

Using Someone Else's Server

A proxy server (or just proxy) is a middleman in the HTTP transaction process:

●The client (your browser) sends its request to the proxy;

●The proxy stops and holds your request, then sends its own request to the web server;

●The web server (which doesn't even know who you really are) responds to the proxy;
and

●The proxy relays the response back to the client, completing the transaction.

A proxy can be a server on your own network that lets you pass your connection through
it. This is handy because it gives you some protection, since the proxy hides your identity
and acts as a firewall between you and the rest of the web. But you can also use a proxy
server that's out on the Internet, which hides you even better (on-line you can find many
lists of publicly available proxies, such as http :// tools . rosinstrument . com / proxy /). These
external proxy servers provide critical access to the outside world for people in countries
that censor or cut off their ISP's connections to the Internet.

But, as you might have figured by now, proxy servers are vulnerable to attacks themselves,
and can become jumping-off points for launching attacks on other servers. Not to
mention that you may be going through one and not even be aware of it – which means
IT'S RECORDING EVERYTHING YOU DO. This is something you especially want to consider if
you use a free public proxy server. There is absolutely no guarantee the owner of that
proxy is honest and will not use your username/password or credit card details. Schools
and businesses usually have a proxy to enforce their “appropriate use” policies.

Exercises

10.15 Are you behind a proxy? How can you find out?

10.16 If you lived in a country that blocked access to some web sites, could you find
external proxies that would let you access them? If so, wouldn't the government
also look for them and block them? How might you overcome this?

Using a Local Proxy

You can run a proxy server right on your local computer. It won't change your source IP
address (because its address is the same as yours), but it can prevent caching and filter
out undesirable content.

Exercise

10.17 Find a piece of software called Privoxy. If you install it, what will it give you? Are
you a candidate to use it?

The Onion Router

The Onion Router, or TOR, was created to hide your IP address – many times over. When
you use the TOR network, your traffic gets encrypted and passed along through a tangle

16

Lesson 10: Web Security and Privacy

http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/
http://tools.rosinstrument.com/proxy/

of routers, and eventually emerges … somewhere. But in theory your traffic can't be
traced back to you. In theory. In reality, some things – like using Flash on TOR – has given
unsuspecting users bad surprises.

Technically, you could set up TOR yourself, which involves some interesting configuration.
We recommend it for the learning experience. However, most of us mere mortals will
appreciate the TOR Browser, which has all the defaults set for safety, and lets you do all
that interesting research in a separate browser.

Exercises

10.18 Who created TOR? Why?

10.19 Find out where you get it. Get it. Open it up and make it work.

HTML Programming: A Brief Introduction

HTML is a set of instructions that explains how information sent from a web server (Apache,
IIS) is to be displayed in a browser (Firefox, Opera). It is the heart of the web. The World
Wide Web Consortium (W3C) is the standards organization governing the workings of
HTML.

HTML can do much more than just display data on a web page. It can also provide data
entry forms, for server-side processing by a higher level language (Perl, PHP, etc). In a
business setting this is where HTML is most useful, but in a hacker setting this is where HTML is
most vulnerable.

Note: HTML is supposed to be a standard format across all platforms (browsers and
operating systems), yet this isn’t always the case. Some browsers read the HTML
slightly different than other browsers just as other OS’s won’t be compatible with
other operating systems. Be sure to cross check your HTML code against other
types of browsers to ensure it is interpreted correctly and doesn’t show up as a pile
of gibberish.

Reading HTML

HTML works by using tags or markup. Most opening tags, <h1>, for instance, must have a
closing tag, </h1>. Just a few tags have no closing tag, like
 and . The markup
<h1> tells the browser where to start and stop displaying a large, bold heading, for
example. Well-formed HTML has proper opening and closing tags (and follows other rules
as well). One factor to consider in coding (writing) HTML is the need to be read by several
different platforms.

Take, for example, the code:

<html>
<head>
 <title>My Hello World Page</title>
</head>
 <body>
 <h1>Hello World!</h1>
 <p>I'm a new page.</p>
 </body>
 </html>

We are telling the browser this is an HTML document with the tag <html>, and inside the
<head> we give it the title “My Hello World Page” with the <title> tag. The My Hello World
Page tag tells our browser “here's the information to show to the viewer.” Finally, the <h1>
tag tells the browser to display the information in “Heading 1” style, and the <p> tag tells

17

Lesson 10: Web Security and Privacy

the browser “here's a regular paragraph.” The tags that have a “/” are the closing tags,
which tell the browser to stop displaying the contents as described by the opening tag.

Exercise

10.20 Search the W3C.org website for the HTML standard. Are the HTML5 standards in
the same place? Why wouldn't they be?

10.21 Copy the code above and paste it into a text file called hello.htm. Open that file
in your browser of choice and you should see something similar to this:

Hello World!
I'm a new page.

Viewing HTML Source Code

All browsers contain a way to view the underlying HTML code that generated the web
page you are looking at. In most cases, this is the View Source option under the View
menu in your browser. Many browsers will also show source code if you press Control-U or
Command-U.

Exercise

10.22 Go to a web page you often visit. View the source code.

Figure 10.2: View menu

The results should be something similar to this:

18

Lesson 10: Web Security and Privacy

Figure 10.3: Source code

HTML code is visible to anyone with a web browser. This is why it is very important, when
you create web pages, not to hide passwords or sensitive information in the HTML source
code (including comments). As you can see, it's not very secret.

In most browsers you can also view the source by doing a right mouse click and select
“view source”. The web page can instruct your browser to behave different on a right
mouse click. On some sites this is used as a (poor) security measure to prevent visitors from
viewing the source. When you select view, view source, it always works on older websites.
With some more modern sites, the page source is dynamically and only partially updated.
You need additional add ons in Firefox to view such a dynamic source (install the Add-on
“Web Developer” in Firefox and the select: View Source, View Generated Source).

Linking Up With Hyperlinks

Links, or hyperlinks, are really the heart of HTML. The ability to link from document to
document allows you to create hypertext, textual knowledge connected to related
knowledge. A link, in HTML code, looks like this:

www.yahoo.com

This creates a link that looks like www . yahoo . com on your website, and of course will send
your visitor away to Yahoo.

Links can be followed and checked by link checker programs. These programs search
HTML source code for tags and then create a file or index of the links
they find. Spammers use this technique to harvest email addresses or identify contact
forms they can use to spread their mass emails. Link checkers can also be used to check
your website for broken links that don't go anywhere. Due to the dynamic nature of the
web, these are depressingly common even in relatively small sites.

Exercises

10.23 Create a link to www.hackerhighschool.org that displays as “Hacker Highschool”
on your web page.

10.24 Find and download a link checking program. Run that program against
www.hackerhighschool.org and document how many broken links you find.

HTML5

The new flavor of HTML, HTML5, brings a lot of security improvements. It doesn't require Flash
to stream videos, which is a huge leap in terms of preventing unwanted tracking and the
endless vulnerabilities of Flash.

On the other hand, is carries a whole stack of new problems with it.

19

Lesson 10: Web Security and Privacy

http://www.yahoo.como/
http://www.yahoo.como/
http://www.yahoo.como/
http://www.yahoo.como/
http://www.yahoo.como/

Cross Domain Messaging or Web Messaging lets HTML5 escape the ugly hacks we've used
in HTML4 when documents come from more than one source. The problem is, this kind of
messaging requires a lot of trust – and some very secure coding – to ensure nasty things
don't get into the middle of this process.

Cross Origin Resource Sharing is when a web server allows its resources to be used by a
separate domain. Again, this is a cool way to mash up content from multiple sources – but
this level of trust just begs to be cracked.

WebSockets provides asynchronous full duplex communication. That's a mouthful, but
essentially it means your browser can bypass the usual security measures in return for pure
speed.

Local Storage APIs let web pages store data on your computer. Did you know all
contemporary browsers include a mini-database called SQLite? Now just ponder: what's
stored on your computer in that database? All kinds of interesting things about you, right?

Exercise

10.25 Find an application that lets you look into that SQLite database. Hint: you're
looking for a “database browser.” Install it and see what's in there!

Scripting Languages

Old-school coding in languages like C++ meant hours of deep coding, then compiling
binaries, machine-language instructions that run very quickly. If you want raw horsepower,
and have a whole lot of time on your hands, this is the world for you.

The rest of us will use scripting languages to write scripts, programs written in plain text that
are interpreted at runtime by binaries (that you don't have to write) underneath. They
don't run as fast as freestanding binaries, but with the very fast processors we have today,
you may never notice the difference.

Scripting languages are great for dynamic web pages, but they also create a new
avenue of attack for hackers. Most web application vulnerabilities aren't caused by bugs
in any particular language, but by bad coding and poor web server configuration. For
example, if a form requests a zip code but the user enters “abcde”, the application
should return them to the form and point out the error. This is called input validation. Here
are some of the most common scripting platforms today:

Common Gateway Interface (CGI): This is the granddaddy of scripting interfaces, and it's
not really a language itself; it's a way to run scripts. Perl was one of the most popular
scripting languages to write CGI programs in the early days, though it's not used much for
web pages anymore. Perl is, however, very useful for hackers, and many handy tools are
written in this language.

PHP: PHP is a very popular open-source scripting language that runs on the server before
the page is sent to the user. The web server uses PHP to get data from databases, respond
to user choices and build a dynamic page with the information the visitor wants. HTML
displays static content; PHP lets you create pages that give the user dynamic, customized
content based on their input. Web pages that contain PHP scripting usually have a file
name ending in “.php”.

Python: Another popular language, Python is a competitor to PHP, and does many of the
same things. Many web sites use both PHP and Python (as well as other languages),
including Google.com, Yahoo.com and Amazon.com. Python scripts usually have the file
extension .py. In the world of security, you ought to know as much as you can about at
least one language. The flavor used today for security pros is Python.

Active Server Pages (ASP): Web pages that have a .asp or .aspx extension (ASPs) are
database-driven and dynamically generated just like PHP or Python pages. ASP was
Microsoft's first server-side scripting engine for the web. Its popular successor, ASP.NET, is
built on the Common Language Runtime (CLR), allowing programmers to write code using

20

Lesson 10: Web Security and Privacy

any supported .NET language, such as: C#, VB.NET, Jscript.NET, etc. If you love Microsoft
you'll love writing code specifically for IIS.

Java Server Pages (JSP): It is a technology that helps software developers create
dynamically generated web pages. JSP is similar to PHP, but it uses the Java programming
language. To deploy and run, a compatible web server with a servlet container (such as
Apache Tomcat) is required.

Coldfusion and Ruby have their own cult followings, and there are dozens of less-well-
known languages that can do very interesting things.

Javascript: Javascript (which is very much not the same thing as Java) probably runs on
more web pages than any language besides HTML. It's different from the scripting
languages above, because it doesn't run on the server to generate a page. Instead, it
runs in your browser after the page arrives. This gives you visual effects like fly-out menus,
expandable and collapsible sections of pages and “live” interaction with the page.
Practically every dynamic page uses Javascript somewhere, and it's the front line of
defense for validating the information people submit via forms. However, note that client-
side input validation only is not enough to guarantee protection against attack targeting
dynamic web application parameters. One example of ways to abuse client-side
scripting is to pull up a web page, fill in the form, and capture it with a specialized proxy.
The proxy lets you rewrite the code in the returned page and send it back using bogus
values. You could also do this by “saving” the web page, editing the code, then sending it
back using netcat. Or you could simply disable Javascript in your browser, using either
built-in controls or add-ons.

Web Vulnerabilities

Giving someone what they ask for is simple; selling them something is a lot less simple.
Online stores, companies selling products, bloggers selling ideas and personality, or
newspapers selling news – all require more than just HTML-encoded text and pictures.
Dynamic web sites that market products based on your preferences, show you
alternatives, recommend other options, up-sell add-ons and make sure you pay for what
you get require complex software. They're no longer static web sites, they're web
applications. When we say goodbye to web sites and hello to web applications, we enter
a whole new world of security issues.

Lions, Tigers and Bears Oh My!

We mentioned earlier “complexity breeds insecurity”. Now we are going to look at the
true meaning behind that mantra. When the automobile was first invented, it was nothing
more than a wheel, one simple wheel. Some folks thought that the wheel was just fine but
other people wanted to improve on that wheel. These early hackers began to add more
wheels together attached with an axle and a frame. Others added seats to the frame
and still more added a fancy horn or installed a horse as the engine. As time went on, this
simple wheel automobile slowly took shape into a fast multi-horse drawn carriage. Luckily,
someone added a brake before too many other got hurt. Today, we have airbags, seat
belts, V-8 engines, and really great sound systems in our cars without having to smell horse
dung all the time.

The Internet's evolution has progressed in a similar fashion. People weren’t happy staring
at a green display screen so they added a color monitor. The old dreary ASCII text
became flashing lights and splash colors with midi sounds giving way to 3-D surround
sound. Each new upgrade to the Internet added a new level of complexity, another layer
of vulnerabilities to consider.

Let's take a ride on the Vulnerability Train to see some of the threats in their natural
habitat.

21

Lesson 10: Web Security and Privacy

SQL Injection - The Lion

A SQL injection isn’t so much as an attack against a web site but rather an attack to gain
access to databases behind the web site. The primary purpose of a SQL injection is to
bypass the web pages. An attacker will want to gain either super user privileges to the
databases associated with the web site or get the web page to dump database
information into the attacker's hands.

SQL is the basic building block for databases. SQL commands will perform whatever task it
is asked, including giving up passwords, credit card numbers, and so forth. All the attacker
is doing is adding rogue SQL code (injecting) to any open form field on a web page.

For example, a web page asks a user if they would like to sign up for a monthly newsletter.
The page will have open fields for the user to enter their name, email address, and
whatever else the web builder wants. Each open field allows a user to input text, which is
then stored in a database. A SQL injection simply requires an attacker to input SQL
commands into the open fields. If the open fields are not protected (parsed) against
allowing such commands, the attacker can easily type a request into an open field for a
password list.

Here is an example of such a SQL request that has been slightly sanitized for your
protection.

<?php
$query = "SELECT '1', concat(uname||'-'||passwd) as name, '1971-01-
01', '0' from usertable;
 WHERE size = '$size'";
$result = odbc_exec($conn, $query);

?>

SQL injections are the most popular form of attack vectors. This attack can be rendered
useless by correctly filtering SQL escape characters in user input fields or building your web
site without using SQL. Don’t forget about the URL field, that's a user input field too! Not to
mention HTTP headers, cookies and more.

Buffer Overflows - The Tiger

Think of a buffer as a small cup. This buffer cup holds a certain amount of data and will
spill if too much data is added. When the buffer cup overflows, because someone or
something tried to add too much data, the system behaves strangely. When a system
behaves strangely, other weird things can happen. A buffer overflow is an attack (or
accident) where too much data is forced into a buffer that was only built for a certain
amount or type of data.

When we look to the same open fields used in SQL injections, we can insert massive
amounts of gibberish into fields that were designed to handle 25 characters. What
happens when we add 1 million characters to that same field? The web page goes a little
crazy and can provide an entry point to an attacker.

Buffer overflows can be avoided by limiting the amount of acceptable data to each
open field and ensuring rogue code/commands can’t be run inside these user input fields.

Cross Site Scripting (XSS) - The Bear

Our first two vulnerabilities were direct attacks against a server. Cross Site Scripting (XSS) is
a client side vulnerability that exploits a user's trust to gain access into the web servers the
client is looking at. A good example of this type of attack is when an attacker hitch hikes
on a users browser while that user is logged in to a security site, such as a bank. The
attacker preys on the users established trust between the user and the bank to gain
access.

22

Lesson 10: Web Security and Privacy

The attacker has various methods to piggy-back on users browsers. Some attackers will
establish a Phishing web site or create a web site that looks identical to the one the user
would visit. Since few people pay any attention to the URL field in their browser, it is fairly
common for an attacker to lure a victim into allowing malware to be installed in their
browser. Email is the preferred method to install malware since humans are, well, human.
Java is another application that can be used to install malware from a malicious web site.

The attacker uses the trust of that user when they log onto an HTTPS site or any useful site
the attacker would like to gain entrance into. One method you can use to protect
yourself against this type of attack is to keep your browser updated and disable scripting
in the browser “options”. Based on your type of browser, there are add-ons available that
can eliminate URL redirecting and stop any script that may appear dangerous.

Exercise

10.26 Go to http://scriptalert1.com/. Set up at least one tool from that page. Be
prepared to explain what it does, how it's installed or set up and what security
issue it addresses.

Bear Traps and Tiger Rugs

Each web application event and every web site you visit can bring potential harm to you
or your loved ones. This doesn’t mean that you should unplug from the Internet and go
back to crayons in some remote cave somewhere. Each minute of each day new threats
are presented and some are more successful than others. However, as a security
professional, it is (or will be) your job to learn as much as you can about emerging threats
and how to protect against them.

Honey pots can be used to lure bad guys into exposing themselves or track them as they
probe your network. It is also common practice to apply maximum security and privacy
settings to your firewall. You are using a firewall, aren’t you? If you are not using a firewall,
stop reading immediately and install a firewall this very instant. Once installed, max out
the security and privacy settings. Your network router can be used as a firewall, as you
should use both hardware and software firewalls. Don’t forget the malware protection
software (anti-virus).

Next on the list of self preservation is using anomaly detection software, otherwise know as
Intrusion Detection Systems (IDS). An IDS can be as simple as a program running in the
computer's background that looks for changes to system files. More sophisticated IDS’s will
perform more sophisticated actions, like sounding alarms or rerouting an ongoing attacker
into a honey pot. We’ll talk more about these later on.

Some often overlooked aspects of security is cyber law knowledge, compliance
requirements, auditing, and knowing what government regulations you need to adhere
to. Yes, those do sound lame but having a basic understanding of these areas can
prevent you from making the international news headlines. Jurisdiction is a constant
problem when an attacker is based in another country. Knowing what you can do and
what you can’t do to pursue an attacker is valuable information.

Exercises

10.27 What can happen if a web application doesn't perform validation on the data
that the user inputs?

10.28 What are Cross-Site Scripting (XSS) and SQL injection? How does an attacker use
them to steal data or gain access?

10.29 What security and privacy settings do you have on your own system? What about
the rest of your family's computers?

10.30 Look up at least two different methods to mitigate SQL injections and describe
them as a feasible addition to a web host. Tell us what they mean and how they
work.

23

Lesson 10: Web Security and Privacy

http://scriptalert1.com/

10.31 Do a Google search on the terms “inurl:search.asp” or “inurl:search.php”. How
many results do you get?

10.32 Find a search form at www.hackthissite.org, and type in:

<script>alert (“hello”)</script>

What happens?

Now, think: what happens if you try this on other sites? What kind of peril are you in if
you do this?

10.33 Do a Google search on the terms “inurl:login.asp” and “inurl:login.php”. Once
again, consider how web sites invite attack simply by using these names.

10.34 Back on www.hackthissite.org, find a login form and attempt to type in special
characters (@#$^&) for both the username and password. What happens? Do
you think this kind of probing is logged?

Using a Local Proxy for Web Application Testing

An external proxy isn't the only kind of proxy server. You can also install a proxy server right
onto your own computer, where it can perform some of the same firewall and filtering
functions as an external proxy. Proxies designed specifically for testing web applications
can manipulate data requests to test how the web server will respond. That means that
with a proxy testing utility (such as Burp Suite, SpikeProxy etc.), you can run various cross-
site scripting attacks, SQL injection attacks and almost any other direct request attack.
While some of these proxy server utilities have an automation feature, the best tester is a
real person behind the keyboard.

Remember, these tools are designed for you to test your own web applications! Be sure to
test only websites for which you have permission, or you will most certainly be logged, and
possibly jailed.

Exercises

10.35 Find and download Burp Suite. How do you install it? How do you run it?

10.36 Change your browser settings to point to the new proxy. This is usually localhost
port 8080, but since these tools may be updated read the instructions to be sure.
(Tip: the IP address 127.0.0.1 is the localhost address.)

10.37 Pull down the Help menu and select User Guide. Take a look at the
documentation.

10.38 Now spend some time browsing the web site you're testing, in this case
www.hackerhighschool.org. Test out forms and visit every page. You're creating a
recording, so try to be thorough!

10.39 Once you have surfed around with your browser, go back to the ZAP interface
and save your session.

10.40 Right-click on the www.hackerhighschool.org listing on the left, and note the
types of attacks you can run. Try them.

A proxy server can be a powerful tool in helping you determine how solid a web
application is. For penetration tests or vulnerability assessments, a proxy utility is a good
tool in your toolbox. But it's not the only one.

Looking Behind the Curtains

There is a lot going on that's not visible when you request a web page. Long before a
page loads, headers and cookies are flying back and forth, and if you know how, you
can see them.

24

Lesson 10: Web Security and Privacy

Cookies are usually harmless, and only hold things like a unique user ID, so that when you
visit that famous online retailer, the site already knows who you are and what you like.

Figure 10.4 Cookies

HTTP headers can be confusing. HTTP is Hyper Text Transfer Protocol: notice the P! It's a
transmission protocol, a way to send signals down the wire.

Headers get transmitted invisibly with every web request, and usually you never see them.
Here's what they look like:

http://en-us.fxfeeds.mozilla.com/en-US/firefox/headlines.xml

GET /en-US/firefox/headlines.xml HTTP/1.1

Host: en-us.fxfeeds.mozilla.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:11.0)
Gecko/20100101 Firefox/11.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

X-Moz: livebookmarks

HTTP/1.1 302 Found

Content-Encoding: gzip

Cache-Control: max-age=604800

Content-Type: text/html; charset=iso-8859-1

25

Lesson 10: Web Security and Privacy

Date: Fri, 23 Mar 2012 00:50:26 GMT

Expires: Fri, 30 Mar 2012 00:50:26 GMT

Last-Modified: Sun, 18 Mar 2012 10:39:59 GMT

Location: http://fxfeeds.mozilla.com/firefox/headlines.xml

Server: ECS (lax/2872)

Vary: Accept-Encoding

X-Backend-Server: pm-web01

X-Cache: 302-HIT

X-Cache-Info: cached, cached

Content-Length: 200

--

http://fxfeeds.mozilla.com/firefox/headlines.xml

GET /firefox/headlines.xml HTTP/1.1

Host: fxfeeds.mozilla.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:11.0)
Gecko/20100101 Firefox/11.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

[and many more...]

The HTML programming language (notice the L!) has a part of the document called the
<head>, but that is not the same thing; it's where hidden things like scripts or meta tags go.

Even worse, HTML has headings: <h1>, <h2> etc. These are yet a third thing, bold headings
for documents! We apologize for the confusion, but you do have to understand the
difference.

So when we're talking about HTTP headers, we're talking about the hidden, behind-the-
scenes chatter that happens before your page is even sent.

You can use tools like the Firefox add-ons Live HTTP Headers and TamperData to capture
headers, which gets you a display like this:

Figure 10.5: LiveHTTPHeaders

26

Lesson 10: Web Security and Privacy

You can use other tools, like Add N Edit Cookies or the Web Developer add-on, to capture
the cookie information your browser is exchanging with the web site you're visiting. Notice
that you can also edit that information. Finally, local proxies can also be used to
intercept, analyze and modify cookies.

Exercises

10.41 Find and install the LiveHTTPHeaders add-on for Firefox. How do you use it?

10.42 Find and install the Web Developer add-on as well. How do you use it to view and
edit cookies?

10.43 If you think a web application uses the User-Agent for some purpose (why do they
care what browser you're using?), check what happens if you remove it. Most
applications don't anticipate a missing User-Agent, so when they inspect the
content, they're referring to a missing variable. In most cases the application
throws an unhandled "object not set" exception, which can include stack dumps
or even source code snippets (for instance, with .Net apps with the debugging
option on). Sometimes this gives very interesting results.

Building Secure Web Applications

Have you ever considered building a web site? Selling something online? Building a web
community? In some ways, it's getting simpler all the time. But in terms of security, it just
keeps getting trickier.

Secure programming starts with the programmers. Each has his or her own logic and skills
with particular languages. But there are accepted guidelines that a programmer
determined to write secure code can follow, like the ones derived from the OSSTMM
(http://osstmm.org):

1. Security should not require user decisions.

2. Every input and output in the application should have a business justification.

3. Quarantine and validate all inputs including the application's own content. Most
especially, re-validate all the data server-side. Someone, somewhere, will try the
trick of sending you bad data.

4. Tightly limit the systems and users the application trusts.

5. Encrypt data stored and in transit.

6. Create hashes of all the application's files, so you can check for unauthorized
changes.

7. Make sure that all interactions occur on the server side.

8. Layer the security.

9. Invisibility is the best defense. Show only the service itself.

10. Build in triggers for alarms.

11. Promote security awareness in users and technical support people.

Exercises

10.44 What kind of error messages have you seen online? Do you remember where you
got them, or how? Could you do it again?

10.45 Name three ways you could build an alarm into a web application.

27

Lesson 10: Web Security and Privacy

Protecting Your Server

Consider what it's like to run your own server. You can set it up to do anything you like.
Interested in Java or PHP? Joomla or OpenWiki? Photography, animals or both? That's the
upside. The downside is that unethical people will try to do unethical things to your server.

You'll have to take some steps to protect your server. These include ensuring that your OS
software is always up-to-date with patches, updates and service packs. And do the same
thing with your web server software, your database software, your firewall, your antivirus,
your intrusion detecting system, all of your installed software (which makes a good point:
the less you install, the better!). There are many sources for correct configuration of servers
(also called hardening), scattered around the Web. If you are running a server, search for
those sources and read through some of them.

Firewalls

Firewalls originally were fireproof walls in a building or used between your car engine and
the occupants (old school stuff). We use the same words for systems (either hardware and
software) that are designed to prevent unauthorized access to a network. Just as a
firewall in a building can be a matter of life and death, network firewalls are critical to the
health and survival of computer systems.

The key to understanding firewalls is that they're based on sets of rules, commonly called
ACLs (Access Control Lists). Imagine the rules for a security guard at a school: anyone with
a school ID can enter, but no one else can; anyone can exit, except that small children
have to be with a parent. The rules for a network firewall are very similar, for instance:

1. Nobody from the Internet gets to come in, except by invitation.

2. Anybody from inside the network can go out to the web, except when this poses a
risk.

Simple as that! (If only it were.) In the digital world, we have to work with three things:
MACs, IP addresses, and port numbers. You're familiar with ports and protocols from Lesson
3. Here's where you can use this information: if you're running a web server, you need to
open port 80 to allow HTTP traffic. If you've got a secure website, you'll need to open port
443. But only these ports. Anything else is an open invitation to attackers.

Also, unlike a security guard, a pure network firewall basically isn't very smart. It doesn't
look inside of packets, so it can't tell what's being transmitted. That means you could do
clever things like paste the contents of corporate documents into forms on a convenient
website, and steal intellectual property.

At least, you used to be able to do things like that. The newest generation of “smart
firewalls” (which are actually very, very smart proxy servers) can indeed tell exactly what's
in every IP packet. Woe unto you if you try to sneak a stolen credit card number past this
kind of system, because you will be not just detected but identified.

Which brings us to the subject of intrusion detection.

Intrusion Detection Systems/Intrusion Prevention Systems

Let's return to our school. It has good security guards at the doors and gates, but they
could be fooled by a fake ID (and yes, you can fake or spoof your IP address). Also, the
guards go home at night. We need another line of defense, in case somebody who
shouldn't have access slips in: we need burglar alarms.

Intrusion Detection Systems (IDSs) are our alarm systems. They can detect the burglar, as
well as call the police and ring a loud bell. In the Internet world this means noticing
abnormal activity, realizing that something is wrong and sending email and text alerts.

Newer systems include Intrusion Prevention Systems (IPSs), which are even more active: if
an attack is detected, they can cut off traffic, block IP addresses and even launch
countermeasures.

28

Lesson 10: Web Security and Privacy

Exercises

10.46 What was the original popular IDS? What is its nickname?

10.47 If you had to pay a lot of money for either one, would you want your server to
have a firewall, an IDS/IPS or both?

Secure Communications

What do we mean by “secure communications” on the web? The phrase sounds like
something you'd hear in a spy movie, but actually it's critical to a lot of things we do
online. Communicating securely requires a lot of PAIN: Privacy (and confidentiality),
authentication, integrity and non-repudiation.

Consider your account at that really famous social network. Obviously, you have to have
a user name and password so you can log in to the account. And there are all kinds of
privacy settings you can tweak, especially about who can see your most private stuff, so
you really don't want anybody else getting into it. Which means you're counting on
authentication to give you some security. So, does authenticating yourself to the web site
makes you safe?

No.

You might be completely deceived about the web site. Someone could send you a
phishing email that looks exactly like a notice from that social network. Click that link, and
it looks like you've gone to the site, but you've actually gone to a malicious site and gotten
yourself infected with malware. Or you might make a simple mistake, like typing
whitehouse.com instead of whitehouse.gov – and ending up at a porn site. (No, it's not
there any more! But do check out http://www.antiphishing.org.)

This means authentication is a two-way street. You should have to identify yourself,
certainly. But the site should provide authentication credentials too, and on the web, they
come in the form of a certificate. When you go to a famous web retailer, and buy
products online, your browser probably accepts the web site's certificate automatically,
because it comes from one of the big-name, big-dollar certificate authorities like Verisign.

When you go to a less famous site, you may be prompted by your browser to accept or
refuse its certificate. There is no more critical time on the web to read the details carefully!
If you know you want to shop there, then perhaps you should accept the certificate. But if
you have no idea why you're being asked to accept a certificate, then you probably
shouldn't take it. The idea to understand is that a site's certificate provides its identification
and authentication. You're trusting that ID.

So you've ordered that book (or whatever). You don't want the price changed after you
order, naturally, or the number of books. And the retail website doesn't want anyone
altering critical details like your credit card number. What you both want is integrity, which
means that what you communicated hasn't been changed.

This is really critical when it comes to big-money transactions. No one should be able to
change the dollar amount in the document you send to make an offer for a house – at
least not without detection. And the way you do that is by having your computer
calculate a hash from that offer document. A hash is the result of some complex math,
but basically it's a big number that will be unique for every document.

On any Unix computer (which includes Linux and Macintosh), you can calculate an MD5
hash (that's the most common kind, although it's not considered that secure anymore and
is therefore slowly being replaced by SHA-1, SHA-256 and similar algorithms) with a simple
command. Let's say your letter is named Offer.txt. In a shell you can use the following
command:

md5 Offer.txt

29

Lesson 10: Web Security and Privacy

and you'll get back something like:

MD5 (Offer.txt) = d41d8cd98f00b204e9800998ecf8427e

The long string of numbers and letters (actually, it's a hexadecimal or hex number) is the
hash. If someone changed so much as one period in that document, the hash would be
totally different. Oh, so the hash you made before you sent the document no longer
matches the document's hash now? Watch out! The document has been changed! And
you might be buying a much more expensive house if you're not careful.

It's not just you that has to do the trusting in our real estate transaction. The people you
send your letter to need to be certain you can't say, “I never sent that offer!” What they
want is non-repudiation, which means that you can't deny making the offer. And if they
accept your offer, you don't want them to repudiate their acceptance later. So how can
we make sure of this?

Hashing does the trick here as well, though the process is more complex. You learned in
another lesson about getting yourself a PGP/GPG key pair, which you can then use to
create a signature. A signature works here because nobody but you can create that
signature – and it will be different for every document you sign. At its root, that signature is
just another hash.

Privacy and Confidentiality

Privacy means keeping your information yours, or at least maintaining control over it. This
may be as simple as protecting your credit card number, or as complicated as keeping
your new love affair secret.

What you do on the web stays private, right? You know by now that's not true. Web sites
gather information about you constantly, particularly the search engine giants. You sign
away your privacy when you accept that free email account, or when you join a social
network. Web sites that collect information are supposed to have a privacy policy that
clearly spells out how they will use your information. If you visit a site that wants information
but doesn't have a privacy policy, get out!

When you visit, sites set cookies on your computer. Cookies aren't dangerous, in the sense
that they don't install malware on your machine. In fact they're very handy for
remembering your book preferences on Amazon.com. But cookies can be dangerous
because they track your every move. Be particularly aware of this:

When you log on to a website, you've given it permission to watch everything you
do, everywhere you go, until you log back out! Even if you've left that site, if you
didn't log out, it's still watching everything you do. Some, for instance that famous
social network, track you even after you log out.

When you are done with a web site, to protect your privacy, log out. Ensure your browser
is set to clear cookies, cache, temp files and history, then close the browser (not just the
tab). Depending on the website and why you are there, you may wish to provide false
information to avoid tracking. And you should be aware: some cookies (like Flash cookies)
can survive “clearing” and can still be used to track you.

Confidentiality sounds very similar to privacy, but it's a different thing. If I don't know you
have a crush on Betty or Bret, you've kept your privacy. If I know you're meeting behind
the gym, your meeting is no longer private, but if I'm not watching it may still be
confidential.

On the web, this means I may know you're visiting a site, but I can't read your
communications because they're encrypted – scrambled so thoroughly you'd need a

30

Lesson 10: Web Security and Privacy

supercomputer and millions of years to decrypt them. When you visit a secure (HTTPS) web
site, that's exactly what's it's doing. And it's using its certificate yet again to provide the key
for that encryption. Is HTTPS totally safe? No, but it's the best we've got for now.

Exercises

10.48 Take a look at Google's privacy policy. Can you find it? Can you understand it?
Compare it to the privacy policy of a retailer like Amazon.com. What about the
privacy policy at social networking sites (SNS), such as Facebook?

10.49 Under these privacy policies, who can access your information? What can you do
if the site violates its own policy? Can you take your information away?

Knowing If You Are Communicating Securely

If you have a private conversation, somebody could still find out about it. And even if it's
confidential, somebody could be looking over your shoulder. (Search for “spy camera” to
see why this is important.) So how can you be sure your communication is secure?

On the web, there are two major signals almost all browsers will give you that you are on a
secure connection (using HTTPS, in other words). The first is the web protocol you see (or
type) up in your URL address bar. If it's HTTP (which will look like http://), it is not secure,
repeat, not secure.

You only have a secure connection when the protocol is HTTPS (so that the address starts
with https://). While it's not visible, HTTPS is doing encryption, and unlike HTTP's port 80, HTTPS
uses port 443.

The other visible cue in some browsers is a small padlock icon in the URL bar (or sometimes
in the lower right corner of the window). If the lock is open or missing the connection is
insecure, and if it's closed the connection is secure. Hover your mouse pointer over the
lock, and in most cases a small message will appear telling you how long an encryption
key is being used. Forty bits is very flimsy, while 128 bits is fairly stout, and the current
standard.

Some newer browsers are using a feature like a “site button” - an area you can click near
the URL address bar – which gives you security information about the site, though you may
have to dig down to find the key length.

This is a good place to point out that while we use the term “secure connection” in this
section, there is ultimately no such thing. The SSL/TLS encryption used by HTTPS is flawed
and definitely can be cracked, if someone wants to crack it badly enough. You can
probably trust it with Amazon.com (for now), but you should not trust it with your life. Why
do we put it that way? Because in some countries, people literally do risk their lives
accessing the web, and they should do it through a more secure technology called a
Virtual Private Network (VPN).

Methods of Verification

By now you've learned the basics of web security and privacy, and we hope you've
thought about the things you could do as a hacker, or as the operator of a web site or
server. Every decision you make will affect the security and privacy of real people –
including you.

So how do you know if a server is secure, or a network, or an application? Should you trust
the developers of the app or the OS? Will you be secure if you just keep your system
updated?

The answers are, in order: Testing, No and No. We'll come back to testing, but when it
comes to either applications or operating systems, manufacturers have proven over and
over that you shouldn't necessarily trust them to get security right. (Read an End User
License Agreement the next time you install software; you'll see that the manufacturer isn't

31

Lesson 10: Web Security and Privacy

responsible for anything at all!) And there are famous stories of updates that broke more
things than they fixed, or introduced new vulnerabilities. Not to mention the backdoors
that were discovered in some applications and operating systems!

When it comes to testing, the very best thing you can do is to think like a hacker. That's
what this course is about. In other words, take advantage of other people's work. There
are several security testing methodologies available, the results of contributions from
hundreds of professionals. Just remember that any computer, network or application will
change frequently, so test early and test often.

Methods arise from different philosophies. The IT Infrastructure Library (ITIL) is all about
system life cycles; the ISO 9000 standard deals with quality management systems. ISECOM,
the organization that brings you Hacker Highschool, also provides a security testing
methodology built on a open-source contributor model using open-source tools: the
OSSTMM.

OSSTMM

The Open Source Security Testing Methodology Manual (OSSTMM) documents a widely-
used and straightforward format for conducting security verifications. The individual tests
in the OSSTMM aren't revolutionary, but the methodology itself allows anyone to conduct
ordered tests with consistent professional quality.

The OSSTMM tests are divided into five sections:

● Human Security

● Physical Security

● Wireless Security

● Telecommunications Security

● Data Networks Security

You don't have to do every type of test; part of the methodology is doing only the
relevant ones. This is where you can learn to be an expert: knowing which test to do, why
to do it and when to do it.

To put it another way, the OSSTMM details the technical scope, but doesn't prescribe
specific testing software. Instead, it describes:

● what should be tested

● the form in which the test results must be presented

● the rules for testers to follow to assure best results

● the Attack Surface Metrics, which put hard numbers on how much security you
have

The OSSTMM is a document for professionals, but it's never too early to take a look at it
and learn how it works. The concepts are thoroughly explained and are written in an
easy-to-comprehend style.

Exercises

10.50 Patching is a necessary evil, and web administrators need to constantly patch
code as new vulnerabilities are discovered. Search for a case in which a new
problem arose from installing a security patch. Imaging you're a system
administrator: would you argue for, or against, patching your systems immediately
when the patches are released?

10.51 You've discovered that a patch will introduce a new vulnerability. Should the
patch still be installed? Would it matter whether you have the source code or
not?

32

Lesson 10: Web Security and Privacy

10.52 Go to http://cve.mitre.org and find the button or link to search CVEs. When you
find the right page, do a keyword search on “Apache”. How many vulnerabilities
are listed? (And consider: how many patches do you want to install? Is patching a
realistic solution, or is it a cat and mouse game?)

10.53 Download a copy of the OSSTMM and review the methodology concepts. What
principles can you learn from this methodology? Could you do a security audit
based on the OSSTMM?

Feed Your Head: Understanding HTTP

Now that you have an understanding of how information flows, did you ever wonder
how your web browser really asks for whatever it is you want to see online, and
presents it to you?

What do you think the browsers ask for? What kind of information? We know that,
depending on the website, we might have a few images, some animations, perhaps
video. We also have text, and polls of different types. That is quite a lot of different
things a web server has to send us, for us to properly enjoy a well formatted page,
don't you think?

So, now you'll see EXACTLY what it is that your browser does, behind your back, so you
can have a pleasant experience.

To help us in that task, we are going to install a Firefox extension called httpfox.

Httpfox monitors and analyzes all incoming and outgoing HTTP traffic between the
browser and the webservers, so you get to see each individual request that is made.

You can download httpfox at https://addons.mozilla.org/en-
US/firefox/addon/httpfox/

Restart your Firefox browser, and now on the bottom right side you get an extra icon
that you should click in order to open httpfox.

Press the icon, and then open a new tab and visit a couple of different websites. You
now have a list of all the requests that your browser made.

Clear all of it, close all open Firefox tabs, start httpfox again and open
www.isecom.org. Hit stop, and let's go through the requests.

The first thing that gets sent out of your browser, happens once you hit the enter key
after typing www.isecom.org, and that's exactly what we see in httpfox.

Your browser does a GET request (as you can see from the Request Header), in HTTP
1.1. We are also saying that we want a specific host in that address, host
www.isecom.org.

Consider the situation of a shared service provider. On one IP address, you could
have hundreds of websites. This is possible exactly because of thie “host
www.isecom.org” part of the request. If this functionality wasn't present, we could
only have one domain per IP address, because the browser would have no way of
telling what it really wants.

Now, because not all browsers are created equal, our browser is going to introduce
himself, so the server can be sure to reply with information that suits us.

Next, we are telling the web server the kind of content that we are willing to accept.
In this case, our browser says it accepts code written in HTML, XHTML and XML and
would like to receive the information in American English (en-us) and what kind of
encoding. If you have been to the ISECOM website before doing this capture, you will

33

Lesson 10: Web Security and Privacy

also see that we sent information regarding a cookie. A cookie is a small piece of
data kept in your browser that stores information about a particular website. Almost
every website you visit uses cookies. This information is used to serve you better (when
it's not being used by the dark side of the force) because once you visit a website,
you can be authenticated and so the website owner can greet you by your name,
and present you with his content the way YOU want to see it. Think about the
personalization that you can have on your online email application, for instance. All
of this is for the GET request you instructed your browser to perform.

Now we will run through just three more lines. If you go to the “Content” tab, you will
see the exact HTML code that was downloaded from the web server as a response to
our previous GET request.

After the META tags, we got the following lines of code (at the time of writing):

 <link rel="stylesheet" href="style.css" type="text/css"
media="screen" />

 <!--[if IE 6]><link rel="stylesheet" href="style.ie6.css"
type="text/css" media="screen" /><![endif]-->

 <!--[if IE 7]><link rel="stylesheet" href="style.ie7.css"
type="text/css" media="screen" /><![endif]-->

 <script type="text/Javascript" src="jquery.js"></script>

 <script type="text/Javascript" src="script.js"></script>

Look at the highlighted pieces of code. You will find that the next three requests our
browser made were exactly to those files. Notice that if we had Internet Explorer 6 for
instance, we would have downloaded style.i6.css instead of downloading style.css.
Different browsers, different code.

The rest of the files downloaded are more of the same. The browser interprets the
HTML code it receives and makes decisions based on what it receives on the
contents it should request next, depending on your behavior (clicking, mousing over,
etc.).

Think about what all this means from a hacker's perspective. Everything your browser
shows you are interpretations of what it receives from the servers. So could we
somehow intercept this traffic and change how a client interacts with a server and
vice versa? Of course it does... in another lesson.

Exercise

10.54 Aren't you curious what those .css, .js, and .swf files are? Try searching for those
file extensions to learn a bit more about them.

Going Deeper

While web hacking can go so much further because it's a huge, immense, monstrous field,
you can't. You've reached the end of the line of what we can show you in this lesson.
However, if web hacking is your thing, jump deeply into the OSSTMM and check out the
hacking methodology for Web Applications.

34

Lesson 10: Web Security and Privacy

http://www.osstmm.org/

