XtetCON

Handle-based models
with Handly

Vladimir Piskarev, 1C
pisv@ic.ru

May 27, 2014

(c) Copyright 2014 1C LLC. Made available under the EPL v1.0

mailto:pisv@1c.ru

't seems we have two
firsts here...

e First Xtext conference

* First Handly talk

But walt, there 1s a third one
Just around the corner

* First Handly release (0.1) to coincide with
—clipse Luna

Main themes of the talk

 What Handly is about

* Project’'s status and outlook

 Handly and Xtext: relationship, integration

«YOoUu don't understand something until you
understand it more than one way»

—Marvin Minsky

Point of view IS worth
80 1Q points

e |t might be worthwhile to have a look at

Handly from multiple points of view

The Java Model.
One of the pillars of JDT

Overview — The 3 Pillars D

Java Model - Lightweight model for views
= OK to keep references to it
= Contains unresolved information
= From project to declarations (types, methods..)

Search Engine
= |ndexes of declarations, references and type hierarchy relationships

AST - Precise, fully resolved compiler parse tree

= No references to it must be kept: Clients have to make sure only a limited
number of ASTs is loaded at the same time

= Fully resolved information
= From a Java file (‘Compilation Unit’) to identifier tokens

The 3 Pillars — First Pillar: Java Model Doy

Java Model - Lightweight model for views
= Java model and its elements
= Classpath elements
= Java project settings
= Creating a Java element
= Change notification
= Type hierarchy
= Code resolve

The Java Modqel.
Original design motivation

‘@-”' CON.2005 @r)' CON.2005
The Java Model - Design Motivation The Java Model

=189 MyProject
-z bin
=& sre
. P =& p
Requirements for a Java model: » Render entire workspace from Java angle &
[J] %.java
, . = using ‘.classpath’ B et
= Light weight 9 P = project
= Need elements to which a reference can be kept, e.g. to show in a viewer = classpath entry is package fragment root
N o 2
» Must work for big workspaces (10’000 types and more). Can not hold on = can even denote JAR outside workspace i T:g:f“
resources, Eclipse is not just a Java IDE = granularity down to individual fields or methods i - .
= Fault tolerant 20 x
= Some source does not (yet) compile, missing brackets, semicolons. Tooling : ':;'8
should be as helpful as possible = Pure source model oF Y ;HR,E System Library [ick1.4.1]
. . . [#-{gh rt.jar - D:\jdk1.4. hjrellib
= Viewers like the outline want to show the structure while typing. Structure should = accurate independently of build actions B ool]
. [£] .project
stay as stable as possible = fault-tolerant p—
Chosen solution: " no resolved information o g
isReadOnly()
= Handle baseq, lazily populated model = Handle/Info design A
= No resolved information kept N . T
= Wrappers existing resource model = scalability: model non exhaustive Non-API
= info lazily populated, LRU cache geBomentino)__ [v iementn®
getChildren()
= stable handle kSerucaureknown0

? SRR A . . —) | Rl D N . —

| anguage-oriented
handle-based models

|deally suited for presenting in structured viewers

Scalable due to virtualization made possible by a handle-
based design

Eventually consistent — need not be consistent all the time

Can refer to non-existing elements — existence can be
tested with exists()

Tolerant to inconsistencies in the source file (syntax errors,
etc.)

Point of view #1

e The Java Model as a model

 Handly supplies basic building blocks that help
developers create handle-based models similar in

design principles to the Java Model

 Why reinvent the wheel for every new language”

How to stay with the future
as It moves?

«he best way to predict the future is to invent it»

—Alan Kay

e Hint: “Go to research labs”

The STEPS project (VPRI)

* Recreating the familiar world of personal computing in
1000 times less the amount of program code

o 20K LOC budget to express all of the “runnable
meaning” (executable models) “from the end-user
down to the metal”

» Just one example of dealing with languages on a
large scale (“language-oriented programming”)

* |t may change really everything — tooling in particular

Point of view #2

* Eclipse needs to become a great multi-language
IDE platform

 Handly provides a uniform handle-based API that
makes it possible to develop common components
for a multi-language IDE

* |n contrast to other approaches such as DLITK,
Handly at its core is designed to be as language
agnostic as possible

I'he missing plece

Xtext is a really wonderful tool for language
engineering

It covers many important IDE components in a
generic and extensible way

However, one piece seems to be missing for a
JDT-like unified IDE experience

A handle-based model can “glue” it all together
iInto a coherent whole

Point of view #3

e Xtext and Handly: A match made in heaven”?
* Handly integrates with Xtext from the very beginning

* [Looking for a synergy between the two

Handly. Points of view

* Supplies basic building blocks that help
developers create handle-based models similar in
design principles to the JDT Java Model

* Provides a uniform handle-based APl that makes it
possible to develop common components for a
multi-language IDE

* Integrates with Xtext from the very beginning

Ihe project's scope

* Core framework

* |Integration with other Eclipse projects
e Xtext integration

 Common Ul components

 Exemplary implementations

Core framework.
Design motivation

Make easier development of high-quality handle-
based models for various languages

Retain much of the flexibility associated with
creation of such models “from scratch”

Provide a uniform handle-based API to the models
created with the framework

More “a set of bricks” than “a framework’”

Core framework. Architectural overview
Inheritance hierarchy of the core model elements

API Impl
IHandle q Handle
AN ': AN
ISourceElement <} SourceElement

ISourceConstruct <]—.— SourceConstruct

ISourceFile <} : SourceFile

Core framework. Architectural overview

Generalized implementation of the ‘handle/body’ idiom
for handle-based models

IHandle

getName()
getParent()
getRoot()
getAncestor(Class)
getResource()
getPath()

exists()
equals(Object)
hashCode()
getChildren()
getChildren(Class)

L
Impl
Handle Body
+findBody()]

+close() #getBody() +getChildren()

#buildStructure(Body, Map) +setChildren(IHandle[])

#newBody() +addChild(IHandle)

#getOpenableParent() +removeChild(IHandle)

IBodyCache

HandleManager H
get(IHandle)

peek(IHandle)
put(IHande, Body)
remove(IHandle)

Core framework. Architectural overview
Source Element Info

ISourceElementinfo
ISnapshot
ISourceElement getSourceElementinfo() > getFullRange() getSnapshot() >
getldentifyingRange() isEqualTo(ISnapshot)
getProperty(<key>)
/\
AP e
Impl
Body
/\

SourceElementBody

Core framework. Architectural overview
Source File

ISourceFile IBuffer IBufferChange
isWorkingCopy() openBuffer) N} getSnapshot() applyChange() N getTextEdit() getBase() ISnapshot
reconcile() setContents(String) <<parameter>>~ | contains(TextEdit)
hasUnsavedChanges() | <<return value>> getSaveMode()
/\ mustSaveChanges()
save()
dispose()
o L S
Impl
IWorkingCopyBuffer
SourceFile
1 0..1] reconcile()
VAN
HandleManager
L NP
Xtext Integration

XtextWorkingCopyBuffer

Core framework. Architectural overview

Generalized representation of change notifications for
handle-based moadels

IElementChangeEvent IHandleDelta
getDelta() N getElement() N IHandle
getType() getKind()
getFlags() N
JA getMarkerDeltas() getAffectedChildren()
getResourceDeltas()

/\ 0.

ElementChangeEvent HandleDelta < +buildDelta(), | HandleDeltaBuilder

Steps to create a handle-based model
with Handly

Implement the “handle” part of the model

 Inherit from corresponding system-provided interfaces and basic
implementations for model elements

Implement the “body” part of the model

* Implement inherited abstract methods and supply a model-specific
implementation of the body cache

Implement a resource change listener for the model
« Update the model when underlying workspace resources change

Implement integration of the model with the source file editor(s)

* Already implemented for Xtext editor. Just bind it in Xtext Ul module

Basic example

 Made avallable under EPL in Handly Examples

 Demonstrates a Handly-based model tor a simple
Xtext-based language

 The language, called Foo, is contrived, but the
model is full-featured

I'he Foo language

Xtext grammar Code sample
Module: var x;
vars += Var¥® var vy;
defs += Def~* def f£() {}
; def f(x) {}
def f(x, y) {}
Var:

'var' name=ID ';'

°
7

Def:
'def' name=ID
'"('" (params+=ID)? (',' params+=ID)* ')'

'{' '}'

Ihe FOo moael

IFooModel

IFooProject

Handle

ZF

SourceElement

API :Impl
IHandle
ZF FooModel
ISourceElement
4 FooProject
ISourceFile ISourceConstruct K ———
IFooFile IFooVar IFooDef
] Foo Navigator 3
v =2 IFooProject
— IFooFile.foo
@ IFooDef()

o |FooVar

L}

SourceFile SourceConstruct K ———
FooFile FooVar FooDef

Bullding model structure

// FooModel. java

@Override
protected void buildStructure (Body body, Map<IHandle, Body> newElements)
throws CoreException
{
IProject[] projects = workspace.getRoot () .getProjects();
List<IFooProject> fooProjects =
new ArraylList<IFooProject> (projects.length);
for (IProject project : projects)
{
if (project.isOpen() && project.hasNature (IFooProject.NATURE ID))
{
fooProjects.add (new FooProject (this, project));
}
}
body.setChildren (fooProjects.toArray (new IHandle[fooProjects.size()]));

// FooFile.java

@Override

protected void buildStructure (SourceElementBody body,
Map<IHandle, Body> newElements, Object ast, String source)

{

XtextResource resource = (XtextResource)ast;
IParseResult parseResult = resource.getParseResult (),
if (parseResult != null)

{

EObject root = parseResult.getRootASTElement ()

if (root instanceof Module)

{
FooFileStructureBuilder builder =

new FooFileStructureBuilder (newElements,
resource.getResourceServiceProvider())

builder.buildStructure (this, body, (Module)root);

Updating model structure
(delta processor)

 Have to skip the tedious detalls

 The code is available in Handly Examples

Xtext integration

e |t takes just a few bindings in Xtext Ul module to
connect a Handly-based model with Xtext editor

e |t doesn't matter how dumb or smart the language
S...

* [he bindings are all the same

Handly bindings In Xtext Ul module

@Override
public Class<? extends IReconciler> bindIReconciler ()

{

return HandlyXtextReconciler.class;

}

public Class<? extends XtextDocument> bindXtextDocument ()
{

return HandlyXtextDocument.class;

}

public Class<? extends DirtyStateEditorSupport> bindDirtyStateEditorSupport ()

{
return HandlyDirtyStateEditorSupport.class;

}

public void configureXtextEditorCallback (Binder binder)

{
binder.bind (IXtextEditorCallback.class) .annotatedWith (

Names.named (HandlyXtextEditorCallback.class.getName())) .to(
HandlyXtextEditorCallback.class) ;

}

public Class<? extends ISourceFileFactory> bindISourceFileFactory ()

{

return FooFileFactory.class;

}

Common Ul components

 None, currently
e Reserved for future work

e One ideais a common outline framework

Exemplary implementations

e Currently, only a basic example (just seen)

* An interesting example would be to "wrap” the
Java Model into Handly API

* [ooking for an initial adopter at Eclipse to
collaborate on a practical tool built using Handly

«Simple things should be simple,
complex things should be possible»

—Alan Kay

Summing up

* Quite complex things are already possible, but
simple things are not yet quite simple

 How can we fight complexity and find the joy of
simplicity”

Complexity

«As size and complexity increase,
architectural design dominates materials»

—Alan Kay

* |t's all about getting the core right
e Find abstractions that scale

 Beware of the generalization trap (over- and under-
generalization)

Simplicity
«Everything should be made as simple as

possible, but not simpler»
—Albert Einstein

 Development of a handle-based model for a language still remains an
essentially complex task

* What about simplifying things further?

e Layers on top of the Handly core framework for specific classes of
languages? (e.g. for languages sharing the Java project structure)

 Model-driven approach?

 Your Ideas are welcome!

Ihe community
'S the capacity

e Strong intent for a diverse, community-driven
project

 Would like to draw community attention to the
important problem area

* Looking forward to community feedback and
participation

Now, that's just a vision ano
a design to start with

e Let's try to envision Handly together to make it really nice!
 You are very much invited to take part in the journey
e Your feedback is essential for setting directions

° Bugzilla https://bugs.eclipse.org/bugs/enter bug.cgi?product=Handly

o I\/Iailing list https://dev.eclipse.org/mailman/listinfo/handly-dev

e Forum http://www.eclipse.org/forums/eclipse.handly

https://bugs.eclipse.org/bugs/enter_bug.cgi?product=Handly
https://dev.eclipse.org/mailman/listinfo/handly-dev
http://www.eclipse.org/forums/eclipse.handly

Ihe Hanadly Team

VIadimir Piskarev
George Suaridze

<Your Name>

Thank you

Questions?

