
Handle-based models
with Handly

Vladimir Piskarev, 1C
pisv@1c.ru

(c) Copyright 2014 1C LLC. Made available under the EPL v1.0

May 27, 2014

mailto:pisv@1c.ru

It seems we have two
firsts here...

• First Xtext conference

• First Handly talk

But wait, there is a third one
just around the corner

• First Handly release (0.1) to coincide with
Eclipse Luna

Main themes of the talk

• What Handly is about

• Project's status and outlook

• Handly and Xtext: relationship, integration

–Marvin Minsky

«You don't understand something until you
understand it more than one way»

Point of view is worth
80 IQ points

• It might be worthwhile to have a look at
Handly from multiple points of view

The Java Model.
One of the pillars of JDT

The Java Model.
Original design motivation

Language-oriented
handle-based models

• Ideally suited for presenting in structured viewers

• Scalable due to virtualization made possible by a handle-
based design

• Eventually consistent — need not be consistent all the time

• Can refer to non-existing elements — existence can be
tested with exists()

• Tolerant to inconsistencies in the source file (syntax errors,
etc.)

Point of view #1

• The Java Model as a model

• Handly supplies basic building blocks that help
developers create handle-based models similar in
design principles to the Java Model

• Why reinvent the wheel for every new language?

How to stay with the future
as it moves?

• Hint: “Go to research labs”

«The best way to predict the future is to invent it»

–Alan Kay

The STEPS project (VPRI)
• Recreating the familiar world of personal computing in

1000 times less the amount of program code

• 20K LOC budget to express all of the “runnable
meaning” (executable models) “from the end-user
down to the metal”

• Just one example of dealing with languages on a
large scale (“language-oriented programming”)

• It may change really everything — tooling in particular

Point of view #2
• Eclipse needs to become a great multi-language

IDE platform

• Handly provides a uniform handle-based API that
makes it possible to develop common components
for a multi-language IDE

• In contrast to other approaches such as DLTK,
Handly at its core is designed to be as language
agnostic as possible

The missing piece
• Xtext is a really wonderful tool for language

engineering

• It covers many important IDE components in a
generic and extensible way

• However, one piece seems to be missing for a
JDT-like unified IDE experience

• A handle-based model can “glue” it all together
into a coherent whole

Point of view #3

• Xtext and Handly: A match made in heaven?

• Handly integrates with Xtext from the very beginning

• Looking for a synergy between the two

Handly. Points of view
• Supplies basic building blocks that help

developers create handle-based models similar in
design principles to the JDT Java Model

• Provides a uniform handle-based API that makes it
possible to develop common components for a
multi-language IDE

• Integrates with Xtext from the very beginning

The project's scope
• Core framework

• Integration with other Eclipse projects

• Xtext integration

• Common UI components

• Exemplary implementations

Core framework.
Design motivation

• Make easier development of high-quality handle-
based models for various languages

• Retain much of the flexibility associated with
creation of such models “from scratch”

• Provide a uniform handle-based API to the models
created with the framework

• More “a set of bricks” than “a framework”

Core framework. Architectural overview
Inheritance hierarchy of the core model elements

Core framework. Architectural overview
Generalized implementation of the ‘handle/body’ idiom

for handle-based models

Core framework. Architectural overview
Source Element Info

Core framework. Architectural overview
Source File

Core framework. Architectural overview
Generalized representation of change notifications for

handle-based models

Steps to create a handle-based model
with Handly

• Implement the “handle” part of the model

• Inherit from corresponding system-provided interfaces and basic
implementations for model elements

• Implement the “body” part of the model

• Implement inherited abstract methods and supply a model-specific
implementation of the body cache

• Implement a resource change listener for the model

• Update the model when underlying workspace resources change

• Implement integration of the model with the source file editor(s)

• Already implemented for Xtext editor. Just bind it in Xtext UI module

Basic example

• Made available under EPL in Handly Examples

• Demonstrates a Handly-based model for a simple
Xtext-based language

• The language, called Foo, is contrived, but the
model is full-featured

The Foo language

var x;
var y;
def f() {}
def f(x) {}
def f(x, y) {}

Module:
 vars += Var*
 defs += Def*
;

Var:
 'var' name=ID ';'
;

Def:
 'def' name=ID
 '(' (params+=ID)? (',' params+=ID)* ')'
 '{' '}'
;

Xtext grammar Code sample

The Foo model

Building model structure
// FooModel.java

 @Override
 protected void buildStructure(Body body, Map<IHandle, Body> newElements)
 throws CoreException
 {
 IProject[] projects = workspace.getRoot().getProjects();
 List<IFooProject> fooProjects =
 new ArrayList<IFooProject>(projects.length);
 for (IProject project : projects)
 {
 if (project.isOpen() && project.hasNature(IFooProject.NATURE_ID))
 {
 fooProjects.add(new FooProject(this, project));
 }
 }
 body.setChildren(fooProjects.toArray(new IHandle[fooProjects.size()]));
 }

// FooFile.java

 @Override
 protected void buildStructure(SourceElementBody body,
 Map<IHandle, Body> newElements, Object ast, String source)
 {
 XtextResource resource = (XtextResource)ast;
 IParseResult parseResult = resource.getParseResult();
 if (parseResult != null)
 {
 EObject root = parseResult.getRootASTElement();
 if (root instanceof Module)
 {
 FooFileStructureBuilder builder =
 new FooFileStructureBuilder(newElements,
 resource.getResourceServiceProvider());
 builder.buildStructure(this, body, (Module)root);
 }
 }
 }

Updating model structure
(delta processor)

• Have to skip the tedious details

• The code is available in Handly Examples

Xtext integration

• It takes just a few bindings in Xtext UI module to
connect a Handly-based model with Xtext editor

• It doesn't matter how dumb or smart the language
is...

• The bindings are all the same

Handly bindings in Xtext UI module
 @Override
 public Class<? extends IReconciler> bindIReconciler()
 {
 return HandlyXtextReconciler.class;
 }

 public Class<? extends XtextDocument> bindXtextDocument()
 {
 return HandlyXtextDocument.class;
 }

 public Class<? extends DirtyStateEditorSupport> bindDirtyStateEditorSupport()
 {
 return HandlyDirtyStateEditorSupport.class;
 }

 public void configureXtextEditorCallback(Binder binder)
 {
 binder.bind(IXtextEditorCallback.class).annotatedWith(
 Names.named(HandlyXtextEditorCallback.class.getName())).to(
 HandlyXtextEditorCallback.class);
 }

 public Class<? extends ISourceFileFactory> bindISourceFileFactory()
 {
 return FooFileFactory.class;
 }

Common UI components

• None, currently

• Reserved for future work

• One idea is a common outline framework

Exemplary implementations

• Currently, only a basic example (just seen)

• An interesting example would be to “wrap” the
Java Model into Handly API

• Looking for an initial adopter at Eclipse to
collaborate on a practical tool built using Handly

–Alan Kay

«Simple things should be simple,
complex things should be possible»

Summing up

• Quite complex things are already possible, but
simple things are not yet quite simple

• How can we fight complexity and find the joy of
simplicity?

Complexity

• It's all about getting the core right

• Find abstractions that scale

• Beware of the generalization trap (over- and under-
generalization)

«As size and complexity increase,
architectural design dominates materials»

–Alan Kay

Simplicity

• Development of a handle-based model for a language still remains an
essentially complex task

• What about simplifying things further?

• Layers on top of the Handly core framework for specific classes of
languages? (e.g. for languages sharing the Java project structure)

• Model-driven approach?

• Your ideas are welcome!

«Everything should be made as simple as
possible, but not simpler»

–Albert Einstein

The community
is the capacity

• Strong intent for a diverse, community-driven
project

• Would like to draw community attention to the
important problem area

• Looking forward to community feedback and
participation

Now, that's just a vision and
a design to start with

• Let's try to envision Handly together to make it really nice!

• You are very much invited to take part in the journey

• Your feedback is essential for setting directions

• Bugzilla https://bugs.eclipse.org/bugs/enter_bug.cgi?product=Handly

• Mailing list https://dev.eclipse.org/mailman/listinfo/handly-dev

• Forum http://www.eclipse.org/forums/eclipse.handly

https://bugs.eclipse.org/bugs/enter_bug.cgi?product=Handly
https://dev.eclipse.org/mailman/listinfo/handly-dev
http://www.eclipse.org/forums/eclipse.handly

The Handly Team

Vladimir Piskarev

George Suaridze

<Your Name>

Thank you
Questions?

