Configuration for MicroProfile

Mark Struberg, Emily Jiang, John D. Ament

2.0-M1, July 27, 2020

Table of Contents

MicroProfile Config
Architecture
Rationale
Config Usage Examples
Simple Programmatic Example
Simple Dependency Injection Example
Aggregate related properties into a single POJO Example
Accessing or Creating a certain Configuration
ConfigSources
ConfigSource Ordering
Manually defining the Ordinal of a built-in ConfigSource
Default ConfigSources
Environment Variables Mapping Rules
Custom ConfigSources
Custom ConfigSources via ConfigSourceProvider
Dynamic ConfigSource
Cleaning up a ConfigSource
ConfigSource and Mutable Data
Converter
Built-in Converters
Adding custom Converters
Array Converters
Programmatic lookup
Injection model
Automatic Converters
Cleaning up a Converter
Config Profile
Specify Config Profile
How Config Profile works
On Property level
On Config Source level
Release Notes for MicroProfile Config 2.0
Incompatible Changes
API/SPI Changes
Functional Changes
Other Changes
Release Notes for MicroProfile Config 1.4
API/SPI Changes

D AR W W N

10
12
12
12
12
12
13
14
14
15
15
16
16
16
17
17
17
17
17
18
18
18
18
19
20
20
20
20
20
21
21

Spec Changes
Other Changes
Release Notes for MicroProfile Config 1.3
API/SPI Changes
Functional Changes
Specification Changes
Other Changes
Release Notes for MicroProfile Config 1.2
API/SPI Changes
Functional Changes
Specification Changes
Other Changes
Release Notes for MicroProfile Config 1.1
API/SPI Changes
Functional Changes

Specification Changes

21
21
22
22
22
22
22
23
23
23
23
23
24
24
24
24

Specification: Configuration for MicroProfile

Version: 2.0-M1

Status: Draft

Release: July 27, 2020

Copyright (c) 2016-2018 Contributors to the Eclipse Foundation

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

MicroProfile Config

Architecture

This specification defines an easy to use and flexible system for application configuration. It also
defines ways to extend the configuration mechanism itself via a SPI (Service Provider Interface) in
a portable fashion.

Rationale

Released binaries often contain functionality which needs to behave slightly differently depending
on the deployment. This might be the port numbers and URLs of REST endpoints to talk to (e.g.
depending on the customer for whom a WAR is deployed). Or it might even be whole features
which need to be switched on and off depending on the installation. All this must be possible
without the need to re-package the whole application binary.

MicroProfile Config provides a way to achieve this goal by aggregating configuration from many
different ConfigSources and presents a single merged view to the user. This allows the application
to bundle default configuration within the application. It also allows to override the defaults from
outside, e.g. via an environment variable a Java system property or via a container like Docker.
MicroProfile Config also allows to implement and register own configuration sources in a portable
way, e.g. for reading configuration values from a shared database in an application cluster.

Internally, the core MicroProfile Config mechanism is purely String/String based. Type-safety is
intentionally only provided on top of that by using the proper Converters before handing the value
out to the caller.

The configuration key might use dot-separated blocks to prevent name conflicts. This is similar to
Java package namespacing:

com.acme.myproject.someserver.url = http://some.server/some/endpoint
com.acme.myproject.someserver.port = 9085
com.acme.myproject.someserver.active = true
com.acme.other.stuff.name = Karl
com.acme.myproject.notify.onerror=karl@mycompany, sue@mcompany
some.library.own.config=some value

while the above example is in the java property file syntax the actual content could

TIP
also e.g. be read from a database.

Config Usage Examples

An application can obtain it’s configuration programmatically via the ConfigProvider. In CDI
enabled beans it can also get injected via @Inject Config. An application can then access its
configured values via this Config instance.

Simple Programmatic Example

public class ConfigUsageSample {

public void useTheConfig() {
// get access to the Config instance
Config config = ConfigProvider.getConfig();

String serverUrl = config.getValue("acme.myprj.some.url", String.class);
callToServer(serverUrl);

// or
ConfigValue configServerUrl = config.getConfigValue("acme.myprj.some.url");
callToServer(configServerUrl.getValue());

If you need to access a different server then you can e.g. change the configuration via a Java -D
system property:

$> java -Dacme.myprj.some.url=http://other.server/other/endpoint -jar some.jar

Note that this is only one example how to possibly configure your application. Another example is
to register Custom ConfigSources to e.g. pick up values from a database table, etc.

If a config value is a comma(,) separated string, this value can be automatically converted to a
multiple element array with \ as the escape character. When specifying the property
myPets=dog, cat,dog\\,cat in a config source, the following code snippet can be used to obtain an
array.

String[] myPets = config.getValue("myPets", String[].class);
//myPets = {"dog", "cat", "dog,cat"}

Simple Dependency Injection Example

MicroProfile Config also provides ways to inject configured values into your beans using the
@Inject and the @ConfigProperty qualifier. The @Inject annotation declares an injection point. When
using this on a passivation capable bean, refer to CDI Specification for more details on how to make
the injection point to be passivation capable.

https://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#passivating_scope

@ApplicationScoped
public class InjectedConfigUsageSample {

@Inject
private Config config;

//The property myprj.some.url must exist in one of the configsources, otherwise a
//DeploymentException will be thrown.

@Inject

@ConfigProperty(name="myprj.some.url")

private String somelUrl;

// You can also inject a configuration using the ConfigValue metadata object. The

// configured value will not lead to a DeploymentException if the value is
missing.

// A default value can also be specified like any other configuration.

@Inject

@ConfigProperty(name="myprj.another.url")

private ConfigValue anotherUrl;

//The following code injects an Optional value of myprj.some.port property.
//Contrary to natively injecting the configured value, this will not lead to a
//DeploymentException if the value is missing.

@Inject

@ConfigProperty(name="myprj.some.port")

private Optional<Integer> somePort;

// You can also use the specialized Optional classes like Optionallnt,

// OptionalDouble, or OptionallLong to perform the injection. The configured value
// will not lead to a DeploymentException if the value is missing.

@Inject

@ConfigProperty(name="myprj.some.port")

private Optionallnt somePort;

//Injects a Provider for the value of myprj.some.dynamic.timeout property to
//resolve the property dynamically. Each invocation to Provider#get() will
//resolve the latest value from underlying Config.

//The existence of configured values will get checked during startup.
//Instances of Provider<T> are guaranteed to be Serializable.

@Inject

@ConfigProperty(name="myprj.some.dynamic.timeout", defaultValue="100")
private javax.inject.Provider<Long> timeout;

//Injects a Supplier for the value of myprj.some.supplier.timeout property to
//resolve the property dynamically. Each invocation to Supplier#iget() will
//resolve the latest value from underlying Config.

@Inject

@ConfigProperty(name="myprj.some.supplier.timeout", defaultValue="100")
private java.util.function.Supplier<Long> timeout;

//The following code injects an Array, List or Set for the ‘myPets' property,

//where its value is a comma separated value (myPets=dog,cat,dog\\,cat)
(name="myPets") private String[] myArrayPets;
(name="myPets") private List<String> myListPets;
(name="myPets") private Set<String> mySetPets;

Aggregate related properties into a single POJO
Example

When injecting a number of related configuration properties, it can be tedious to repeat the
statement of ConfigProperty in scatter places. Since they are related, it makes more sense to
aggregate them into a single property class.

MicroProfile Config provides a way to look up a number of configuration properties starting with
the same prefix using the @ConfigProperties annotation, e.g. ConfigProperties(prefix="myPrefix").
When annotating a class with @ConfigProperties or @ConfigProperties(prefix="myPrefix"), any of its
fields, regardless of the visibility, maps to a configuration property via the following mapping rules.

o If the prefixis present, the field x maps to the configuration property <prefix>x.

o If the prefixis absent, the field x maps to the property name x.

If the field name x needs to be different from the config property name vy, use
@ConfigProperty(name="y") to perform the transformation. If the prefix is present, the field x maps
to the configuration property <prefix>y, otherwise y.

Considering the following config sources:

config_ordinal = 120
server.host = localhost
server.port=9080
server.endpoint=query
server.old.location=London

config_ordinal = 150
client.host = myHost
client.port=9081
client.endpoint=shelf
client.old.location=Dublin
host = anotherHost
port=9082

endpoint=book
old.location=Berlin

In order to retrieve the above properties in a single property class, you can use the
@ConfigProperties annotation with a prefix.

@ConfigProperties(prefix="server.")
@ApplicationScoped
public class Details {
public String host; // the value of the configuration property server.host
public int port; // the value of the configuration property server.port
private String endpoint; //the value of the configuration property server.endpoint
public @ConfigProperty(name="old.location")
String location; //the value of the confiquration property server.old.location
public String getEndpoint() {
return endpoint;

}

You can then use one of the following to retrieve the properties.

* Directly inject the bean annotated with @ConfigProperties

@Inject Details serverDetails;

The serverDetails will contain the following info, as the prefix is server.:

serverDetails.host -> server.host -> localhost
serverDetails.port -> server.port -> 9080
serverDetails.endpoint -> server.endpoint -> query
serverDetails.getlocation() -> server.old.location -> London

* Specify @ConfigProperties when injecting the bean annotated with @ConfigProperties

In this case, the prefix associated with @ConfigProperties on this injection point overrides the prefix
specified on the bean class.

@Inject @ConfigProperties(prefix="client") Details clientDetails;

The prefix client. overrides the prefix server. on the ServerDetails bean. Therefore, this will
retrieve the following properties.

clientDetails.host -> client.host -> myHost
clientDetails.port -> client.port -> 9081
clientDetails.endpoint -> client.endpoint -> shelf
clientDetails.getlLocation() -> client.old.location -> Dublin

If eConfigProperties has no associated prefix, it means the prefix is empty. e.g.

@Inject @ConfigProperties Details details; //prefix is empty

The absence of the prefix means the prefix is empty, which overrides the prefix set on the bean
class server.. Therefore, this will retrieve the following properties.

details.host -> host -> anotherHost
details.port -> port -> 9082

details.endpoint -> endpoint -> book
details.getlocation() -> old.location -> Berlin

In the above two types of injection lookup, the configuration properties class should contain a zero-
arg constructor. Otherwise, the behaviour is unspecified. If any of the property is missing and there
is neither default value nor property is not optional, DeploymentException will be thrown. In order
to avoid this, you can supply a default value when defining the field. Alternatively, you can use
@ConfigProperty to provide a default value. You can also use Optional<T> or Optionallnt,
OptionalDouble, OptionalLong as the type. If any of the property value cannot be converted to the
specified type, DeploymentException will be thrown as well.

» programmatic look up via Config.getConfigProperties()

Config config = ConfigProvider.getConfig();

Details serverDetails = config.getConfigProperties(Details.class);

Details clientDetails = config.getConfigProperties(Details.class, "client.");
Details details = config.getConfigProperties(Details.class, ""); //use no prefix

In the above example, the serverDetails will contain the following info, because the prefix server.
on the bean class Details is in action:

serverDetails.host -> server.host -> localhost
serverDetails.port -> server.port -> 9080
serverDetails.endpoint -> server.endpoint -> query
serverDetails.getlLocation() -> server.old.location -> London

The clientDetails will retrieve the following properties, because the specified prefix client.
overrides the prefix on the bean class.

clientDetails.host -> client.host -> myHost
clientDetails.port -> client.port -> 9081
clientDetails.endpoint -> client.endpoint -> shelf
clientDetails.getlLocation() -> client.old.location -> Dublin

The empty prefix overrides the prefix set on the bean class server.. Therefore, this will retrieve the
following properties.

details.host -> host -> anotherHost
details.port -> port -> 9082

details.endpoint -> endpoint -> book
details.getlocation() -> old.location -> Berlin

In the above programmatic lookup, the configuration properties class should contain a zero-arg
constructor. Otherwise, the behaviour is unspecified.

If any of the property cannot be found and there is neither default value nor property is not
optional, java.util.NoSuchElementException will be thrown. In order to avoid this, you can supply a
default value when defining the field. Alternatively, you can use @ConfigProperty to provide a
default value. You can also use Optional<T> or Optionallnt, OptionalDouble, OptionalLong as the
type. If any ©property values cannot be converted to the specified type,
java.lang.I1legalArgumentException will be thrown.

When using programmatic lookup of the configuration properties, the configuration properties
class does not need to be annotated with @ConfigProperties, if no prefix is to be supplied. The usage
of the annotation ConfigProperties is only for supplying the prefix. However, when using injection
of the configuration properties, the configuration properties class, which should be a CDI bean,
must be annotated with @ConfigProperties. Otherwise, the fields will not be automatically resolved
to the corresponding configuration properties.

Accessing or Creating a certain
Configuration

For using MicroProfile Config in a programmatic way the ConfigProvider class is the central point to
access a configuration. It allows access to different configurations (represented by a Config
instance) based on the application in which it is used. The ConfigProvider internally delegates
through to the ConfigProviderResolver which contains more low-level functionality.

There are 4 different ways to create a Config instance:

* In CDI managed components, a user can use @Inject to access the current application

configuration. The default and the auto discovered ConfigSources will be gathered to form a
configuration. The default and the auto discovered Converters will be gathered to form a
configuration. Injected instance of Config should behave the same as the one retrieved by
ConfigProvider.getConfig(). Injected config property values should be the same as if retrieved
from an injected Config instance via Config.getValue().

* A factory method ConfigProvider#getConfig() to create a Config object based on automatically

picked up ConfigSources of the Application identified by the current Thread Context ClassLoader
classpath. The default and the auto discovered Converters will be gathered to form a
configuration. Subsequent calls to this method for a certain Application will return the same
Config instance.

* A factory method ConfigProvider#igetConfig(ClassLoader for(ClassLoader) to create a Config

object based on automatically picked up ConfigSources of the Application identified by the given
ClassLoader. The default and the auto discovered Converters will be gathered to form a
configuration. This can be used if the Thread Context ClassLoader does not represent the correct
layer. E.g. if you need the Config for a class in a shared EAR lib folder. Subsequent calls to this
method for a certain Application will return the same Config instance.

* A factory method ConfigProviderResolver#igetBuilder() to create a ConfigBuilder object. The

10

builder has no config sources. Only the default converters are added. The ConfigBuilder object
can be filled manually via methods like ConfigBuilder#withSources(ConfigSources -+ sources).
This configuration instance will by default not be shared by the ConfigProvider. This method is
intended be used if a IoC container or any other external Factory can be used to give access to a
manually created shared Config.

o Create a builder:

ConfigProviderResolver resolver = ConfigProviderResolver.instance();
ConfigBuilder builder = resolver.getBuilder();

o Add config sources and build:

Config config =
builder.addDefaultSources().withSources(mySource).withConverters(myConverter).bu
ild;

o (optional) Manage the lifecycle of the config

resolver.registerConfig(config, classloader);
resolver.releaseConfig(config);

The Config object created via builder pattern can be managed as follows:

* A factory method ConfigProviderResolver#iregisterConfig(Config config, (lasslLoader
classloader) can be used to register a Config within the application. This configuration instance
will be shared by ConfigProvider#getConfig(). Any subsequent call to
ConfigProvider#fgetConfig() will return the registered Config instance for this application.

* A factory method ConfigProviderResolver#freleaseConfig(Config config) to release the Config
instance. This will unbind the current Config from the application. The ConfigSources that
implement the java.io.(Closeable interface will be properly destroyed. The Converters that
implement the java.io.(Closeable interface will be properly destroyed. Any subsequent call to
ConfigProvider#getConfig() or ConfigProvider#getConfig(ClassLoader forClassLoader) will result
in a new Config instance.

All methods in the ConfigProvider, ConfigProviderResolver and Config implementations are thread
safe and reentrant.

The Config instances created via CDI are Serializable.

If a Config instance is created via @Inject Config or ConfigProvider#getConfig() or via the builder
pattern but later called ConfigProviderResolver#registerConfig(Config config, C(lassloader
classloader), the Config instance will be released when the application is closed.

11

ConfigSources

A ConfigSource is exactly what its name says: a source for configured values. The Config uses all
configured implementations of ConfigSource to look up the property in question.

ConfigSource Ordering

Each ConfigSource has a specified ordinal, which is used to determine the importance of the values
taken from the associated ConfigSource. A higher ordinal means that the values taken from this
ConfigSource will override values from lower-priority ConfigSources. This allows a configuration to
be customized from outside a binary, assuming that external ConfigSource s have higher ordinal
values than the ones whose values originate within the release binaries.

It can also be used to implement a drop-in configuration approach. Simply create a jar containing a
ConfigSource with a higher ordinal and override configuration values in it. If the jar is present on
the classpath then it will override configuration values from ConfigSources with lower ordinal
values.

Manually defining the Ordinal of a built-in
ConfigSource

Note that a special property config_ordinal can be set within any built-in ConfigSource
implementation. The default implementation of getOrdinal() will attempt to read this value. If
found and a valid integer, the value will be used. Otherwise the respective default value will be
used.

config_ordinal = 120
com.acme.myproject.someserver.url = http://more_important.server/some/endpoint

Default ConfigSources

A MicroProfile Config implementation must provide ConfigSources for the following data out of the
box:

» System properties (default ordinal=400).

* Environment variables (default ordinal=300).

* A ConfigSource for each property file META-INF/microprofile-config.properties found on the
classpath. (default ordinal = 100).

Environment Variables Mapping Rules

Some operating systems allow only alphabetic characters or an underscore, _, in environment
variables. Other characters such as ., /, etc may be disallowed. In order to set a value for a config
property that has a name containing such disallowed characters from an environment variable, the

12

following rules are used.

The ConfigSource for the environment variables searches three environment variables for a given

property name (e.g. com.ACME.size):

1. Exact match (i.e. com.ACME.size)

2. Replace each character that is neither alphanumeric nor _ with _ (i.e. com_ACME_size)

3. Replace each character that is neither alphanumeric nor _ with _; then convert the name to

upper case (i.e. COM_ACME_SIZE)

The first environment variable that is found is returned by this ConfigSource.

Custom ConfigSources

ConfigSources are discovered using the java.util.ServiceLoader mechanism.

To add a custom ConfigSource, implement the
org.eclipse.microprofile.config.spi.ConfigSource

public class CustomDbConfigSource implements ConfigSource {

public int getOrdinal() {
return 112;

}

public Set<String> getPropertyNames() {
return readPropertyNames();

}

public Map<String, String> getProperties() {
return readPropertiesFromDb();

}

public String getValue(String key) {
return readPropertyFromDb(key);
¥

public String getName() {
return "customDbConfig";

}

interface

13

Then register your implementation in a resource file /META-
INF/services/org.eclipse.microprofile.config.spi.ConfigSource by including the fully-qualified
class name of the custom implementation in the file.

Custom ConfigSources via ConfigSourceProvider

If you need dynamic ConfigSources you can also register a ConfigSourceProvider in a similar
manner. This is useful if you need to dynamically pick up multiple ConfigSources of the same kind;
for example, to pick up all myproject.properties resources from all the JARs in your classpath.

A custom ConfigSourceProvider must implement the interface
org.eclipse.microprofile.config.spi.ConfigSourceProvider. Register your implementation in a
resource file /META-INF/services/org.eclipse.microprofile.config.spi.ConfigSourceProvider by
including the fully-qualified class name of the custom implementation/s in the file.

An example which registers all YAML files with the name exampleconfig.yaml:

public class ExampleYamlConfigSourceProvider
implements org.eclipse.microprofile.config.spi.ConfigSourceProvider {

public List<ConfigSource> getConfigSources(ClassLoader forClassLoader) {
List<ConfigSource> configSources = new ArraylList<>();

Enumeration<URL> yamlFiles
= forClassLoader.getResources("sampleconfig.yaml");
while (yamlFiles.hasMoreElements()) {
configSources.add(new SampleYamlConfigSource(yamlFiles.nextElement()));

}

return configSources;

Please note that a single ConfigSource should be either registered directly or via a
ConfigSourceProvider, but never both ways.

Dynamic ConfigSource

As a ConfigSource is a view of configuration data, its data may be changing, or unchanging. If the
data is changing, and a ConfigSource can represent its changes, we call that ConfigSource a dynamic
ConfigSource, since at any two moments two operations on it may reflect two different sets of
underlying configuration data. If instead the data is unchanging, we call the ConfigSource a static
ConfigSource, since at any two moments two operations on it will reflect only one set of underlying
(unchanging) configuration data. A caller cannot know whether a ConfigSource is dynamic or static.

For the property lookup, the method config.getValue() or config.getOptionalValue() retrieves the
up-to-date value. Alternatively, for the injection style, the following lookup should be used to
retrieve the up-to-date value.

14

@Inject
@ConfigProperty(name="myprj.some.dynamic.timeout", defaultValue="100")
private javax.inject.Provider<Long> timeout;

Whether a ConfigSource supports this dynamic behavior or not depends on how it’s implemented.
For instance, the default ConfigSource microprofile-config.properties and Environment Variables
are not dynamic while System Properties are dynamic by nature. MicroProfile Config
Implementation can decide whether a ConfigSource can be dynamic or not.

Cleaning up a ConfigSource

If a ConfigSource implements the java.lang.AutoCloseable interface then the close() method will be
called when the underlying Config is being released.

ConfigSource and Mutable Data

A Config instance provides no caching but iterates over all ConfigSources for each getValue(String)
operation. A ConfigSource is allowed to cache the underlying values itself.

15

Converter

For providing type-safe configuration we need to convert from the configured Strings into target
types. This happens by providing Converters in the Config.

Built-in Converters

The following Converters are provided by MicroProfile Config by default:

* boolean and java.lang.Boolean, values for true (case insensitive) "true", "1", "YES", "Y" "ON". Any
other value will be interpreted as false

* byte and java.lang.Byte

* short and java.lang.Short

* int, java.lang.Integer, and java.util.Optionallnt

* long, java.lang.Long, and java.util.Optionallong

» float and java.lang.Float; a dot "."is used to separate the fractional digits

* double, java.lang.Double, and java.util.OptionalDouble; a dot "' is used to separate the fractional
digits

* char and java.lang.Character

* java.lang.(Class based on the result of Class. forName

All built-in Converters have the @Priority of 1.

Adding custom Converters

A custom Converter must implement the generic interface
org.eclipse.microprofile.config.spi.Converter. The Type parameter of the interface is the target
type the String is converted to. If your converter targets a wrapper of a primitive type (e.g.
java.lang.Integer), the converter applies to both the wrapper type and the primitive type (e.g int)
You have to register your implementation in a file /META-
INF/services/org.eclipse.microprofile.config.spi.Converter with the fully qualified class name of
the custom implementation.

A custom Converter can define a priority with the @javax.annotation.Priority annotation. If a
Priority annotation isn’t applied, a default priority of 100 is assumed. The Config will use the
Converter with the highest Priority for each target type.

A custom Converter for a target type of any of the built-in Converters will overwrite the default
Converter.

Converters can be added to the ConfigBuilder programmatically via
ConfigBuilder#withConverters(Converter<?>:-- converters) where the type of the converters can be
obtained via reflection. However, this is not possible for a lambda converter. In this case, use the
method ConfigBuilder#withConverter(Class<T> type, int priority, Converter<T> converter).

16

Array Converters

For the built-in converters and custom converters, the corresponding Array converters are
provided by default. The delimiter for the config value is ",". The escape character is "\". e.g. With
this config myPets=dog, cat,dog\, cat, the values as an array will be {"dog", "cat", "dog,cat"}.

Programmatic lookup

Array as a class type is supported in the programmatic lookup.
String[] myPets = config.getValue("myPets", String[].class);

myPets will be "dog", "cat", "dog,cat" as an array

Injection model

For the property injection, Array, List and Set are supported.

(name="myPets") String[] myPetsArray;
(name="myPets") List<String> myPetsList;
(name="myPets") Set<String> myPetsSet;

myPets will be "dog", "cat", "dog,cat" as an array, List or Set.

Automatic Converters

If no built-in nor custom Converter exists for a requested Type T, an implicit Converter is
automatically provided if the following conditions are met:

The target type T has a public static T of(String) method, or

The target type T has a public static T valueOf(String) method, or
* The target type T has a public static T parse(CharSequence) method, or

* The target type T has a public Constructor with a String parameter

Cleaning up a Converter

If a Converter implements the java.lang.AutoCloseable interface then the close() method will be
called when the underlying Config is being released.

17

Config Profile

Config Profile indicates the project phase, such as dev, testing, live, etc.

Specify Config Profile

The config profile can be specified via the property mp.config.profile, which can be set in any of
the configuration sources. The value of the property can contain only characters that are valid for
config property names. This is because the name of the profile is directly stored in the name of the
config property. It can be set when starting your application. e.g.

java -jar myapp.jar -Dmp.config.profile=testing

The value of the property mp.config.profile shouldn’t be updated after the application is started.
It’s only read once and will not be updated once the Config object is constructed. If the property
value of mp.config.profile is modified afterwards, the behavior is undefined and any changes to its
value made later can be ignored by the implementation.

The value of the property mp.config.profile specifies a single active profile. Only one profile can be
active at a time. Commas in the value have no special meaning. For example, if the value of
mp.config.profile is testing, live, a single profile named testing, live is active instead of two active
profiles. If the property mp.config.profile is specified in multiple config sources, the value of the
property is determined following the same rules as other configuration properties, which means
the value in the config source with the highest ordinal wins.

How Config Profile works

On Property level

The configuration property that utilizes the Config Profile is called a "profile-specific" property. A
"profile-specific" property name consists of the following sequence: % <profile name>.<original
property name>.

Conforming implementations are required to search for a configuration source with the highest
ordinal (priority) that provides either the property name or the "profile-specific" property name. If
the configuration source provides the "profile-specific" name, the value of the "profile-specific"
property will be returned. If it doesn’t contain the "profile-specific" name, the value of the plain
property will be returned.

For instance, a config source can be specified as follows.
%dev.vehicle.name=car
%live.vehicle.name=train

%testing.vehicle.name=bike
vehicle.name=1lorry

18

A config property associated with the Config Profile can be looked up as shown below.

@Inject @ConfigProperty(name="vehicle.name") String vehicleName;

String vehicleName = ConfigProvider.getConfig().getValue("vehicle.name",
String.class);

If the property mp.config.profile is set to dev, the property %dev.vehicle.name is the Active Property.
An active property overrides the properties in the same config source. In more details, if
mp.config.profile is set to dev, the property %dev.vehicle.name overrides the property vehicle.name.
The vehicleName will be set to car. The properties %live.vehicle.name and %testing.vehicle.name are
inactive config properties and don’t override the property vehicle.name.

If mp.config.profile is set to live, the property %live.vehicle.name is the active property. The
vehicleName will be train. Similarly, bike will be the value of vehicleName, if the profile is testing.

On Config Source level

Config Profile also affects the default config source microprofile-config.properties. If multiple
config sources exist under the META-INF folder on the classpath with the name like microprofile-
config-<profile_name>.properties, the config source matching the active profile name will also be
loaded on top of the default config source microprofile-config.properties. It means if the same
property specified in both config sources, the value from the config source microprofile-config-
<profile_name>.properties will be used instead. If the property mp.config.profile is specified in the
microprofile-config-<profile_name>.properties, this property will be discarded.

For instance, there are following config sources provided in your application.

META-INF\microprofile-config.properties
META-INF\microprofile-config-dev.properties
META-INF\microprofile-config-prod.properties
META-INF\microprofile-config-testing.properties

If the property mp.config.profile is set to dev, the config source microprofile-config-dev.properties
will be loaded onto the config source of microprofile-config.properties. Similarly, if
mp.config.profile is set to prod, the config source microprofile-config-prod.properties will be
loaded onto the config source of microprofile-config.properties. However, if mp.config.profile is
set to live, no additional property file will be loaded on the top of microprofile-config.properties
as the config source microprofile-config-live.properties does not exist.

19

Release Notes for MicroProfile Config 2.0

A full list of changes delivered in the 2.0 release can be found at MicroProfile Config 2.0 Milestone.

Incompatible Changes

* ConfigSource#getPropertyNames is no longer a default method. The implementation of a
ConfigSource must implement this method. (431)

API/SPI Changes

* Convenience methods have been added to Config allowing for the retrieval of multi-valued
properties as lists instead of arrays (#496)

Enable bulk-extraction of config properties into a separate POJO by introducing
@ConfigProperties (240)

* Enable users to determine the winning source for a configuration value (312) (43)

* Expose conversion mechanism in Config API (492)

Add unwrap() methods to Config (84)

Functional Changes

» Support Configuration Profiles so that the corresponding properties associated with the active
profile are used (#418)

» Provide built-in Converters: Optinallnt, OptionalLong and OptionalDouble (513)

* Clarifies that Converters for primitive wrappers apply to primitive types as well (520)

Other Changes

» Update to Jakart EE8 APIs for MP 4.0 (469)
* Enable MicroProfile Config repo to be built with Java 11 (555)
* TCK changes: (563) (319)

20

https://github.com/eclipse/microprofile-config/milestone/8?closed=1
https://github.com/eclipse/microprofile-config/issues/431
https://github.com/eclipse/microprofile-config/issues/496
https://github.com/eclipse/microprofile-config/issues/240
https://github.com/eclipse/microprofile-config/issues/312
https://github.com/eclipse/microprofile-config/issues/43
https://github.com/eclipse/microprofile-config/issues/492
https://github.com/eclipse/microprofile-config/issues/84
https://github.com/eclipse/microprofile-config/issues/418
https://github.com/eclipse/microprofile-config/issues/513
https://github.com/eclipse/microprofile-config/issues/520
https://github.com/eclipse/microprofile-config/issues/469
https://github.com/eclipse/microprofile-config/issues/555
https://github.com/eclipse/microprofile-config/issues/563
https://github.com/eclipse/microprofile-config/issues/319

Release Notes for MicroProfile Config 1.4

A full list of changes delivered in the 1.4 release can be found at MicroProfile Config 1.4 Milestone.

API/SPI Changes

* Prevent incorrect caching of ConfigProviderResolver (#265)
* ConfigProviderResolver classloading issues (#450) (#390)

* Converter extends Serializable (#473)

Spec Changes

* Change the priority of implicit converters (#383)
* Clarify if @ConfigProperty injected values are bean passivating enabled (#404)

* Add built-in converters for byte, short and char (#386)

Other Changes

» Exclude EL api transitive dependency (#440)

* Other minor spec wording or JavaDoc updates

21

https://github.com/eclipse/microprofile-config/milestone/7?closed=1
https://github.com/eclipse/microprofile-config/issues/265
https://github.com/eclipse/microprofile-config/issues/450
https://github.com/eclipse/microprofile-config/issues/390
https://github.com/eclipse/microprofile-config/issues/473
https://github.com/eclipse/microprofile-config/issues/383
https://github.com/eclipse/microprofile-config/issues/404
https://github.com/eclipse/microprofile-config/issues/386
https://github.com/eclipse/microprofile-config/issues/440

Release Notes for MicroProfile Config 1.3

The following changes occurred in the 1.3 release, compared to 1.2

A full list of changes may be found on the MicroProfile Config 1.3 Milestone

API/SPI Changes

No API/SPI changes.

Functional Changes

* The implicit (common sense) converters have been improved and some of the built-in
converters are removed from the spec as they are covered by implicit converters. The method
invocation sequence on implicit converters are further improved (#325).

* Implementations must also support the mapping of a config property to the corresponding
environment variable (#264)

Specification Changes

 Specification changes to document (#348), (#325), (#264)

Other Changes
More CTS were added:

» Assert URI will be converted (#322)
» Testing injecting an Optional<String> that has no config value (#336).

* Built-in converters are automatically added to the injected config ((#348)

Java2 security related change (#343)

22

https://github.com/eclipse/microprofile-config/milestone/4?closed=1
https://github.com/eclipse/microprofile-config/issues/325
https://github.com/eclipse/microprofile-config/issues/264
https://github.com/eclipse/microprofile-config/issues/348
https://github.com/eclipse/microprofile-config/issues/325
https://github.com/eclipse/microprofile-config/issues/264
https://github.com/eclipse/microprofile-config/issues/322
https://github.com/eclipse/microprofile-config/issues/336
https://github.com/eclipse/microprofile-config/issues/348
https://github.com/eclipse/microprofile-config/issues/343

Release Notes for MicroProfile Config 1.2

The following changes occurred in the 1.2 release, compared to 1.1

A full list of changes may be found on the MicroProfile Config 1.2 Milestone

API/SPI Changes

* The ConfigBuilder SPI has been extended with a method that allows for a converter with the
specified class type to be registered (#205). This change removes the limitation, which was
unable to add a lambda converter, from the previous releases.

Functional Changes

* Implementations must now support the array converter (#259). For the array converter, the
programmatic lookup of a property (e.g. config.getValue(myProp, String[].class)) must support
the return type of the array. For the injection lookup, an Array, List or Set must be supported as
well (e.g. 0Inject @ConfigProperty(name="myProp") private List<String> propValue;).

* Implementations must also support the common sense converters (#269) where there is no
corresponding type of converters provided for a given class. The implementation must use the
class’s constructor with a single string parameter, then try valueOf(String) followed by
parse(CharSequence).

* Implementations must also support Class converter (#267)

Specification Changes

* Specification changes to document (#205), (#259), (#269) (#267)

Other Changes
The API bundle can work with either CDI 1.2 or CDI 2.0 in OSGi environment (#249).

A tck test was added to ensure the search path of microprofile-config.properties for a war archive
is WEB-INF\classes\META-INF (#268)

23

https://github.com/eclipse/microprofile-config/milestone/3?closed=1
https://github.com/eclipse/microprofile-config/issues/205
https://github.com/eclipse/microprofile-config/issues/259
https://github.com/eclipse/microprofile-config/issues/269
https://github.com/eclipse/microprofile-config/issues/267
https://github.com/eclipse/microprofile-config/issues/205
https://github.com/eclipse/microprofile-config/issues/259
https://github.com/eclipse/microprofile-config/issues/269
https://github.com/eclipse/microprofile-config/issues/267
https://github.com/eclipse/microprofile-config/issues/249
https://github.com/eclipse/microprofile-config/issues/268

Release Notes for MicroProfile Config 1.1

The following changes occurred in the 1.1 release, compared to 1.0

A full list of changes may be found on the MicroProfile Config 1.1 Milestone

API/SPI Changes

» The ConfigSource SPI has been extended with a default method that returns the property names
for a given ConfigSource (#178)

Functional Changes

* Implementations must now include a URL Converter, of @Priority(1) (#181)

* The format of the default property name for an injection point using @ConfigProperty has been
changed to no longer lower case the first letter of the class. Implementations may still support
this behavior. Instead, MicroProfile Config 1.1 requires the actual class name to be used. (#233)

* Implementations must now support primitive types, in addition to the already specified
primtive type wrappers (#204)

Specification Changes

* Clarified what it means for a value to be present (#216)

24

https://github.com/eclipse/microprofile-config/milestone/2?closed=1
https://github.com/eclipse/microprofile-config/issues/178
https://github.com/eclipse/microprofile-config/issues/181
https://github.com/eclipse/microprofile-config/issues/233
https://github.com/eclipse/microprofile-config/issues/204
https://github.com/eclipse/microprofile-config/issues/216

	Configuration for MicroProfile
	Table of Contents
	MicroProfile Config
	Architecture
	Rationale

	Config Usage Examples
	Simple Programmatic Example
	Simple Dependency Injection Example
	Aggregate related properties into a single POJO Example

	Accessing or Creating a certain Configuration
	ConfigSources
	ConfigSource Ordering
	Manually defining the Ordinal of a built-in ConfigSource
	Default ConfigSources
	Environment Variables Mapping Rules

	Custom ConfigSources
	Custom ConfigSources via ConfigSourceProvider
	Dynamic ConfigSource
	Cleaning up a ConfigSource
	ConfigSource and Mutable Data

	Converter
	Built-in Converters
	Adding custom Converters
	Array Converters
	Programmatic lookup
	Injection model

	Automatic Converters
	Cleaning up a Converter

	Config Profile
	Specify Config Profile
	How Config Profile works
	On Property level
	On Config Source level

	Release Notes for MicroProfile Config 2.0
	Incompatible Changes
	API/SPI Changes
	Functional Changes
	Other Changes

	Release Notes for MicroProfile Config 1.4
	API/SPI Changes
	Spec Changes
	Other Changes

	Release Notes for MicroProfile Config 1.3
	API/SPI Changes
	Functional Changes
	Specification Changes
	Other Changes

	Release Notes for MicroProfile Config 1.2
	API/SPI Changes
	Functional Changes
	Specification Changes
	Other Changes

	Release Notes for MicroProfile Config 1.1
	API/SPI Changes
	Functional Changes
	Specification Changes

