
Microprofile Fault Tolerance
Emily Jiang, Antoine Sabot-Durant, Andrew Rouse

3.0-RC1, July 31, 2020



Table of Contents
1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.1. Rational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

2. Relationship to other specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2.1. Relationship to Contexts and Dependency Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2.2. Relationship to Jakarta Interceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2.3. Relationship to MicroProfile Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2.4. Relationship to MicroProfile Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

3. Fault Tolerance Interceptor(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

3.1. Custom throwables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

4. Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

5. Asynchronous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

5.1. Asynchronous Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

5.2. Interactions with other Fault Tolerance annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

5.2.1. Interactions when returning a Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

5.2.2. Interactions when returning a CompletionStage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

5.3. Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

6. Timeout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

6.1. Timeout Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

7. Retry Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

7.1. Retry usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

8. Fallback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

8.1. Fallback usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

8.1.1. Specify a FallbackHandler class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

8.1.2. Specify the fallbackMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

8.1.3. Specify the criteria for triggering Fallback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

9. Circuit Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

9.1. Circuit Breaker Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

9.1.1. Configuring when the circuit opens and closes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

9.1.2. Configuring which exceptions are considered a failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

9.1.3. Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

9.2. Interactions with other annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

10. Bulkhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

10.1. Bulkhead Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

10.1.1. Semaphore style Bulkhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

10.1.2. Thread pool style Bulkhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

10.1.3. Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

10.2. Interactions with other annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

11. Integration with MicroProfile Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24



11.1. Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

11.2. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

11.3. Metrics added for @Retry, @Timeout, @CircuitBreaker, @Bulkhead and @Fallback. . . . . . . . . . . . .  24

11.4. Metrics added for @Retry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

11.5. Metrics added for @Timeout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

11.6. Metrics added for @CircuitBreaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

11.7. Metrics added for @Bulkhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

11.8. Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

11.9. Annotation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

12. Fault Tolerance configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

12.1. Config Fault Tolerance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

12.2. Disable a group of Fault Tolerance annotations on the global level . . . . . . . . . . . . . . . . . . . . . .  31

12.3. Disabled individual Fault Tolerance policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

12.4. Configuring Metrics Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

13. Recommendations for Optional Container Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

13.1. @Asynchronous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

14. Release Notes for MicroProfile Fault Tolerance 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

14.1. API/SPI changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

14.2. Functional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

14.3. Specification changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

14.4. Other changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

15. Release Notes for MicroProfile Fault Tolerance 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

15.1. API/SPI changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

15.2. Functional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

15.3. Specification changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

15.4. Other changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

16. Release Notes for MicroProfile Fault Tolerance 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

16.1. API/SPI changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

16.2. Functional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

16.3. Specification changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

16.4. Other changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

17. Release Notes for MicroProfile Fault Tolerance 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

17.1. Backward incompatible changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

17.1.1. Metric names and scopes changed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

17.1.2. Lifecycle of circuit breakers and bulkheads is now specified . . . . . . . . . . . . . . . . . . . . . . . .  38

17.2. API/SPI changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

17.3. Functional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

17.4. Specification changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39



Specification: Microprofile Fault Tolerance

Version: 3.0-RC1

Status: Draft

Release: July 31, 2020

Copyright (c) 2016-2017 Eclipse Microprofile Contributors:
Emily Jiang

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0


Chapter 1. Architecture
This specification defines an easy to use and flexible system for building resilient applications.

1.1. Rational
It is increasingly important to build fault tolerant microservices. Fault tolerance is about leveraging
different strategies to guide the execution and result of some logic. Retry policies, bulkheads, and
circuit breakers are popular concepts in this area. They dictate whether and when executions
should take place, and fallbacks offer an alternative result when an execution does not complete
successfully.

As mentioned above, the Fault Tolerance specification is to focus on the following aspects:

• Timeout: Define a duration for timeout

• Retry: Define a criteria on when to retry

• Fallback: provide an alternative solution for a failed execution.

• CircuitBreaker: offer a way of fail fast by automatically failing execution to prevent the system
overloading and indefinite wait or timeout by the clients.

• Bulkhead: isolate failures in part of the system while the rest part of the system can still function.

The main design is to separate execution logic from execution. The execution can be configured
with fault tolerance policies, such as RetryPolicy, fallback, Bulkhead and CircuitBreaker.

Hystrix and Failsafe are two popular libraries for handling failures. This specification is to define a
standard API and approach for applications to follow in order to achieve the fault tolerance.

This specification introduces the following interceptor bindings:

• Timeout

• Retry

• Fallback

• CircuitBreaker

• Bulkhead

• Asynchronous

Refer to Interceptor Specification for more information.

2

https://download.oracle.com/otn-pub/jcp/interceptors-1_2A-mrel3-eval-spec/Intercept.pdf?AuthParam=1541543428_889968d50f535735cbabe343350e09a4


Chapter 2. Relationship to other
specifications
This specification defines a set of annotations to be used by classes or methods. The annotations are
interceptor bindings. Therefore, this specification depends on the Jakarta Interceptors and Contexts
and Dependency Injection specifications defined in Jakarta EE platform.

2.1. Relationship to Contexts and Dependency
Injection
The Contexts and Dependency Injection (CDI) specification defines a powerful component model to
enable loosely coupled architecture design. This specification explores the rich SPI provided by CDI
to register an interceptor so that the Fault Tolerance policies can be applied to the method
invocation.

2.2. Relationship to Jakarta Interceptors
The Jakarta Interceptors specification defines the basic programming model and semantics for
interceptors. This specification uses the typesafe interceptor bindings. The annotations
@Asynchronous, @Bulkhead, @CircuitBreaker, @Fallback, @Retry and @Timeout are all interceptor
bindings.

These annotations may be bound at the class level or method level. The annotations adhere to the
interceptor binding rules defined by Jakarta Interceptors specification.

For instance, if the annotation is bound to the class level, it applies to all business methods of the
class. If the component class declares or inherits a class level interceptor binding, it must not be
declared final, or have any static, private, or final methods. If a non-static, non-private method of a
component class declares a method level interceptor binding, neither the method nor the
component class may be declared final.

Since this specification depends on CDI and interceptors specifications, fault tolerance operations
have the following restrictions:

• Fault tolerance interceptors bindings must applied on a bean class or bean class method
otherwise it is ignored,

• invocation must be business method invocation as defined in CDI specification.

• if a method and its containing class don’t have any fault tolerance interceptor binding, it won’t
be considered as a fault tolerance operation.

2.3. Relationship to MicroProfile Config
The MicroProfile config specification defines a flexible config model to enable microservice
configurable and achieve the strict separation of config from code. All parameters on the
annotations/interceptor bindings are config properties. They can be configured externally either

3

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#biz_method


via other predefined config sources (e.g. environment variables, system properties or other
sources). For an instance, the maxRetries parameter on the @Retry annotation is a configuration
property. It can be configured externally.

2.4. Relationship to MicroProfile Metrics
The MicroProfile Metrics specification provides a way to monitor microservice invocations. It is
also important to find out how Fault Tolerance policies are operating, e.g.

• When Retry is used, it is useful to know how many times a method was called and succeeded
after retrying at least once.

• When Timeout is used, you would like to know how many times the method timed out.

Because of this requirement, when MicroProfile Fault Tolerance and MicroProfile Metrics are used
together, metrics are automatically added for each of the methods annotated with a @Retry,
@Timeout, @CircuitBreaker, @Bulkhead or @Fallback annotation.

4



Chapter 3. Fault Tolerance Interceptor(s)
The implementor of the MicroProfile Fault Tolerance specification must provide one or more Fault
Tolerance interceptors. The interceptor(s) provide the functionality for Fault Tolerance annotations.
The interceptor(s) will be called if one or more Fault Tolerance annotations are specified. For
instance, a Fault Tolerance interceptor will retry the specified operation if the Retry annotation is
specified on that operation. The base priority of the lowest priority Fault Tolerance interceptor is
Priority.PLATFORM_AFTER+10, which is 4010. If more than one Fault Tolerance interceptor is provided
by an implementation, the priority number taken by Fault Tolerance interceptor(s) should be in the
range of [base, base+40].

The Fault Tolerance interceptor base priority can be configured via MicroProfile Config with the
property name of mp.fault.tolerance.interceptor.priority. The property value will only be read at
application startup. Any subsequent value changes will not take effect until the application restarts.

A method, annotated with any of the Fault Tolerance interceptor bindings, may also be annotated
with other interceptor bindings. The bound interceptors will be invoked in ascending order of
interceptor priority, as specified by Interceptor Specification. If the appliction interceptors are
enabled via beans.xml, the interceptors enabled via beans.xml will be invoked after the Fault
Tolerance interceptor. For more details, refer to Interceptor ordering in CDI specification.

For instance, in the following example, MyLogInterceptor will be invoked first, followed by a Fault
Tolerance interceptor that does Retry capability, and then MyPrintInterceptor.

@Retry
@MyLog
@MyPrint
public void myInvoke() {
  // do something
}

@Priority(3000)
@MyLog
public class MyLogInterceptor {
  // do logging
}

@Priority(5000)
@MyPrint
public class MyPrintInterceptor {
  // do printing
}

3.1. Custom throwables
Throwing custom throwables from business methods annotated with any of the Fault Tolerance
interceptor bindings results in non-portable behavior. The term "custom throwable" means: any

5

https://download.oracle.com/otn-pub/jcp/interceptors-1_2A-mrel3-eval-spec/Intercept.pdf
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#enabled_interceptors


class that is a subtype of Throwable, but isn’t a subtype of Error or Exception. This includes Throwable
itself, and doesn’t include Error and Exception.

NOTE

Some Fault Tolerance annotations allow configuring a set of exception types for
various purposes. For example, @Retry includes the retryOn attribute which
configures the set of exceptions on which retry will be performed. In these cases, it
is possible to specify Throwable and it is guaranteed to cover all Errors and
Exceptions.

6



Chapter 4. Execution
Use interceptor and annotation to specify the execution and policy configuration. The annotation
Asynchronous has to be specified for any asynchronous calls. Otherwise, synchronous execution is
assumed.

7



Chapter 5. Asynchronous
Asynchronous means the execution of the client request will be on a separate thread.

5.1. Asynchronous Usage
A method or a class can be annotated with @Asynchronous, which means the method or the methods
under the class will be invoked by a separate thread. The context for RequestScoped must be active
during the asynchronous method invocation. The method annotated with @Asynchronous must
return a Future or a CompletionStage from the java.util.concurrent package. Otherwise, a
FaultToleranceDefinitionException occurs.

When a method annotated with @Asynchronous is invoked, it immediately returns a Future or
CompletionStage. The execution of the any remaining interceptors and the method body will then
take place on a separate thread.

• Until the execution has finished, the Future or CompletionStage which was returned will be
incomplete.

• If the execution throws an exception, the Future or CompletionStage will be completed with that
exception. (I.e. Future.get() will throw an ExecutionException which wraps the thrown
exception and any functions passed to CompletionStage.exceptionally() will run.)

• If the execution ends normally and returns a value, the Future or CompletionStage will be
behaviorally equivalent to the return value (which, itself, is a Future or CompletionStage).

@Asynchronous
public CompletionStage<Connection> serviceA() {
   Connection conn = null;
   counterForInvokingServiceA++;
   conn = connectionService();
   return CompletableFuture.completedFuture(conn);
}

The above code-snippet means that the Asynchronous policy is applied to the serviceA method, which
means that a call to serviceA will return a CompletionStage immediately and that execution of the
method body will be done on a different thread.

5.2. Interactions with other Fault Tolerance
annotations
The @Asynchronous annotation can be used together with @Timeout, @Fallback, @Bulkhead,
@CircuitBreaker and @Retry. In this case, the method invocation and any fault tolerance processing
will occur in a different thread. The returned Future or CompletionStage will be completed with the
final result once all other Fault Tolerance processing has been completed. However, the two
different return types have some differences.

8



5.2.1. Interactions when returning a Future

If a method returns a Future, the other Fault Tolerance annotations are applied only around the
method invocation regardless of whether the returned Future completes exceptionally or not. In
more detail:

• If the method invocation throws an exception, this will trigger other specified Fault Tolerance
policies to be applied.

• If the method returns a Future, then the method call is considered to be successful, which will
not trigger other Fault Tolerance policies to be applied even if specified.

In the following example, the Retry will not be triggered as the method invocation returns
normally.

@Asynchronous
@Retry
public Future<Connection> serviceA() {
   CompletableFuture<U> future = new CompletableFuture<>();
   future.completeExceptionally(new RuntimeException("Failure"));
   return future;
}

5.2.2. Interactions when returning a CompletionStage

If the method returns CompletionStage, the other specified Fault Tolerance annotations will be
triggered if either an exception is thrown from the method call or the returned CompletionStage
completes exceptionally. In more detail:

• If the method invocation throws an exception, this will trigger other specified Fault Tolerance
policies to be applied.

• If the method returns a CompletionStage, then the method call is not considered to have
completed until the returned CompletionStage completes.

◦ The method is considered to be successful only if the CompletionStage completes successfully.

◦ If an exceptionally completed CompletionStage is returned, or if an incomplete
CompletionStage is returned which later completes exceptionally, then this will cause other
specified Fault Tolerance policies to be applied.

TIP

As a consequence of these rules:

• @Timeout does not consider the method to have completed until the returned
CompletionStage completes

• @Bulkhead considers the method to still be running until the returned
CompletionStage completes.

In the following example, the Retry will be triggered as the returned CompletionStage completes
exceptionally.

9



@Asynchronous
@Retry
public CompletionStage<Connection> serviceA() {
   CompletableFuture<U> future = new CompletableFuture<>();
   future.completeExceptionally(new RuntimeException("Failure"));
   return future;
}

The above behaviour makes it easier to apply Fault Tolerance logic around a CompletionStage which
was returned by another component, e.g. applying @Asynchronous, @Retry and @Timeout to a JAX-RS
client call.

It is apparent that when using @Asynchronous, it is much more desirable to specify the return type
CompletionStage over Future to maximise the usage of Fault Tolerance.

5.3. Exception Handling
A call to a method annotated with @Asynchronous will never throw an exception directly. Instead, the
returned Future or CompletionStage will report that its task failed with the exception which would
have been thrown.

For example, if @Asynchronous is used with @Bulkhead on a method which returns a Future and the
bulkhead queue is full when the method is called, the method will return a Future where calling
isDone() returns true and calling get() will throw an ExecutionException which wraps a
BulkheadException.

10



Chapter 6. Timeout
Timeout prevents from the execution from waiting forever. It is recommended that a microservice
invocation should have timeout associated with.

6.1. Timeout Usage
A method or a class can be annotated with @Timeout, which means the method or the methods
under the class will have Timeout policy applied.

@Timeout(400) // timeout is 400ms
public Connection serviceA() {
   Connection conn = null;
   counterForInvokingServiceA++;
   conn = connectionService();
   return conn;
}

The above code-snippet means the method serviceA applies the Timeout policy, which is to fail the
execution if the execution takes more than 400ms to complete even if it successfully returns.

When a timeout occurs, A TimeoutException must be thrown. The @Timeout annotation can be used
together with @Fallback, @CircuitBreaker, @Asynchronous, @Bulkhead and @Retry.

When @Timeout is used without @Asynchronous, the current thread will be interrupted with a call to
Thread.interrupt() on reaching the specified timeout duration. The interruption will only work in
certain scenarios. The interruption will not work for the following situations:

• The thread is blocked on blocking I/O (database, file read/write), an exception is thrown only in
case of waiting for a NIO channel

• The thread isn’t waiting (CPU intensive task) and isn’t checking for being interrupted

• The thread will catch the interrupted exception (with a general catch block) and will just
continue processing, ignoring the interrupt

In the above situations, it is impossible to suspend the execution. The execution thread will finish
its process. If the execution takes longer than the specified timeout, the TimeoutException will be
thrown and the execution result will be discarded.

If a timeout occurs, the thread interrupted status must be cleared when the method returns.

If @Timeout is used with @Asynchronous, then a separate thread will be spawned to perform the work
in the annotated method or methods, while a Future or CompletionStage is returned on the main
thread. If the work on the spawned thread does time out, then a get() call to the Future on the main
thread will throw an ExecutionException that wraps a fault tolerance TimeoutException.

If @Timeout is used with @Fallback then the fallback method or handler will be invoked if a
TimeoutException is thrown (unless the exception is handled by another fault tolerance component).

11



If @Timeout is used with @Retry, a TimeoutException may trigger a retry, depending on the values of
retryOn and abortOn of the @Retry annotation. The timeout is restarted for each retry. If
@Asynchronous is also used and the retry is the result of a TimeoutException, the retry starts after any
delay period, even if the original attempt is still running.

If @Timeout is used with @CircuitBreaker, a TimeoutException may be counted as a failure by the
circuit breaker and contribute towards opening the circuit, depending on the value of failOn on the
@CircuitBreaker annotation.

If @Timeout is used with @Bulkhead and @Asynchronous, the execution time measured by @Timeout
should be the period starting when the execution is added to the Bulkhead queue, until the
execution completes. If a timeout occurs while the execution is still in the queue, it must be
removed from the queue and must not be started. If a timeout occurs while the method is
executing, the thread where the method is executing must be interrupted but the method must still
count as a running concurrent request for the Bulkhead until it actually returns.

12



Chapter 7. Retry Policy
In order to recover from a brief network glitch, @Retry can be used to invoke the same operation
again. The Retry policy allows to configure :

• maxRetries: the maximum retries

• delay: delays between each retry

• delayUnit: the delay unit

• maxDuration: maximum duration to perform the retry for.

• durationUnit: duration unit

• jitter: the random vary of retry delays

• jitterDelayUnit: the jitter unit

• retryOn: specify the failures to retry on

• abortOn: specify the failures to abort on

7.1. Retry usage
@Retry can be applied to the class or method level. If applied to a class, it means the all methods in
the class will have the @Retry policy applied. If applied to a method, it means that method will have
@Retry policy applied. If the @Retry policy applied on a class level and on a method level within that
class, the method level @Retry will override the class-level @Retry policy for that particular method.

When a method returns and the retry policy is present, the following rules are applied:

• If the method returns normally (doesn’t throw), the result is simply returned.

• Otherwise, if the thrown object is assignable to any value in the abortOn parameter, the thrown
object is rethrown.

• Otherwise, if the thrown object is assignable to any value in the retryOn parameter, the method
call is retried.

• Otherwise the thrown object is rethrown.

For example, to retry on all exceptions except for IO exceptions, one would write:

    /**
     * In case the underlying service throws an exception, it will be retried,
     * unless the thrown exception was an IO exception.
     */
    @Retry(retryOn = Exception.class, abortOn = IOException.class)
    public void service() {
        underlyingService();
    }

If a method throws a Throwable which is not an Error or Exception, non-portable behavior results.

13



    /**
     * The configured the max retries is 90 but the max duration is 1000ms.
     * Once the duration is reached, no more retries should be performed,
     * even through it has not reached the max retries.
     */
    @Retry(maxRetries = 90, maxDuration= 1000)
    public void serviceB() {
        writingService();
    }

    /**
    * There should be 0-800ms (jitter is -400ms - 400ms) delays
    * between each invocation.
    * there should be at least 4 retries but no more than 10 retries.
    */
    @Retry(delay = 400, maxDuration= 3200, jitter= 400, maxRetries = 10)
    public Connection serviceA() {
        return connectionService();
    }

    /**
    * There should be 0-400ms delays between each invocation.
    * The effective delay will be between:
    * [delay - jitter, delay + jitter] and always >= 0. Negative effective delays will
be 0.
    * There should be at least 8 retries but no more than 10 retries.
    */
    @Retry(delay = 0, maxDuration= 3200, jitter= 400, maxRetries = 10)
    public Connection serviceA() {
        return connectionService();
    }

    /**
    * Sets retry condition, which means Retry will be performed on
    * IOException.
    */
    @Retry(retryOn = {IOException.class})
    public void serviceB() {
        writingService();
    }

The @Retry annotation can be used together with @Fallback, @CircuitBreaker, @Asynchronous,
@Bulkhead and @Timeout.

A @Fallback can be specified and it will be invoked if the method still fails after any retires have
been run.

If @Retry is used with @Asynchronous and a retry is required, the new retry attempt may be run on
the same thread as the previous attempt, or on a different thread. (However, note that if @Retry is
used with @Timeout and @Asynchronous, and a TimeoutException results in a new retry attempt, the

14



new retry attempt must start after the configured delay period, even if the previous retry attempt
has not finished. See Timeout Usage.)

15



Chapter 8. Fallback
A Fallback method is invoked if a method annotated with @Fallback completes exceptionally.

The Fallback annotation can be used on its own or together with other Fault Tolerance annotations.
The fallback is invoked if an exception would be thrown after all other Fault Tolerance processing
has taken place.

For a Retry, Fallback is handled any time the Retry would exceed its maximum number of attempts.

For a CircuitBreaker, it is invoked any time the method invocation fails. When the Circuit is open,
the Fallback is always invoked.

8.1. Fallback usage
A method can be annotated with @Fallback, which means the method will have Fallback policy
applied. There are two ways to specify fallback:

• Specify a FallbackHandler class

• Specify the fallbackMethod

8.1.1. Specify a FallbackHandler class

If a FallbackHandler is registered for a method returning a different type than the FallbackHandler
would return, then the container should treat as an error and deployment fails.

FallbackHandlers are meant to be CDI managed, and should follow the life cycle of the scope of the
bean.

    @Retry(maxRetries = 1)
    @Fallback(StringFallbackHandler.class)
    public String serviceA() {
        counterForInvokingServiceA++;
        return nameService();
    }

The above code snippet means when the method failed and retry reaches its maximum retry, the
fallback operation will be performed. The method StringFallbackHandler.handle(ExecutionContext
context) will be invoked. The return type of StringFallbackHandler.handle(ExecutionContext

context) must be String. Otherwise, the FaultToleranceDefinitionException exception will be
thrown.

8.1.2. Specify the fallbackMethod

This is used to specify that a named method should be called if a fallback is required.

16



    @Retry(maxRetries = 2)
    @Fallback(fallbackMethod= "fallbackForServiceB")
    public String serviceB() {
        counterForInvokingServiceB++;
       return nameService();
    }

    private String fallbackForServiceB() {
        return "myFallback";
    }

The above code snippet means when the method failed and retry reaches its maximum retry, the
fallback operation will be performed. The method fallbackForServiceB will be invoked.

When fallbackMethod is used a FaultToleranceDefinitionException will be thrown if any of the
following constraints are not met:

• The named fallback method must be on the same class, a superclass or an implemented
interface of the class which declares the annotated method

• The named fallback method must have the same parameter types as the annotated method
(after resolving any type variables)

• The named fallback method must have the same return type as the annotated method (after
resolving any type variables)

• The named fallback method must be accessible from the class which declares the annotated
method

The parameter value and fallbackMethod on @Fallback cannot be specified at the same time.
Otherwise, the FaultToleranceDefinitionException exception will be thrown.

8.1.3. Specify the criteria for triggering Fallback

The fallback might be triggered when an exception occurs, including the ones defined in this spec
(e.g. BulkheadException, CircuitBreakerOpenException, TimeoutException, etc), detailed below. When a
method returns and the Fallback policy is present, the following rules are applied:

• If the method returns normally (doesn’t throw an exception), the result will be simply returned.

• Otherwise, if the thrown object is assignable to any value in the skipOn parameter, the thrown
object will be rethrown.

• Otherwise, if the thrown object is assignable to any value in the applyOn parameter, the specified
fallback will be triggered.

• Otherwise the thrown object will be rethrown. In the following example, all exceptions
assignable to ExceptionA and ExceptionB, except the ones assignable to ExceptionBSub will trigger
the fallback operation.

17



    @Retry(maxRetries = 2)
    @Fallback(applyOn={ExceptionA.class, ExceptionB.class}, skipOn=ExceptionBSub.
class, fallbackMethod= "fallbackForServiceB")
    public String serviceB() {
       return nameService();
    }

    private String fallbackForServiceB() {
        return "myFallback";
    }

If a method throws a Throwable which is not an Error or Exception, non-portable behavior results.

18



Chapter 9. Circuit Breaker
A Circuit Breaker prevents repeated failures, so that dysfunctional services or APIs fail fast. If a
service is failing frequently, the circuit breaker opens and no more calls to that service are
attempted until a period of time has passed.

There are three circuit states:

• Closed: In normal operation, the circuit breaker is closed. The circuit breaker records whether
each call is a success or failure and keeps track of the most recent results in a rolling window.
Once the rolling window is full, if the proportion of failures in the rolling window rises above
the failureRatio, the circuit breaker will be opened.

• Open: When the circuit breaker is open, calls to the service operating under the circuit breaker
will fail immediately with a CircuitBreakerOpenException. After a configurable delay, the circuit
breaker transitions to half-open state.

• Half-open: In half-open state, a configurable number of trial executions of the service are
allowed. If any of them fail, the circuit breaker transitions back to open state. If all the trial
executions succeed, the circuit breaker transitions to the closed state.

9.1. Circuit Breaker Usage
A method or a class can be annotated with @CircuitBreaker, which means the method or the
methods under the class will have CircuitBreaker policy applied.

9.1.1. Configuring when the circuit opens and closes

The following parameters control when the circuit breaker opens and closes.

• requestVolumeThreshold controls the size of the rolling window used when the circuit breaker is
closed

• failureRatio controls the proportion of failures within the rolling window which will cause the
circuit breaker to open

• successThreshold controls the number of trial calls which are allowed when the circuit breaker
is half-open

• delay and delayUnit control how long the circuit breaker stays open

Circuit breaker state transitions will reset the Circuit Breaker’s records. For example, when the
circuit breaker transitions to closed a new rolling failure window is created with the configured
requestVolumeThreshold and failureRatio. The circuit state will only be assessed when the rolling
window reaches the requestVolumeThreshold.

The following example and scenarios demonstrate when the circuit opens.

19



@CircuitBreaker(successThreshold = 10, requestVolumeThreshold = 4, failureRatio=0.5,
delay = 1000)
public Connection serviceA() {
   Connection conn = null;
   counterForInvokingServiceA++;
   conn = connectionService();
   return conn;
}

• Scenario 1

◦ Request 1 - success

◦ Request 2 - failure

◦ Request 3 - success

◦ Request 4 - success

◦ Request 5 - failure

◦ Request 6 - CircuitBreakerOpenException

In this scenario, request 5 will trigger the circuit to open because out of the last four requests (the
requestVolumeThreshold), two failed which reaches the failureRatio of 0.5. Request 6 will therefore
hit the CircuitBreakerOpenException.

• Scenario 2

◦ Request 1 - success

◦ Request 2 - failure

◦ Request 3 - failure

◦ Request 4 - success

◦ Request 5 - CircuitBreakerOpenException

In this scenario, request 4 will cause the circuit to open. Request 5 will hit the
CircuitBreakerOpenException. Note that request 3 does not cause the circuit to open because the
rolling window has not yet reached the requestVolumeThreshold.

9.1.2. Configuring which exceptions are considered a failure

The failOn and skipOn parameters are used to define which exceptions are considered failures for
the purpose of deciding whether the circuit breaker should open.

When a method returns a result, the following rules are applied to determine whether the result is
a success or a failure:

• If the method does not throw a Throwable, it is considered a success

• Otherwise, if the thrown object is assignable to any value in the skipOn parameter, is is
considered a success

20



• Otherwise, if the thrown object is assignable to any value in the failOn parameter, it is
considered a failure

• Otherwise it is considered a success

If a method throws a Throwable which is not a subclass of either Error or Exception, non-portable
behavior results.

In the following example, all exceptions assignable to ExceptionA and ExceptionB, except the ones
assignable to ExeptionBSub will be considered failures. ExceptionBSub and all other exceptions will
not be considered failures for the purpose of deciding whether the circuit breaker should open.

@CircuitBreaker(failOn = {ExceptionA.class, ExceptionB.class}, skipOn = ExceptionBSub
.class)
public void service() {
    underlyingService();
}

9.1.3. Lifecycle

Circuit breaker needs to maintain some state between invocations: the number of recent successful
and failed invocations, or how long has the circuit breaker been open. This state is a singleton,
irrespective of the lifecycle of the bean that uses the @CircuitBreaker annotation.

More specifically, the circuit breaker state is uniquely identified by the combination of the bean
class (java.lang.Class) and the method object (java.lang.reflect.Method) representing the guarded
method.

For example, if there’s a guarded method doWork on a bean which is @RequestScoped, each request
will have its own instance of the bean, but all invocations of doWork will share the same circuit
breaker state.

9.2. Interactions with other annotations
The @CircuitBreaker annotation can be used together with @Timeout, @Fallback, @Asynchronous,
@Bulkhead and @Retry.

If @Fallback is used with @CircuitBreaker, the fallback method or handler will be invoked if a
CircuitBreakerOpenException is thrown.

If @Retry is used with @CircuitBreaker, each retry attempt is processed by the circuit breaker and
recorded as either a success or a failure. If a CircuitBreakerOpenException is thrown, the execution
may be retried, depending on how the @Retry is configured.

If @Bulkhead is used with @Circuitbreaker, the circuit breaker is checked before attempting to enter
the bulkhead. If attempting to enter the bulkhead results in a BulkheadException, this may be
counted as a failure, depending on the value of the circuit breaker failOn attribute.

21



Chapter 10. Bulkhead
The Bulkhead pattern is to prevent faults in one part of the system from cascading to the entire
system, which might bring down the whole system. The implementation is to limit the number of
concurrent requests accessing an instance. Therefore, Bulkhead pattern is only effective when
applying @Bulkhead to a component that can be accessed from multiple contexts.

10.1. Bulkhead Usage
A method or class can be annotated with @Bulkhead, which means the method or the methods under
the class will have Bulkhead policy applied correspondingly. There are two different approaches to
the bulkhead: thread pool isolation and semaphore isolation. When @Bulkhead is used with
@Asynchronous, the thread pool isolation approach will be used. If @Bulkhead is used without
@Asynchronous, the semaphore isolation approach will be used. The thread pool approach allows to
configure the maximum concurrent requests together with the waiting queue size. The semaphore
approach only allows the concurrent number of requests configuration.

10.1.1. Semaphore style Bulkhead

The below code-snippet means the method serviceA applies the Bulkhead policy with the semaphore
approach, limiting the maximum concurrent requests to 5.

@Bulkhead(5) // maximum 5 concurrent requests allowed
public Connection serviceA() {
   Connection conn = null;
   counterForInvokingServiceA++;
   conn = connectionService();
   return conn;
}

When using the semaphore approach, on reaching maximum request counter, the extra request
will fail with BulkheadException.

10.1.2. Thread pool style Bulkhead

The below code-snippet means the method serviceA applies the Bulkhead policy with the thread pool
approach, limiting the maximum concurrent requests to 5 and the waiting queue size to 8.

22



// maximum 5 concurrent requests allowed, maximum 8 requests allowed in the waiting
queue
@Asynchronous
@Bulkhead(value = 5, waitingTaskQueue = 8)
public Future<Connection> serviceA() {
   Connection conn = null;
   counterForInvokingServiceA++;
   conn = connectionService();
   return CompletableFuture.completedFuture(conn);
}

When using the thread pool approach, when a request cannot be added to the waiting queue,
BulkheadException will be thrown.

10.1.3. Lifecycle

Bulkhead needs to maintain some state between invocations: the number of currently running
executions, or the queue of waiting executions. This state is a singleton, irrespective of the lifecycle
of the bean that uses the @Bulkhead annotation.

More specifically, the bulkhead state is uniquely identified by the combination of the bean class
(java.lang.Class) and the method object (java.lang.reflect.Method) representing the guarded
method.

For example, if there’s a guarded method doWork on a bean which is @RequestScoped, each request
will have its own instance of the bean, but all invocations of doWork will share the same bulkhead
state.

10.2. Interactions with other annotations
The @Bulkhead annotation can be used together with @Fallback, @CircuitBreaker, @Asynchronous,
@Timeout and @Retry.

If a @Fallback is specified, it will be invoked if the BulkheadException is thrown.

If @Retry is used with @Bulkhead, when an invocation fails due to a BulkheadException it is retried
after waiting for the delay configured on @Retry. If an invocation is permitted to run by the
bulkhead but then throws another exception which is handled by @Retry, it first leaves the
bulkhead, reducing the count of running concurrent requests by 1, waits for the delay configured
on @Retry, and then attempts to enter the bulkhead again. At this point, it may be accepted, queued
(if the method is also annotated with @Asynchronous) or fail with a BulkheadException (which may
result in further retries).

23



Chapter 11. Integration with MicroProfile
Metrics
When Microprofile Fault Tolerance and Microprofile Metrics are used together, metrics are
automatically added for each of the methods annotated with a @Retry, @Timeout, @CircuitBreaker,
@Bulkhead or @Fallback annotation.

11.1. Names
The automatically added metrics follow a consistent pattern which includes the fully qualified
name of the annotated method.

If two methods have the same fully qualified name then the metrics for those methods will be
combined. The result of this combination is non-portable and may vary between implementations.
For portable behavior, monitored methods in the same class should have unique names.

11.2. Scope
Metrics added by this specification will appear in the base MicroProfile Metrics scope.

11.3. Metrics added for @Retry, @Timeout, @CircuitBreaker,
@Bulkhead and @Fallback
Implementations must ensure that if any of these annotations are present on a method, then the
following metrics are added only once for that method.

Name ft.invocations.total

Type Counter

Unit None

Description The number of times the method was called

Tags • method - the fully qualified method name

• result = [valueReturned|exceptionThrown] - whether the invocation returned a
value or threw an exception

• fallback = [applied|notApplied|notDefined] - applied if fallback was used,
notApplied if a fallback is configured but was not used, notDefined if a fallback
is not configured

11.4. Metrics added for @Retry

Name ft.retry.calls.total

Type Counter

24



Name ft.retry.calls.total

Unit None

Description The number of times the retry logic was run. This will always be once per method
call.

Tags • method - the fully qualified method name

• retried = [true|false] - whether any retries occurred

• retryResult =
[valueReturned|exceptionNotRetryable|maxRetriesReached|maxDurationReached]

- the reason that last attempt to call the method was not retried

Name ft.retry.retries.total

Type Counter

Unit None

Description The number of times the method was retried

Tags • method - the fully qualified method name

11.5. Metrics added for @Timeout

Name ft.timeout.calls.total

Type Counter

Unit None

Description The number of times the timeout logic was run. This will usually be once per
method call, but may be zero times if the circuit breaker prevents execution or
more than once if the method is retried.

Tags • method - the fully qualified method name

• timedOut = [true|false] - whether the method call timed out

Name ft.timeout.executionDuration

Type Histogram

Unit Nanoseconds

Description Histogram of execution times for the method

Tags • method - the fully qualified method name

11.6. Metrics added for @CircuitBreaker

Name ft.circuitbreaker.calls.total

Type Counter

25



Name ft.circuitbreaker.calls.total

Unit None

Description The number of times the circuit breaker logic was run. This will usually be once
per method call, but may be more than once if the method call is retried.

Tags • method - the fully qualified method name

• circuitBreakerResult = [success|failure|circuitBreakerOpen] - the result of
the method call, as considered by the circuit breaker according to the rules in
Configuring which exceptions are considered a failure

◦ success - the method ran and was successful

◦ failure - the method ran and failed

◦ circuitBreakerOpen - the method did not run because the circuit breaker
was in open or half-open state

Name ft.circuitbreaker.state.total

Type Gauge<Long>

Unit Nanoseconds

Description Amount of time the circuit breaker has spent in each state

Tags • method - the fully qualified method name

• state = [open|closed|halfOpen] - the circuit breaker state

Notes Although this metric is a Gauge, its value increases monotonically.

Name ft.circuitbreaker.opened.total

Type Counter

Unit None

Description Number of times the circuit breaker has moved from closed state to open state

Tags • method - the fully qualified method name

11.7. Metrics added for @Bulkhead

Name ft.bulkhead.calls.total

Type Counter

Unit None

Description The number of times the bulkhead logic was run. This will usually be once per
method call, but may be zero times if the circuit breaker prevented execution or
more than once if the method call is retried.

26



Name ft.bulkhead.calls.total

Tags • method - the fully qualified method name

• bulkheadResult = [accepted|rejected] - whether the bulkhead allowed the
method call to run

Name ft.bulkhead.executionsRunning

Type Gauge<Long>

Unit None

Description Number of currently running executions

Tags • method - the fully qualified method name

Name ft.bulkhead.executionsWaiting

Type Gauge<Long>

Unit None

Description Number of executions currently waiting in the queue

Tags • method - the fully qualified method name

Notes Only added if the method is also annotated with @Asynchronous

Name ft.bulkhead.runningDuration

Type Histogram

Unit Nanoseconds

Description Histogram of the time that method executions spent running

Tags • method - the fully qualified method name

Name ft.bulkhead.waitingDuration

Type Histogram

Unit Nanoseconds

Description Histogram of the time that method executions spent waiting in the queue

Tags • method - the fully qualified method name

Notes Only added if the method is also annotated with @Asynchronous

11.8. Notes
Future versions of this specification may change the definitions of the metrics which are added to
take advantage of enhancements in the MicroProfile Metrics specification.

If more than one annotation is applied to a method, the metrics associated with each annotation

27



will be added for that method.

All of the counters count the number of events which occurred since the application started, and
therefore never decrease. It is expected that these counters will be sampled regularly by
monitoring software which is then able to compute deltas or moving averages from the gathered
samples.

11.9. Annotation Example

package com.exmaple;

@Timeout(1000)
public class MyClass {

    @Retry
    public void doWork() {
        // work
    }

}

This class would result in the following metrics being added.

ft.invocations.total{method="com.example.MyClass.doWork", result="valueReturned",
fallback="notDefined"}
ft.invocations.total{method="com.example.MyClass.doWork", result="exceptionThrown",
fallback="notDefined"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="true",
retryResult="valueReturned"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="true",
retryResult="exceptionNotRetryable"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="true",
retryResult="maxRetriesReached"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="true",
retryResult="maxDurationReached"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="false",
retryResult="valueReturned"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="false",
retryResult="exceptionNotRetryable"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="false",
retryResult="maxRetriesReached"}
ft.retry.calls.total{method="com.example.MyClass.doWork", retried="false",
retryResult="maxDurationReached"}
ft.retry.retries.total{method="com.example.MyClass.doWork"}
ft.timeout.calls.total{method="com.example.MyClass.doWork", timedOut="true"}
ft.timeout.calls.total{method="com.example.MyClass.doWork", timedOut="false"}
ft.timeout.executionDuration{method="com.example.MyClass.doWork"}

28



Now imagine the doWork() method is called and the invocation goes like this:

• On the first attempt, the invocation takes more than 1000ms and times out

• The invocation is retried but something goes wrong and the method throws an IOException

• The invocation is retried again and this time the method returns successfully and the result of
this attempt is returned to the user

After this sequence, the following metrics would have new values:

ft.invocations.total{method="com.example.MyClass.doWork", result="valueReturned",
fallback="notDefined"} = 1

The method has been called successfully once and it returned a value.

ft.retry.calls.total{method="com.example.MyClass.doWork", retried="true",
retryResult="valueReturned"} = 1

One call was made and, after some retries, it returned a value.

ft.retry.retries.total{method="com.example.MyClass.doWork"} = 2

Two retries were made during the invocation.

ft.timeout.executionDuration{method="com.example.MyClass.doWork"}

The Histogram will have been updated with the length of time taken for each attempt. It will show a
count of 3 and will have calculated averages and percentiles from the execution times.

ft.timeout.calls.total{method="com.example.MyClass.doWork", timedOut="true"} = 1

One of the attempts timed out.

ft.timeout.calls.total{method="com.example.MyClass.doWork", timedOut="false"} = 2

Two of the attempts did not time out.

29



Chapter 12. Fault Tolerance configuration
This specification defines the programming model to build a resilient microservice. Microservices
developed using this feature are guaranteed to be resilient despite of running environments.

This programming model is very flexible. All the annotation parameters are configurable and the
annotations can be disabled as well.

12.1. Config Fault Tolerance parameters
This specification defines the annotations: @Asynchronous, @Bulkhead, @CircuitBreaker, @Fallback,
@Retry and @Timeout. Each annotation except @Asynchronous has parameters. All of the parameters
are configurable. The value of each parameter can be overridden individually or globally.

• Override individual parameters The annotation parameters can be overwritten via config
properties in the naming convention of <classname>/<methodname>/<annotation>/<parameter>.

The <classname> and <methodname> must be the class name and method name where the annotation
is declared upon.

In the following code snippet, in order to override the maxRetries for serviceB invocation to 100, set
the config property com.acme.test.MyClient/serviceB/Retry/maxRetries=100 Similarly to override the
maxDuration for ServiceA, set the config property

com.acme.test.MyClient/serviceA/Retry/maxDuration=3000

• Override parameters globally

If the parameters for a particular annotation need to be configured with the same value for a
particular class, use the config property <classname>/<annotation>/<parameter> for configuration.
For an instance, use the following config property to override all maxRetries for Retry specified on
the class MyClient to 100.

com.acme.test.MyClient/Retry/maxRetries=100

Sometimes, the parameters need to be configured with the same value for the whole microservice.
For an instance, all Timeout needs to be set to 100ms. It can be cumbersome to override each
occurrence of Timeout. In this circumstance, the config property <annotation>/<parameter> overrides
the corresponding parameter value for the specified annotation. For instance, in order to override
the maxRetries for the Retry to be 30, specify the config property Retry/maxRetries=30.

When multiple config properties are present, the property
<classname>/<methodname>/<annotation>/<parameter> takes precedence over
<classname>/<annotation>/<parameter>, which is followed by <annotation>/<parameter>.

The override just changes the value of the corresponding parameter specified in the microservice
and nothing more. If no annotation matches the specified parameter, the property will be ignored.
For instance, if the annotation Retry is specified on the class level for the class com.acme.ClassA,
which has method methodB, the config property com.acme.ClassA/methodB/Retry/maxRetries will be
ignored. In order to override the property, the config property com.acme.ClassA/Retry/maxRetries or

30



Retry/maxRetries needs to be specified.

package come.acme.test;
public class MyClient{
    /**
     * The configured the max retries is 90 but the max duration is 1000ms.
     * Once the duration is reached, no more retries should be performed,
     * even through it has not reached the max retries.
     */
    @Retry(maxRetries = 90, maxDuration= 1000)
    public void serviceB() {
        writingService();
    }

    /**
    * There should be 0-800ms (jitter is -400ms - 400ms) delays
    * between each invocation.
    * there should be at least 4 retries but no more than 10 retries.
    */
    @Retry(delay = 400, maxDuration= 3200, jitter= 400, maxRetries = 10)
    public Connection serviceA() {
        return connectionService();
    }

    /**
    * Sets retry condition, which means Retry will be performed on
    * IOException.
    */
    @Retry(retryOn = {IOException.class})
    public void serviceB() {
        writingService();
    }

}

If an annotation is not present, the configured properties are ignored. For instance, the property
com.acme.ClassA/methodB/Retry/maxRetries will be ignored if @Retry annotation is not specified on
the methodB of com.acme.ClassA. Similarly, the property com.acme.ClassA/Retry/maxRetries will be
ignored if @Retry annotation is not specified on the class com.acme.ClassA as a class-level annotation.

12.2. Disable a group of Fault Tolerance annotations on
the global level
Some service mesh platforms, e.g. Istio, have their own Fault Tolerance policy. The operation team
might want to use the platform Fault Tolerance. In order to fulfil the requirement, MicroProfile
Fault Tolerance provides a capability to have its resilient functionalities disabled except fallback.
The reason fallback is special is that the fallback business logic can only be defined by
microservices and not by any other platforms.

31



Setting the config property of MP_Fault_Tolerance_NonFallback_Enabled with the value of false
means the Fault Tolerance is disabled, except @Fallback. If the property is absent or with the value
of true, it means that MicroProfile Fault Tolerance is enabled if any annotations are specified. For
more information about how to set config properties, refer to MicroProfile Config specification.

In order to prevent from any unexpected behaviours, the property
MP_Fault_Tolerance_NonFallback_Enabled will only be read on application starting. Any dynamic
changes afterwards will be ignored until the application restarting.

12.3. Disabled individual Fault Tolerance policy
Fault Tolerance policies can be disabled with configuration at method level, class level or globally
for all deployment. If multiple configurations are specified, method-level configuration overrides
class-level configuration, which then overrides global configuration. e.g.

• com.acme.test.MyClient/methodA/CircuitBreaker/enabled=false

• com.acme.test.MyClient/CircuitBreaker/enabled=true

• CircuitBreaker/enabled=false

For the above scenario, all occurrences of CircuitBreaker for the application are disabled except for
those on the class com.acme.test.MyClient. All occurrences of CircuitBreaker on
com.acme.test.MyClient are enabled, except for the one on methodA which is disabled.

Each policy can be disabled by using its annotation name.

• Disabling a policy at Method level

A policy can be disabled at method level with the following config property and value:

<classname>/<methodname>/<annotation>/enabled=false

For instance the following config will disable circuit breaker policy on methodA of
com.acme.test.MyClient class:

com.acme.test.MyClient/methodA/CircuitBreaker/enabled=false

Policy will be disabled even if the policy is also defined at class level

• Disabling a policy at class level

A policy can be disabled at class level with the following config property and value:

<classname>/<annotation>/enabled=false

For instance the following config will disable fallback policy on com.acme.test.MyClient class:

com.acme.test.MyClient/Fallback/enabled=false

Policy will be disabled on all class methods even if a method has the policy.

• Disabling a policy globally

32



A policy can be disabled globally with the following config property and value:

<annotation>/enabled=false

For instance the following config will disable bulkhead policy globally:

Bulkhead/enabled=false

Policy will be disabled everywhere ignoring existing policy annotations on methods and classes.

If the above configurations patterns are used with a value other than true or false (i.e.
<classname>/<methodname>/<annotation>/enabled=whatever) non-portable behaviour results.

When the above property is used together with the property
MP_Fault_Tolerance_NonFallback_Enabled, the property MP_Fault_Tolerance_NonFallback_Enabled has
the lowest priority. e.g.

• MP_Fault_Tolerance_NonFallback_Enabled=true

• Bulkhead/enabled=true

In the above example, only Fallback and Bulkhead are enabled while the others are disabled.

12.4. Configuring Metrics Integration
The integration with MicroProfile Metrics can be disabled by setting a config property named
MP_Fault_Tolerance_Metrics_Enabled to the value false. If this property is absent or set to true then
the integration with MicroProfile Metrics will be enabled and the metrics listed earlier in this
specification will be added automatically for every method annotated with a @Retry, @Timeout,
@CircuitBreaker, @Bulkhead or @Fallback annotation.

In order to prevent any unexpected behaviour, the property MP_Fault_Tolerance_Metrics_Enabled
will only be read when the application starts. Any dynamic changes afterwards will be ignored
until the application is restarted.

33



Chapter 13. Recommendations for Optional
Container Integration
This section describes the expected behaviors when the implementation runs in a Jakarta EE
container.

13.1. @Asynchronous
Threads that are servicing @Asynchronous invocations should, for the duration of the invocation,
have the correct security context and naming context associated.

34



Chapter 14. Release Notes for MicroProfile
Fault Tolerance 1.1
The following changes occurred in the 1.1 release, compared to 1.0

A full list of changes can be found on the MicroProfile Fault Tolerance 1.1 Milestone

14.1. API/SPI changes
• The ExecutionContext interface has been extended with a getFailure method that returns the

execution failure(#224).

14.2. Functional changes
• Implementations must implement the new method of ExecutionContext.getFailure()(#224).

• Added metrics status automatically for FT (#234)

• Disable individual Fault Tolerance annotation using external config (#109)

• Define priority when multiple properties declared (link: #278)

14.3. Specification changes
• Implementations must implement the new method of ExecutionContext.getFailure()(#224).

• Added metrics status automatically for FT (#234)

• Disable individual Fault Tolerance annotation using external config (#109)

• Define priority when multiple properties declared (link: #278)

• Clarify fallback (#177)

14.4. Other changes
• Bulkhead TCK changes (#227)

• Add standalone async test (#194)

• Add more configuration test (#182)

• Circuit Breaker Rolling window behaviour test (#197)

• Improve Bulkhead test (#198)

35

https://github.com/eclipse/microprofile-fault-tolerance/milestone/3
https://github.com/eclipse/microprofile-fault-tolerance/issues/224
https://github.com/eclipse/microprofile-fault-tolerance/issues/224
https://github.com/eclipse/microprofile-fault-tolerance/issues/234
https://github.com/eclipse/microprofile-fault-tolerance/issues/109
https://github.com/eclipse/microprofile-fault-tolerance/issues/278
https://github.com/eclipse/microprofile-fault-tolerance/issues/224
https://github.com/eclipse/microprofile-fault-tolerance/issues/234
https://github.com/eclipse/microprofile-fault-tolerance/issues/109
https://github.com/eclipse/microprofile-fault-tolerance/issues/278
https://github.com/eclipse/microprofile-fault-tolerance/issues/177
https://github.com/eclipse/microprofile-fault-tolerance/issues/227
https://github.com/eclipse/microprofile-fault-tolerance/issues/194
https://github.com/eclipse/microprofile-fault-tolerance/issues/182
https://github.com/eclipse/microprofile-fault-tolerance/issues/197
https://github.com/eclipse/microprofile-fault-tolerance/issues/198


Chapter 15. Release Notes for MicroProfile
Fault Tolerance 2.0
This release is a major release of Fault Tolerance. The reason for increasing the release version to
2.0 is that this release upgrades its CDI dependency from CDI 1.2 to CDI 2.0, in order to use the new
features introduced by CDI 2.0. Therefore, this specification is not compatible with Java EE7 but is
compatible with Java EE8. Other than this, there are no backward incompatible changes introduced
in this specification.

The following changes occurred in the 2.0 release, compared to 1.1.

A full list of changes can be found on the MicroProfile Fault Tolerance 2.0 Milestone

15.1. API/SPI changes
• Add support of the CompletionStage return type when annotated with @Asynchronous (#110).

15.2. Functional changes
• Specify the invocation sequence of MicroProfile Fault Tolerance annotations when used

together (#291)

• Clarify how the Fault Tolerance annotations interact with other application defined interceptors
(#313)

15.3. Specification changes
• Clarify whether other Fault Tolerance functionalities will be triggered on an exceptional

returned Future (#246).

• Specify the sequence of MicroProfile Fault Tolerance annotations when used together (#291)

• Clarify how the Fault Tolerance annotations interact with other application defined interceptors
(#313)

15.4. Other changes
• Clarify failOn() on CircuitBreaker and Fallback (#240)

• Circuit Breaker - clarify how requestVolumeThreshold() and rolling window work (#342)

• Other smaller fixes (#341) (#252) (#306)

36

https://github.com/eclipse/microprofile-fault-tolerance/milestone/5
https://github.com/eclipse/microprofile-fault-tolerance/issues/110
https://github.com/eclipse/microprofile-fault-tolerance/issues/291
https://github.com/eclipse/microprofile-fault-tolerance/issues/313
https://github.com/eclipse/microprofile-fault-tolerance/issues/246
https://github.com/eclipse/microprofile-fault-tolerance/issues/291
https://github.com/eclipse/microprofile-fault-tolerance/issues/313
https://github.com/eclipse/microprofile-fault-tolerance/issues/240
https://github.com/eclipse/microprofile-fault-tolerance/issues/342
https://github.com/eclipse/microprofile-fault-tolerance/issues/341
https://github.com/eclipse/microprofile-fault-tolerance/issues/252
https://github.com/eclipse/microprofile-fault-tolerance/issues/306


Chapter 16. Release Notes for MicroProfile
Fault Tolerance 2.1
This release is a minor release of Fault Tolerance. It includes a number of new features and
clarifications, as well as TCK improvements. The following changes occurred in the 2.1 release,
compared to 2.0.

A full list of changes can be found on the MicroProfile Fault Tolerance 2.1 Milestone

16.1. API/SPI changes
• The Retry.retryOn and abortOn attributes no longer ignore Throwable.class (#449).

• Added CircuitBreaker.skipOn (#418).

• Added Fallback.applyOn and skipOn (#417).

16.2. Functional changes
• The Retry.retryOn and abortOn attributes no longer ignore Throwable.class (#449).

• Added CircuitBreaker.skipOn (#418).

• Added Fallback.applyOn and skipOn (#417).

• Specified the meaning of overlapping Retry.retryOn and abortOn (#442).

• Relaxed the requirements on Future and CompletionStage implementations (#425).

16.3. Specification changes
• Specified the meaning of overlapping Retry.retryOn and abortOn (#442).

• Specified that throwing custom throwables is non-portable (#441).

• Specified that the CDI request context must be active during the execution of methods
annotated with Asynchronous (#274)

• Relaxed the requirements on Future and CompletionStage implementations (#425).

• Clarified that when when a method returning CompletionStage is annotated with both Bulkhead
and Asynchronous, the bulkhead considers the method to be executing until the CompletionStage
returned by the method completes. (#484)

• Clarified the retry metrics specification (#491).

16.4. Other changes
• Time values in TCK tests are now configurable (#399).

• Transitive dependency on javax.el-api has been excluded (#439).

37

https://github.com/eclipse/microprofile-fault-tolerance/milestone/8
https://github.com/eclipse/microprofile-fault-tolerance/issues/449
https://github.com/eclipse/microprofile-fault-tolerance/issues/418
https://github.com/eclipse/microprofile-fault-tolerance/issues/417
https://github.com/eclipse/microprofile-fault-tolerance/issues/449
https://github.com/eclipse/microprofile-fault-tolerance/issues/418
https://github.com/eclipse/microprofile-fault-tolerance/issues/417
https://github.com/eclipse/microprofile-fault-tolerance/issues/442
https://github.com/eclipse/microprofile-fault-tolerance/issues/425
https://github.com/eclipse/microprofile-fault-tolerance/issues/442
https://github.com/eclipse/microprofile-fault-tolerance/issues/441
https://github.com/eclipse/microprofile-fault-tolerance/issues/274
https://github.com/eclipse/microprofile-fault-tolerance/issues/425
https://github.com/eclipse/microprofile-fault-tolerance/issues/484
https://github.com/eclipse/microprofile-fault-tolerance/issues/491
https://github.com/eclipse/microprofile-fault-tolerance/issues/399
https://github.com/eclipse/microprofile-fault-tolerance/issues/439


Chapter 17. Release Notes for MicroProfile
Fault Tolerance 3.0
This release is a major release of Fault Tolerance which includes backward incompatible changes.

A full list of changes can be found on the MicroProfile Fault Tolerance 3.0 Milestone

17.1. Backward incompatible changes

17.1.1. Metric names and scopes changed

The metrics added automatically by MicroProfile Fault Tolerance have been updated to take
advantage of support for metric tags which was added to MicroProfile Metrics in version 2.0. As a
result, some information which was previously contained in the metric name is now instead
included in tags.

In addition, metrics have moved from the application: scope to the base: scope for consistency
with other MicroProfile specifications. Note that this means:

• Metrics are now exported under /metrics and /metrics/base, instead of /metrics and
/metrics/application as in previous versions.

• In the JSON format, when metrics are retrieved from /metrics they appear in the base object
rather than the application object.

• In the OpenMetrics format, the names are prefixed with base_ instead of application_.

Example

Old metric
application:ft.<name>.timeout.callsTimedOut.total

New metric
base:ft.timeout.calls.total{method="<name>", timedOut="true"}

These changes mean that existing dashboards and queries which use metrics provided by
MicroProfile Fault Tolerance will need to be updated to use the new metrics listed in Integration
with MicroProfile Metrics.

17.1.2. Lifecycle of circuit breakers and bulkheads is now specified

In previous versions of MicroProfile Fault Tolerance, the lifecycle of circuit breakers and bulkheads
was not specified. These fault tolerance strategies hold state between invocations, so their lifecycle
is important for correct functioning.

The specification now requires that circuit breakers and bulkheads are singletons, identified by the
bean class and the guarded method. For example, if a @RequestScoped bean has a @CircuitBreaker
method, all invocations of that method will share the same circuit breaker state, even though each
request has a different instance of the bean.

38

https://github.com/eclipse/microprofile-fault-tolerance/milestone/9


17.2. API/SPI changes

17.3. Functional changes
• Updated metrics to use tags (#401)

• Moved metrics into the base scope (#499)

• Specified lifecycle of circuit breakers and bulkheads (#479])

17.4. Specification changes
• Updated metrics to use tags (#401)

• Moved metrics into the base scope (#499)

• Specified lifecycle of circuit breakers and bulkheads (#479])

39

https://github.com/eclipse/microprofile-fault-tolerance/issues/401
https://github.com/eclipse/microprofile-fault-tolerance/issues/499
https://github.com/eclipse/microprofile-fault-tolerance/issues/479
https://github.com/eclipse/microprofile-fault-tolerance/issues/401
https://github.com/eclipse/microprofile-fault-tolerance/issues/499
https://github.com/eclipse/microprofile-fault-tolerance/issues/479

	Microprofile Fault Tolerance
	Table of Contents
	Chapter 1. Architecture
	1.1. Rational

	Chapter 2. Relationship to other specifications
	2.1. Relationship to Contexts and Dependency Injection
	2.2. Relationship to Jakarta Interceptors
	2.3. Relationship to MicroProfile Config
	2.4. Relationship to MicroProfile Metrics

	Chapter 3. Fault Tolerance Interceptor(s)
	3.1. Custom throwables

	Chapter 4. Execution
	Chapter 5. Asynchronous
	5.1. Asynchronous Usage
	5.2. Interactions with other Fault Tolerance annotations
	5.2.1. Interactions when returning a Future
	5.2.2. Interactions when returning a CompletionStage

	5.3. Exception Handling

	Chapter 6. Timeout
	6.1. Timeout Usage

	Chapter 7. Retry Policy
	7.1. Retry usage

	Chapter 8. Fallback
	8.1. Fallback usage
	8.1.1. Specify a FallbackHandler class
	8.1.2. Specify the fallbackMethod
	8.1.3. Specify the criteria for triggering Fallback


	Chapter 9. Circuit Breaker
	9.1. Circuit Breaker Usage
	9.1.1. Configuring when the circuit opens and closes
	9.1.2. Configuring which exceptions are considered a failure
	9.1.3. Lifecycle

	9.2. Interactions with other annotations

	Chapter 10. Bulkhead
	10.1. Bulkhead Usage
	10.1.1. Semaphore style Bulkhead
	10.1.2. Thread pool style Bulkhead
	10.1.3. Lifecycle

	10.2. Interactions with other annotations

	Chapter 11. Integration with MicroProfile Metrics
	11.1. Names
	11.2. Scope
	11.3. Metrics added for @Retry, @Timeout, @CircuitBreaker, @Bulkhead and @Fallback
	11.4. Metrics added for @Retry
	11.5. Metrics added for @Timeout
	11.6. Metrics added for @CircuitBreaker
	11.7. Metrics added for @Bulkhead
	11.8. Notes
	11.9. Annotation Example

	Chapter 12. Fault Tolerance configuration
	12.1. Config Fault Tolerance parameters
	12.2. Disable a group of Fault Tolerance annotations on the global level
	12.3. Disabled individual Fault Tolerance policy
	12.4. Configuring Metrics Integration

	Chapter 13. Recommendations for Optional Container Integration
	13.1. @Asynchronous

	Chapter 14. Release Notes for MicroProfile Fault Tolerance 1.1
	14.1. API/SPI changes
	14.2. Functional changes
	14.3. Specification changes
	14.4. Other changes

	Chapter 15. Release Notes for MicroProfile Fault Tolerance 2.0
	15.1. API/SPI changes
	15.2. Functional changes
	15.3. Specification changes
	15.4. Other changes

	Chapter 16. Release Notes for MicroProfile Fault Tolerance 2.1
	16.1. API/SPI changes
	16.2. Functional changes
	16.3. Specification changes
	16.4. Other changes

	Chapter 17. Release Notes for MicroProfile Fault Tolerance 3.0
	17.1. Backward incompatible changes
	17.1.1. Metric names and scopes changed
	17.1.2. Lifecycle of circuit breakers and bulkheads is now specified

	17.2. API/SPI changes
	17.3. Functional changes
	17.4. Specification changes


