MicroProfile Health

The Microprofile community and its contributors

3.0-RC6, November 20, 2020

Table of Contents

Copyright

Eclipse Foundation Specification License

Disclaimers

MicroProfile Health

Rationale
Proposed solution

Contributors

Java API Usage

Common API check
Different kinds of Health Checks
Readiness check
Liveness check
Multiple HealthChecks procedures for a given kind
Combining multiple kinds of checks
Constructing HealthCheckResponse 's
Integration with CDI

Protocol and Wireformat

Abstract
Guidelines
Goals
Terms used
Protocol Overview
Protocol Specifics
Interacting with producers
Protocol Mappings
Mandatory and optional protocol types
REST/HTTP interaction
Protocol Adaptor
Healthcheck Response information
Wireformats
Health Check Procedures
Policies to determine the overall status
Empty default readiness health check responses
Executing procedures
Disabling default vendor procedures
Security
Appendix A: REST interfaces specifications
Status Codes:

© 00 J O U1 = DD N DN

DN NN N DNNDNDNDNIDNR R R B B B B B B3 B B3 B B3 B B 1 |,
G Ul W W W NN R R O O O O O O O W J o0 o0 U W N R O o O

Appendix B: JSON payload specification
Response Codes and status mappings
JSON Schema:

Example response payloads
With procedures installed into the runtime
With no procedures expected or installed into the runtime
With procedures expected but not yet installed into the runtime

Architecture
SPI Usage
Release Notes

Release Notes for MicroProfile Health 3.0
Incompatible changes
Other changes

Release Notes for MicroProfile Health 2.2
API/SPI Changes
Miscellaneous

Release Notes for MicroProfile Health 2.1
API/SPI Changes
TCK enhancement
Miscellaneous

Release Notes for MicroProfile Health 2.0
API/SPI Changes
Protocol and wireformat changes

TCK enhancement

26
26
26
28
28
29
29
30
31
32
33
33
33
34
34
34
35
35
35
35
36
36
36
36

Specification: MicroProfile Health
Version: 3.0-RC6

Status: Draft

Release: November 20, 2020

Copyright

Copyright (c) 2016, 2020 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

* All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS,” AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

MicroProfile Health

Rationale

The Eclipse MicroProfile Health specification defines a single container runtime mechanism for
validating the availability and status of a MicroProfile implementation. This is primarily intended
as a machine to machine (M2M) mechanism for use in containerized environments like cloud
providers. Example of existing specifications from those environments include Cloud Foundry
Health Checks and Kubernetes Liveness and Readiness Probes.

In this scenario health checks are used to determine if a computing node needs to be discarded
(terminated, shutdown) and eventually replaced by another (healthy) instance.

The MicroProfile Health architecture consists of two /health/ready and /health/1live endpoints in a
MicroProfile runtime that respectively represent the readiness and the liveness of the entire
runtime. These endpoints are linked to health check procedures defined with specifications API and
annotated respectively with @Liveness and @Readiness annotations.

A 3rd endpoint /health is also available and can be used to provide a combination of the previous
endpoints.

These endpoints are expected to be associated with a configurable context, such as a web
application deployment, that can be configured with settings such as port, virtual-host, security, etc.
Further, MicroProfile Health defines the notion of a procedure that represents the health of a
particular subcomponent of an application.

In an application, there can be zero or more procedures bound to a given health endpoint. The
overall application health for a given endpoint is the logical AND of all of the procedures bound to
it.

The current version of the MicroProfile Health specification does not define how the defined
endpoints may be partitioned in the event that the MicroProfile runtime supports deployment of
multiple applications. If an implementation wishes to support multiple applications within a
MicroProfile runtime, the semantics of individual endpoints are expected to be the logical AND of
all the application in the runtime. The exact details of this are deferred to a future version of the
MicroProfile Health specification.

https://docs.cloudfoundry.org/devguide/deploy-apps/healthchecks.html
https://docs.cloudfoundry.org/devguide/deploy-apps/healthchecks.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes

Proposed solution

The proposed solution breaks down into two parts:

* AJava API to implement health check procedures

* A health checks protocol and wireformat

Contributors

* John Ament

* Heiko Braun

* Clément Escoffier
* Emily Jiang

* Werner Keil

¢ Jeff Mesnil

* Andrew Pielage

» Heiko Rupp

* Antoine Sabot-Durand
* Scott Stark

* Martin Stefanko

¢ Kevin Sutter

Java API Usage

This specification provides the following API to define health check procedures.

Common API check

The main API to provide health check procedures (readiness or liveness) on the application level is
the HealthCheck interface:

@Functionallnterface
public interface HealthCheck {

HealthCheckResponse call();

Applications provide health check procedures (implementation of a HealthCheck), which will be
used by the runtime hosting the application to verify the healthiness of the computing node.

Different kinds of Health Checks

This specification provides different kinds of health check procedures. Difference between them is
only semantic. The nature of the procedure is defined by annotating the HealthCheck procedure
with a specific annotation.

e Readiness checks defined with @Readiness annotation

e Liveness checks defined with @Liveness annotation

A HealthCheck procedure with none of the above annotations is not an active procedure and should
be ignored.

Readiness check

A Health Check for readiness allows third party services to know if the application is ready to
process requests or not.

The @Readiness annotation must be applied on a HealthCheck implementation to define a readiness
check procedure, otherwise, this annotation is ignored.

Liveness check

A Health Check for liveness allows third party services to determine if the application is running.
This means that if this procedure fails the application can be discarded (terminated, shutdown).

The @Liveness annotation must be applied on a HealthCheck implementation to define a Liveness
check procedure, otherwise, this annotation is ignored.

10

Multiple HealthChecks procedures for a
given kind

There can be one or several HealthCheck exposed for a given kind, they will all be invoked when an
inbound protocol request is received (i.e. HTTP).

If more than one HealthCheck are invoked, they will be called in an unpredictable order.

The runtime will call() each HealthCheck which in turn creates a HealthCheckResponse that signals
the health status to a consuming end:

public class HealthCheckResponse {
public enum Status { UP, DOWN }
public abstract String getName();
public abstract Status getStatus();

public abstract Optional<Map<String, Object>> getData();

[...]

The status of all HealthCheck 's determines the overall status for the given Health check kind.

11

Combining multiple kinds of checks

A HealthCheck implementation may be annotated with multiple kinds of checks. The procedure will
be used to resolve every kind of health check for which it is annotated.

For instance this procedure will be used to resolve liveness and readiness health check.

@Liveness

@Readiness

public class MyCheck implements HealthCheck {
public HealthCheckResponse call() {

}
}

12

Constructing HealthCheckResponse 's

Application level code is expected to use one of static methods on HealthCheckResponse to retrieve a
HealthCheckResponseBuilder used to construct a response, i.e. :

public class SuccessfulCheck implements HealthCheck {
@0verride
public HealthCheckResponse call() {
return HealthCheckResponse.up("successful-check");

}

The name is used to tell the different checks apart when a human operator looks at the responses. It
may be that one check of several fails and it’s useful to know which one. It’s required that a
response defines a name.

HealthCheckResponse 's also support a free-form information holder, that can be used to supply
arbitrary data to the consuming end:

public class CheckDiskspace implements HealthCheck {

@lverride
public HealthCheckResponse call() {
return HealthCheckResponse.named("diskspace")
.withData("free", "780mb")

.up()
.build();

HealthCheckResponse also provides a constructor to allow instantiation on the consuming end.

13

Integration with CDI

Any enabled bean with a bean of type org.eclipse.microprofile.health.HealthCheck and @Liveness
or @Readiness qualifier can be used as health check procedure.

Contextual references of health check procedures are invoked by runtime when the outermost
protocol entry point (i.e. http://HOST:PORT/health) receives an inbound request

@ApplicationScoped

@Liveness

@Readiness

public class MyCheck implements HealthCheck {

public HealthCheckResponse call() {
[...]
}

Health check procedures are CDI beans, therefore, they can also be defined with CDI producers:

@ApplicationScoped
class MyChecks {

@Produces
@Liveness
HealthCheck check1() {
return () -> HealthCheckResponse.named("heap-memory").status(getMemUsage() <
0.9).build();
}

©Produces
©OReadiness
HealthCheck check2() {
return () -> HealthCheckResponse.named("cpu-usage").status(getCpulsage() <
0.9).build();
}
}

14

http://HOST:PORT/health
http://HOST:PORT/health
http://HOST:PORT/health

Protocol and Wireformat

15

Abstract

This document defines the protocol to be used by components that need to ensure a compatible
wireformat, agreed upon semantics and possible forms of interactions between system components
that need to determine the “liveliness” or "readiness" of computing nodes in a bigger system.

Guidelines

Note that the force of these words is modified by the requirement level of the document in which
they are used.

1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute
requirement of the specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute
prohibition of the specification.

3. SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons
in particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

4. SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

5. MAY - This word, or the adjective “OPTIONAL,” mean that an item is truly discretionary.

16

Goals

* MUST be compatibility with well known cloud platforms (i.e. http://kubernetes.io/docs/user-
guide/liveness/)

* MUST be appropriate for machine-to-machine communication

* SHOULD give enough information for a human administrator

17

http://kubernetes.io/docs/user-guide/liveness/
http://kubernetes.io/docs/user-guide/liveness/

Terms used

Term
Producer

Consumer
Health Check Procedure
Producer status

Health check procedure result

18

Description
The service/application that is checked

The probing end, usually a machine, that needs
to verify the liveness or readiness of a Producer

The code executed to determine the liveliness of
a Producer

The overall status, determined by considering all
health check procedure results

The result of single check

Protocol Overview

Consumer invokes the health check of a Producer through any of the supported protocols
Producer enforces security constraints on the invocation (i.e authentication)

Producer executes a set of Health check procedures (could be a set with one element)
Producer determines the overall status

The status is mapped to outermost protocol (i.e. HTTP status codes)

The payload is written to the response stream

The consumer reads the response

® N e ok w N

The consumer determines the overall status

Protocol Specifics

This section describes the specifics of the HTTP protocol usage.

Interacting with producers

How are the health checks accessed and invoked ? We don’t make any assumptions about this,
except for the wire format and protocol.

Protocol Mappings

Health checks (innermost) can and should be mapped to the actual invocation protocol (outermost).
This section described some of guidelines and rules for these mappings.

* Producers MAY support a variety of protocols but the information items in the response payload
MUST remain the same.
» Producers SHOULD define a well known default context to perform checks

* Each response SHOULD integrate with the outermost protocol whenever it makes sense (i.e.
using HTTP status codes to signal the overall status)

* Inner protocol information items MUST NOT be replaced by outer protocol information items,
rather kept redundantly.

* The inner protocol response MUST be self-contained, that is carrying all information needed to
reason about the producer status

Mandatory and optional protocol types

REST/HTTP interaction

* Producer MUST provide a HTTP endpoint that follows the REST interface specifications
described in Appendix A.

19

Protocol Adaptor

Each provider MUST provide the REST/HTTP interaction, but MAY provide other protocols such as
TCP or JMX. When possible, the output MUST be the JSON output returned by the equivalent HTTP
calls (Appendix B). The request is protocol specific.

20

Healthcheck Response information

* The primary information MUST be boolean, it needs to be consumed by other machines.
Anything between available/unavailable doesn’t make sense or would increase the complexity
on the side of the consumer processing that information.

* The response information MAY contain an additional information holder
* Consumers MAY process the additional information holder or simply decide to ignore it
* The response information MUST contain the boolean status of each check

* The response information MUST contain the name of each check

Wireformats

* Producer MUST support JSON encoded payload with simple UP/DOWN statuses

* Producers MAY support an additional information holder with key/value pairs to provide
further context (i.e. disk.free.space=120mb).

* The JSON response payload MUST be compatible with the one described in Appendix B

* The JSON response MUST contain the name entry specifying the name of the check, to support
protocols that support external identifier (i.e. URI)

* The JSON response MUST contain the status entry specifying the status as String: “UP” or
“DOWN?”

* The JSON MAY support an additional information holder to carry key value pairs that provide
additional context

21

Health Check Procedures

A producer MUST support custom, application level health check procedures

A producer SHOULD support reasonable out-of-the-box procedures

A producer with no liveness procedures expected or installed MUST return positive overall
status (i.e. HTTP 200)

A producer with no readiness procedures expected or installed MUST return positive overall
status (i.e. HTTP 200)

A producer with liveness procedures expected but not yet installed MUST return positive
overall status (i.e. HTTP 200)

A producer with readiness procedures expected but not yet installed MUST return negative
overall status (i.e. HTTP 503)

A producer with no procedures expected or installed can be for instance an application server
without any deployments (focusing on some different function).

A producer with procedures expected but not yet installed can be for instance a standalone
runtime packaged with the user application, or an application server with already deployed user
applications. User defined health check procedures thus can be expected but they do not have to be
already processed when the first invocations of /health/* endpoints are received. See also the
Empty default readiness health check responses section.

Policies to determine the overall status

When multiple procedures are installed all procedures MUST be executed and the overall status
needs to be determined.

* Consumers MUST support a logical conjunction policy to determine the status
» Consumers MUST use the logical conjunction policy by default to determine the status

* Consumers MAY support custom policies to determine the status

22

Empty default readiness health check
responses

As readiness determines whether the container may consume requests, the container is required to
return negative overall status until the user defined readiness checks can be executed. However, in
some cases (e.g. the containers allowing multiple deployments) the container itself may be required
to become ready before user defined readiness procedures can be deployed. This means that the
container cannot know whether some procedures will be expected. For this reason, users are
allowed to specify MicroProfile Config configuration value
mp.health.default.readiness.empty.response to UP to give the container a hint that it can become
ready.

Executing procedures

When executing health check procedures a producer MUST handle any unchecked exceptions and
synthesize a substitute respone.
* The synthesized response MUST contain a status entry with a value of "DOWN".

* The synthesized response MUST contain a name entry with a value set to the runtime class name
of the failing check.

* The synthesized response MAY contain additional information about the failure (i.e. exception
message or stack trace)

Disabling default vendor procedures

An implementation is allowed to supply a reasonable default (out-of-the-box) procedures as defined
in the Health Check Procedures section. To disable all default vendor procedures users can specify a
MicroProfile Config configuration property mp.health.disable-default-procedures to true. This
allows the application to process and display only the user-defined health check procedures.

23

https://github.com/eclipse/microprofile-config
https://github.com/eclipse/microprofile-config

Security

Aspects regarding the secure access of health check information.

* A producer MAY support security on all health check invocations (i.e. authentication)

* A producer MUST NOT enforce security by default, it SHOULD be an opt-in feature (i.e.
configuration change)

24

Appendix A: REST interfaces specifications

Context Verb
/health/live GET
/health/ready GET
/health GET

Status Codes:

Status Code

200, 500, 503
200, 500, 503
200, 500, 503

* 200 for a health check with a positive status (UP)

* 503 in case the overall status is negative (DOWN)

Kind of procedure Response
called

Liveness See Appendix B
Readiness See Appendix B
Liveness + See Appendix B
Readiness

* 500 in case the producer wasn’t able to process the health check request (i.e. error in procedure)

25

Appendix B: JSON payload specification

Response Codes and status mappings

The following table gives valid health check responses for all kinds of health checks:

Request

/health/live
/health/ready
/health

/health/live
/health/ready
/health

/health/live
/health/ready
/health

/health/live
/health/ready
/health

/health/live
/health/ready
/health

HTTP Status
200

200

503

503

500

JSON Schema:

26

JSON Payload

Yes

Yes

Yes

Yes

No

Status

Uup

Uup

Down

Down

Undetermined

Comment

Check with
payload. See With
procedures
installed into the
runtime.

Check with no
procedures
expected or
installed. See With
no procedures
expected or
installed into the
runtime

Check failed

Check with
procedures
expected but not
yet installed. See
With procedures
expected but not
yet installed into
the runtime

Request
processing failed
(i.e. errorin
procedure)

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {
"status": {
"type": "string"
¢
"checks": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string"
b
"status": {
"type": "string"
T
"data": {
"type": "object",
"patternProperties": {
"[a-zA-Z]*": {
"type": [
"string",
"boolean",
"number"
]
}
J
"additionalProperties": false
}
}
"required": [
"name",
"status"
]
}
}
H
"required": [
"status"”,
"checks"
1,

"additionalProperties": false

(See http://jsonschema.net/#/)

27

http://jsonschema.net/#/

Example response payloads

With procedures installed into the runtime

Status 200 and the following payload:

{
"status": "UP",

"checks": [
{
"name": "myCheck",
"status": "UP",
"data": {
"key": "value",
"foo": "bar"
}
}
]
}

Status 503 and the following payload:

{
"status": "DOWN",
"checks": [
{
"name": "firstCheck",
"status": "DOWN",
"data": {
"key": "value",
"foo": "bar"
}
Iy
{
"name": "secondCheck",
"status": "UP"
}
]
+
Status 500

28

{
"status": "DOWN",

"checks": [
{
"name": "example.health.FirstCheck",
"status": "DOWN",

"data": {
"rootCause": "timed out waiting for available connection"

}

o

{
"name": "secondCheck",
"status": "UP"

}

]

}

With no procedures expected or installed into the
runtime

Status 200 and the following payload:

{
"status": "UP",

"checks": []
}

With procedures expected but not yet installed into
the runtime

Status 503 and the following payload:

{
"status": "DOWN",

"checks": []
}

29

Architecture

30

SPI Usage

Implementors of the API are expected to supply implementations of HealthCheckResponse and
HealthCheckResponseBuilder by providing a HealthCheckResponseProvider to their implementation.
The HealthCheckResponseProvider is discovered using the default JDK service loader.

A HealthCheckResponseProvider is used internally to create a HealthCheckResponseBuilder which is
used to construct a HealthCheckResponse. This pattern allows implementors to extend a
HealthCheckResponse and adapt it to their implementation needs. Common implementation details
that fall into this category are invocation and security contexts or anything else required to map a
HealthCheckResponse to the outermost invocation protocol (i.e. HTTP/JSON).

31

Release Notes

32

Release Notes for MicroProfile Health 3.0

The following changes occurred in the 3.0 release, compared to 2.2.

A full list of changes may be found on the MicroProfile Health 3.0

Incompatible changes

* Pruning @eHealth qualifier (#252)

 Fix HealthCheckResponse deserialization issue (#243)

Other changes

* Add configuration value for default readiness status (#244)

» Update dependencies scope and version to align on latest Jakarta EE 8 version (#214)

33

https://github.com/eclipse/microprofile-health/issues?q=is%3Aissue+milestone%3A3.0+is%3Aclosed
https://github.com/eclipse/microprofile-health/issues/252
https://github.com/eclipse/microprofile-health/issues/243
https://github.com/eclipse/microprofile-health/issues/244
https://github.com/eclipse/microprofile-health/issues/214

Release Notes for MicroProfile Health 2.2

The following changes occurred in the 2.2 release, compared to 2.1

A full list of changes may be found on the MicroProfile Health 2.2

API/SPI Changes

* Add Annotation literals for all Qualifier in spec to ease programmatic lookup

» Make HealthCheckResponse a concrete class to allow its usage on consuming end

Miscellaneous

» Update version of CDI API to 2.0

* Remove Guava exclusion since its required to run TCK

34

https://github.com/eclipse/microprofile-health/milestone/4?closed=1

Release Notes for MicroProfile Health 2.1

The following changes occurred in the 2.1 release, compared to 2.0

A full list of changes may be found on the MicroProfile Health 2.1

API/SPI Changes

* Add new method to create responses
* Add config property to disable implementation health check procedures

* Improve javadoc

TCK enhancement

* Testing JSON format
* Add delayed test

e Add test name before each tests

Miscellaneous

* Remove duplicate Arquillian import

* Remove EL API transitive dependency

35

https://github.com/eclipse/microprofile-health/milestone/3?closed=1+

Release Notes for MicroProfile Health 2.0

The following changes occurred in the 2.0 release, compared to 1.0

A full list of changes may be found on the MicroProfile Health 2.0

API/SPI Changes

Deprecation of @Health qualifier

Introduction of @Liveness and @Readiness qualifiers

Protocol and wireformat changes

In response JSON format replaced outcome and state by status. This change breaks backward
compatibility with version 1.0

Introduction of /health/1live endpoint that must call all the liveness procedures
Introduction of /health/ready endpoint that must call all the readiness procedures

For backward compatibility, /health endpoint should now call all procedures having @Health,
@Liveness or @Readiness qualifiers

Correction and enhancement of response JSON format.

TCK enhancement

36

Adding tests for new types of health check procedures

Cleaning existing tests

https://github.com/eclipse/microprofile-health/issues?utf8=✓&q=is%3Aissue+milestone%3A2.0+

	MicroProfile Health
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	MicroProfile Health
	Rationale
	Proposed solution
	Contributors

	Java API Usage
	Common API check
	Different kinds of Health Checks
	Readiness check
	Liveness check

	Multiple HealthChecks procedures for a given kind
	Combining multiple kinds of checks
	Constructing HealthCheckResponse 's
	Integration with CDI

	Protocol and Wireformat
	Abstract
	Guidelines

	Goals
	Terms used
	Protocol Overview
	Protocol Specifics
	Interacting with producers
	Protocol Mappings

	Mandatory and optional protocol types
	REST/HTTP interaction
	Protocol Adaptor

	Healthcheck Response information
	Wireformats

	Health Check Procedures
	Policies to determine the overall status

	Empty default readiness health check responses
	Executing procedures
	Disabling default vendor procedures

	Security
	Appendix A: REST interfaces specifications
	Status Codes:

	Appendix B: JSON payload specification
	Response Codes and status mappings
	JSON Schema:

	Example response payloads
	With procedures installed into the runtime
	With no procedures expected or installed into the runtime
	With procedures expected but not yet installed into the runtime

	Architecture
	SPI Usage

	Release Notes
	Release Notes for MicroProfile Health 3.0
	Incompatible changes
	Other changes

	Release Notes for MicroProfile Health 2.2
	API/SPI Changes
	Miscellaneous

	Release Notes for MicroProfile Health 2.1
	API/SPI Changes
	TCK enhancement
	Miscellaneous

	Release Notes for MicroProfile Health 2.0
	API/SPI Changes
	Protocol and wireformat changes
	TCK enhancement

