
Eclipse MicroProfile OpenTracing
Steve Fontes, Heiko W. Rupp, Pavol Loffay

3.0-RC3, September 27, 2021: Draft

Table of Contents
Copyright . 2

Eclipse Foundation Specification License . 2

Disclaimers . 2

Introduction. 4

Rationale . 5

Architecture . 6

Enabling distributed tracing with no code instrumentation. 6

Tracer configuration. 6

Span creation for inbound requests . 7

Server Span name . 7

Server Span tags . 7

Span creation and injection for outbound requests . 7

JAX-RS Client. 8

MicroProfile Rest Client . 8

Client Span name . 8

Client Span tags . 8

Disabling server side tracing . 8

Enabling explicit distributed tracing code instrumentation . 9

The traced annotation . 9

Access to the configured tracer . 10

Configuration. 11

Configuration items. 11

Impact on existing code . 12

Alternatives considered . 13

Changelog . 14

Release 3.0 . 14

Incompatible changes . 14

Jakarta EE 9.1 alignment (#221). 14

Release 2.0 . 14

Incompatible changes . 14

Update OpenTracing API to 0.33.0 (#177) . 14

Other changes. 14

Release 1.3.1 . 14

Release 1.3 . 15

Release 1.2.1 . 15

Release 1.2 . 15

Release 1.1 . 15

https://github.com/eclipse/microprofile-opentracing/pull/221
https://github.com/eclipse/microprofile-opentracing/pull/177

Specification: Eclipse MicroProfile OpenTracing

Version: 3.0-RC3

Status: Draft

Release: September 27, 2021

1

Copyright
Copyright (c) 2017, 2021 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

2

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.
:sectnums:

3

Introduction
Distributed tracing allows you to trace the flow of a request across service boundaries. This is
particularly important in a microservices environment where a request typically flows through
multiple services. To accomplish distributed tracing, each service must be instrumented to log
messages with a correlation id that may have been propagated from an upstream service. A
common companion to distributed trace logging is a service where the distributed trace records can
be stored. See also examples on opentracing.io. The storage service for distributed trace records can
provide features to view the cross service trace records associated with particular request flows.

It will be useful for services written in the MicroProfile framework to be able to integrate well with
a distributed trace system that is part of the larger microservices environment. This specification
defines an API and MicroProfile behaviors that allow services to easily participate in an
environment where distributed tracing is enabled.

This specification specifically addresses the problem of making it easy to instrument services with
distributed tracing function, given an existing distributed tracing system in the environment.

This specification specifically does not address the problem of defining, implementing, or
configuring the underlying distributed tracing system. The proposal assumes an environment
where all services use a common OpenTracing implementation (all Zipkin compatible, all Jaeger
compatible, …).

The information about a Span that is propagated between services is typically called a SpanContext.
It is not the intent of this specification to define the exact format for how SpanContext information
is stored or propagated. Our use case is for applications running in an environment where all
applications use the same Tracer implementation, and microservices that require explicit tracing
logic use the OpenTracing API. Work on defining standard wire protocols and consistent APIs for
handling trace (and metric) data is being done at OpenCensus. The OpenCensus API appears very
similar to OpenTracing, but support for OpenCensus Tracers will require a separate MicroProfile
specification.

4

https://opentracing.io/docs/supported-tracers/
http://opencensus.io/

Rationale
In order for a distributed tracing system to be effective and usable, two things are required

1. The different services in the environment must agree on the mechanism for transferring
correlation ids across services.

2. The different services in the environment should produce their trace records in format that is
consumable by the storage service for distributed trace records.

Without the first, some services will not be included in the trace records associated with a request.
Without the second, custom code would need to be written to present the information about a full
request flow.

There are existing distributed tracing systems that provide a server for distributed trace record
storage and viewing, and application libraries for instrumenting microservices. The problem is that
the different distributed tracing systems use implementation specific mechanisms for propagating
correlation IDs and for formatting trace records, so once a microservice chooses a distributed
tracing implementation library to use for its instrumentation, all other microservices in the
environment are locked into the same choice.

The OpenTracing project’s purpose is to provide a standard API for instrumenting microservices for
distributed tracing. If every microservice is instrumented for distributed tracing using the
OpenTracing API, then (as long as an implementation library exists for the microservice’s
language), the microservice can be configured at deploy time to use a common system
implementation to perform the log record formatting and cross service correlation id propagation.
The common implementation ensures that correlation ids are propagated in a way that is
understandable to all services, and log records are formatted in a way that is understandable to the
server for distributed trace record storage.

In order to make MicroProfile distributed tracing friendly, it will be useful to allow distributed
tracing to be enabled on any MicroProfile application, without having to explicitly add distributed
tracing code to the application.

In order to make MicroProfile as flexible as possible for adding distributed trace log records,
MicroProfile should expose whatever objects are necessary for an application to use the
OpenTracing API.

5

http://opentracing.io/

Architecture
This specification defines an easy way to allow an application running in a MicroProfile container
to take advantage of distributed tracing by using an OpenTracing Tracer implementation. This
document and implementations MUST comply with OpenTracing specification and semantic
conventions if it is not defined otherwise. The currently used OpenTracing API version is
{opentracingversion}.

There are two operation modes

• Without instrumentation of application code

• With explicit code instrumentation

Enabling distributed tracing with no code
instrumentation
The MicroProfile implementation will allow JAX-RS applications to participate in distributed
tracing, without requiring developers to add any distributed tracing code into their applications,
and without requiring developers to know anything about the distributed tracing environment that
their JAX-RS application will be deployed into.

1. The MicroProfile implementation must provide a mechanism to configure an
io.opentracing.Tracer implementation for use by each JAX-RS application.

2. The MicroProfile implementation must provide a mechanism to automatically extract
SpanContext information from any incoming JAX-RS request.

3. The MicroProfile implementation must provide a mechanism to automatically start a Span for
any incoming JAX-RS request, and finish the Span when the request completes.

4. The MicroProfile implementation must provide a mechanism to automatically inject
SpanContext information into any outgoing JAX-RS request.

5. The MicroProfile implementation must provide a mechanism to automatically start a Span for
any outgoing JAX-RS request, and finish the Span when the request completes.

Correct parent child relationships between incoming requests and outgoing requests are handled
automatically, as long as the outgoing requests occur on the same thread as the incoming request. If
outgoing requests are performed on a different thread than the incoming request, it is the
developers responsibility to propagate the Tracer context between threads.

Tracer configuration

An implementation of an io.opentracing.Tracer must be made available to each application. Each
application will have its own Tracer instance. The Tracer must be configurable outside of the
application to match the distributed tracing environment where the application is deployed. For
example, it should be possible to take the exact same application and deploy it to an environment
where Zipkin is in use, and to deploy the application without modification to a different
environment where Jaeger is in use, and the application should report Spans correctly in either

6

environment.

Span creation for inbound requests

When a request arrives at a JAX-RS endpoint, configured Tracer instance is used to extract a
SpanContext from the inbound request. The extracted context is used as a child of reference for a
new Span created for this endpoint.

Server Span name

The default operation name of the new Span for the incoming request is

<HTTP method>:<package name>.<class name>.<method name>

The operation name can be configured via key mp.opentracing.server.operation-name-provider. The
implementation has to provide two operation name providers:

• class-method - the provider for the default operation name.

• http-path - the operation name has the following form <HTTP method>:<@Path value of
endpoint’s class>/<@Path value of endpoint’s method>. For example if the class is annotated
with @Path("service") and method @Path("endpoint/{id: \\d+}") then the operation name is
GET:/service/endpoint/{id: \\d+}.

If no operation name provider is specified then class-method is used.

Server Span tags

Spans created for incoming requests will have the following tags added by default:

• Tags.SPAN_KIND = Tags.SPAN_KIND_SERVER

• Tags.HTTP_METHOD

• Tags.HTTP_URL

• Tags.HTTP_STATUS

• Tags.COMPONENT = "jaxrs"

• Tags.ERROR (if true)

Tags.SPAN_KIND MUST be specified at Span start time.

Tags.ERROR tag SHOULD be added to a Span on failed operations for any server error (5xx) codes. If
there is an exception object available the implementation SHOULD also add logs event=error and
error.object=<error object instance> to the active span.

Span creation and injection for outbound requests

Tracing of client requests is supported for jakarta.ws.rs.client.Client and MicroProfile Rest Client.

When a request is sent from a traced client, a new Span is created and its SpanContext is injected in

7

the outbound request for propagation downstream. The new Span will be a child of the active Span
if an active Span exists. The new Span will be finished when the outbound request is completed.

JAX-RS Client

Tracing in jakarta.ws.rs.client.Client has to be explicitly enabled by invoking
org.eclipse.microprofile.opentracing.ClientTracingRegistrar.configure(ClientBuilder
clientBuilder). The implementation might enable client tracing globally, in this case explicit
configuration has no effect.

MicroProfile Rest Client

Tracing for this client is by default globally enabled and it can be disabled by specifying
@Traced(false) on the client interface or method. When it is specified on the client’s interface
tracing is disabled for all methods.

Note that integration with MicroProfile Rest Client is not mandatory for vendors not implementing
the client specification.

Client Span name

The default operation name of the new Span for the outgoing request is

<HTTP method>

Client Span tags

Spans created for outgoing requests will have the following tags added by default:

• Tags.SPAN_KIND = Tags.SPAN_KIND_CLIENT

• Tags.HTTP_METHOD

• Tags.HTTP_URL

• Tags.HTTP_STATUS

• Tags.COMPONENT = "jaxrs"

• Tags.ERROR (if true)

Tags.SPAN_KIND MUST be specified at Span start time.

Tags.ERROR tag SHOULD be added to a Span on failed operations for any client error (4xx) codes. If
there is an exception object available the implementation SHOULD also add logs event=error and
error.object=<error object instance> to the active span.

Disabling server side tracing

Server side tracing can be disabled by specifying a skip pattern which is used to match with HTTP
path UriInfo.getPath(). If the regex matches with HTTP path then tracing for the given server
request is disabled even if the method or class is annotated with @Traced. The configuration does

8

not disable any outbound request made from the disabled server endpoint.

The skip pattern is specified as a string with key mp.opentracing.server.skip-pattern which has to
be compliant with java.util.regex.Pattern. An example skip pattern might be
mp.opentracing.server.skip-pattern=/foo|/bar.*

The endpoints defined in the following MicroProfile specifications are always excluded from
tracing.

• MicroProfile Health - /health

• MicroProfile Metrics - /metrics, /metrics/base/.*, /metrics/vendor/.* and
/metrics/application/.*

• MicroProfile OpenAPI - /openapi

Enabling explicit distributed tracing code
instrumentation
An annotation is provided to define explicit Span creation. This works on top of the "no-action"
setup described in Enabling distributed tracing with no code instrumentation.

• @Traced: Specify a class or method to be traced.

The traced annotation

The @Traced annotation, applies to a class or a method. When applied to a class, the @Traced
annotation is applied to all methods of the class. If the annotation is applied to a class and method
then the annotation applied to the method takes precedence. The annotation starts a Span at the
beginning of a business method, and finishes the Span at the end of that method. Because the
@Traced annotation uses the Interceptor pattern, only business logic invocations cause a Span to be
created.

The @Traced annotation has two optional arguments.

• value=[true|false]. Defaults to true. If @Traced is specified at the class level, then @Traced(false)
is used to annotate specific methods to disable creation of a Span for those methods. By default
all JAX-RS endpoint methods are traced. To disable Span creation of a specific JAX-RS endpoint,
the @Traced(false) annotation can be used.

When the @Traced(false) annotation is used for a JAX-RS endpoint method, the upstream
SpanContext will not be extracted. Any Spans created, either automatically for outbound
requests, or explicitly using an injected Tracer, will not have an upstream parent Span in the
Span hierarchy.

• operationName=<Name for the Span>. Default is "". If the @Traced annotation finds the
operationName as "", the default operation name is used. For a JAX-RS endpoint method (see
Server Span name). If the annotated method is not a JAX-RS endpoint, the default operation
name of the new Span for the method is <package name>.<class name>.<method name>. If
operationName is specified on a class, that operationName will be used for all methods of the class
unless a method explicitly overrides it with its own operationName.

9

https://docs.jboss.org/cdi/spec/1.0/html/interceptors.html

Any exceptions thrown by non JAX-RS components must be logged to the span corresponding to the
ongoing invocation. The span must be annotated with the following data:

• Tags.ERROR = true - added as span tag.

• event = Tags.ERROR.getKey() and error.object = <exception> logged to span in a single log fields
map. The exception is the thrown exception object.

Example:

@InterceptorBinding
@Target({ TYPE, METHOD })
@Retention(RUNTIME)
public @interface Traced {
 @Nonbinding
 boolean value() default true;
 @Nonbinding
 String operationName() default "";
}

Access to the configured tracer

This proposal also specifies that the underlying OpenTracing Tracer object configured instance is
available for developer use. The MicroProfile implementation will make the configured Tracer
available with CDI injection.

The configured Tracer object is accessed by injecting the Tracer class that has been configured for
the particular application for this environment. Each application gets a different Tracer instance.

Example:

@Inject
io.opentracing.Tracer configuredTracer;

The Tracer object enables support for the more complex tracing requirements, such as creating
spans inside business methods.

Access to the Tracer also allows tags, logs and baggage to be added to Spans with, for example:

configuredTracer.activeSpan().setTag(...);
configuredTracer.activeSpan().log(...);
configuredTracer.activeSpan().setBaggage(...);

10

Configuration
MicroProfile OpenTracing project leverages MicroProfile Config specification to provide a
consistent means for all supported configuration options. It means that vendor implementations
must also be compliant with the Config specification.

All configuration keys supported by this project start with mp.opentracing. Refer to the Config
specification for precedence of config sources and replacement of illegal characters such as . and -
to _ when using environmental variables.

Configuration items

Configuration
key

Description

mp.opentracing.ser
ver.skip-pattern

Specifies a skip pattern to avoid tracing of selected REST endpoints. See
Disabling server side tracing.

mp.opentracing.ser
ver.operation-
name-provider

Specifies operation name provider for server spans. Possible values are http-
path and class-method. See Server Span name.

11

Impact on existing code
@Traced annotations can be added to existing code. A configured Tracer object can be accessed with
CDI injection.

12

Alternatives considered
Current mechanisms require a decision at development time about the distributed trace system
that will be used. This feature allows the decision to be made at the operational environment level.

13

Changelog

Release 3.0

Incompatible changes

Jakarta EE 9.1 alignment (#221)

• Use microprofile-parent version 2.1 in pom.xml

• Rename all javax. packages to jakarta.

Release 2.0

Incompatible changes

Update OpenTracing API to 0.33.0 (#177)

The following APIs were removed:

• Scope = ScopeManager.active(): no alternative, the reference Scope has to be kept explicitly since
the scope was created.

• Scope = ScopeManager.activate(Span, boolean): no alternative auto-finishing has been removed.

• Span = Scope.span(): use ScopeManager.activeSpan() or hold the reference to Span explicitly since
the span was started.

• Scope =SpanBuilder.startActive(): use Tracer.activateSpan(Span) instead.

• Span = Tracer.startManual(): use Tracer.start() instead.

• AutoFinishScopeManager: no alternative, auto-finishing has been removed.

Other changes

• Exclude transitive dependency on javax.el-api (#196)

• Make OSGI dependency provided (#190)

• Remove OpenTracing API from WAR in TCK (#183)

• Update Arquillian version in TCK to 1.6.0 (#168)

• Use Jakarta EE 8 APIs instead of Java EE 7 and remove dependency on Jackson (#162)

Release 1.3.1
• Add return MIME type to Rest Client interface in TCK (#145)

14

https://github.com/eclipse/microprofile-opentracing/pull/221
https://github.com/eclipse/microprofile-opentracing/pull/177
https://github.com/eclipse/microprofile-opentracing/pull/196
https://github.com/eclipse/microprofile-opentracing/pull/190
https://github.com/eclipse/microprofile-opentracing/pull/183
https://github.com/eclipse/microprofile-opentracing/pull/168
https://github.com/eclipse/microprofile-opentracing/pull/162
https://github.com/eclipse/microprofile-opentracing/pull/145

Release 1.3
• Instrument MicroProfile Rest Client 1.2 (#102)

• Clarify http-path when path contains regular expressions (#136)

Release 1.2.1
• Split tree equals in TCK and remove logs from server spans (#132)

• Remove servlets from TCK and use context root to test MP Metrics, OpenAPI, Health URLs (#127)

• Clarified default skip pattern value (#126)

• Added HTTP method to http-path operation name (#125)

• Added tests for ClientTracingRegistrar (#105)

• Update metadata in pom.xml (#101)

• Renamed test class to match OpenTracing (#106)

Release 1.2
• By default will not trace endpoints associated with MicroProfile Metrics, Health and OpenAPI

(#95)

• Added logging exceptions thrown by explicit instrumentation (@Traced)(#94)

• Added server operation name provider (#90)

• Removed geronimo-atinject and javax.annotation dependencies for API module (#92)

• Added support for server side skip pattern (#86)

Release 1.1
• Added component tag to server and client spans (#70)

• Explicitly enabled tracing for JAX-RS clients (#64)

• Updated OpenTracing API from 0.30.0 to 0.31.0. Note that these two versions contain breaking
changes (#67).

15

https://github.com/eclipse/microprofile-opentracing/pull/102
https://github.com/eclipse/microprofile-opentracing/pull/136
https://github.com/eclipse/microprofile-opentracing/pull/132
https://github.com/eclipse/microprofile-opentracing/pull/127
https://github.com/eclipse/microprofile-opentracing/pull/126
https://github.com/eclipse/microprofile-opentracing/pull/125
https://github.com/eclipse/microprofile-opentracing/pull/105
https://github.com/eclipse/microprofile-opentracing/pull/101
https://github.com/eclipse/microprofile-opentracing/pull/106
https://github.com/eclipse/microprofile-opentracing/pull/95
https://github.com/eclipse/microprofile-opentracing/pull/94
https://github.com/eclipse/microprofile-opentracing/pull/90
https://github.com/eclipse/microprofile-opentracing/pull/92
https://github.com/eclipse/microprofile-opentracing/pull/86
https://github.com/eclipse/microprofile-opentracing/pull/70
https://github.com/eclipse/microprofile-opentracing/pull/64
https://github.com/eclipse/microprofile-opentracing/pull/67

	Eclipse MicroProfile OpenTracing
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Introduction
	Rationale
	Architecture
	Enabling distributed tracing with no code instrumentation
	Tracer configuration
	Span creation for inbound requests
	Server Span name
	Server Span tags

	Span creation and injection for outbound requests
	JAX-RS Client
	MicroProfile Rest Client
	Client Span name
	Client Span tags
	Disabling server side tracing

	Enabling explicit distributed tracing code instrumentation
	The traced annotation
	Access to the configured tracer

	Configuration
	Configuration items

	Impact on existing code
	Alternatives considered
	Changelog
	Release 3.0
	Incompatible changes
	Jakarta EE 9.1 alignment (#221)

	Release 2.0
	Incompatible changes
	Update OpenTracing API to 0.33.0 (#177)

	Other changes

	Release 1.3.1
	Release 1.3
	Release 1.2.1
	Release 1.2
	Release 1.1

