
MicroProfile Reactive Streams
Operators Specification

James Roper, Clement Escoffier, Gordon Hutchison

3.0, August 23, 2022: Final

Table of Contents
Copyright . 2

Eclipse Foundation Specification License . 2

Disclaimers . 2

MicroProfile Reactive Streams Operators . 4

Introduction. 5

Rationale . 5

Scope . 6

Reactive Streams API dependency. 6

Design . 7

Stages. 7

Graphs. 7

Usage . 9

Implementation . 10

Memory visibility. 10

User exceptions . 10

Error propagation . 10

Cleanup. 11

null elements. 11

CDI Integration . 12

Injection of engines . 12

Contexts . 12

Reactive Streams Usage Examples . 14

Trivial closed graph. 14

Building a publisher . 14

Building a subscriber . 15

Building a processor . 15

Consuming a publisher. 15

Feeding a subscriber . 16

Similarities and differences with the Java Stream API . 17

Asynchronous processing . 17

No parallel processing . 17

Other differences . 18

SPI. 19

Release Notes for MicroProfile Reactive Streams Operator 3.0 . 20

Other Changes. 20

Incompatible Changes . 20

API/SPI Changes . 20

Release Notes for MicroProfile Reactive Streams Operator 2.0 . 21

Incompatible Changes. 21

API/SPI Changes . 21

Other Changes. 21

Specification: MicroProfile Reactive Streams Operators Specification

Version: 3.0

Status: Final

Release: August 23, 2022

1

Copyright
Copyright (c) 2018 , 2022 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

2

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

3

MicroProfile Reactive Streams Operators

4

Introduction
This specification defines an API for manipulating Reactive Streams, providing operators such as
map, filter, flatMap, in a similar fashion to the java.util.stream API introduced in Java 8. It also
provides an SPI for implementing and providing custom Reactive Streams engines, allowing
application developers to use whichever engine they see fit.

Rationale
The java.util.stream API provides functionality necessary for manipulating streams in memory
introducing functional programming into the Java language. However, manipulating potentially
infinite asynchronous streams has some very different requirements which the java.util.stream
API is not suitable for.

Reactive Streams is a specification for asynchronous streaming between different libraries and/or
technologies, which is included in JDK9 as the java.util.concurrent.Flow spec. Reactive Streams
itself however is an SPI for library and technology vendors to implement, it is not intended that
application developers implement it as the semantics are very complex.

Commonly, Reactive Streams requires more than just plumbing publishers to subscribers, the
stream typically needs to be manipulated in some way, such as applying operations such as map,
filter and flatMap. Neither Reactive Streams, nor the JDK, provides an API for doing these
manipulations. Since users are not meant to implement Reactive Streams themselves, this means
the only way to do these manipulations currently is to depend on a third party library providing
operators, such as Akka Streams, RxJava or Reactor.

This API seeks to fill that gap, so that MicroProfile application developers can manipulate Reactive
Streams without bringing in a third party dependency. By itself, this API is not interesting to
MicroProfile, but with the addition of other Reactive features, such as the MicroProfile Reactive
Messaging proposal, it is essential.

There are a number of different approaches to handling the cross cutting concerns relating to
actually running streams. These include how and whether context is propagated, concurrency
models, buffering, hooks for monitoring and remoting. Different implementations of Reactive
Streams offer different approaches based on varying opinions on how these cross cutting concerns
should be treated.

For this reason, this API provides an underlying SPI to allow different engines to be plugged in to
actually run the streams. Implementors of this spec will provide a default implementation,
however users can select to use a custom implementation if they need. Additional flexibility is
provided by using a service loaded implementation of the factory class that creates the stream
builders that implement the fluent API, enabling the provided implementation to be replaced.

This specification started as a proposal for the JDK, but after discussions there, it was decided that
the JDK was not the right place to incubate such an API. It is the intention that once incubated in
MicroProfile, this specification will be put to the JDK again as a proposal.

5

https://doc.akka.io/docs/akka/current/stream/index.html
https://github.com/ReactiveX/RxJava
https://projectreactor.io/

Scope
This specification aims to define a set of operators to manipulate Reactive Streams. The proposed
API is voluntarily close to the java.util.stream API.

Reactive Streams API dependency
Reactive Streams has been included in the JDK9 as the java.util.concurrent.Flow API, which
contains the Publisher, Subscriber, Subscription and Processor interfaces as nested interfaces of
Flow. MicroProfile however is not ready to move to a baseline requirement for JDK9 or above.

For this reason, this proposal uses the JDK6 compatible org.reactivestreams API, which provides
identical Publisher, Subscriber, Subscription and Processor interfaces as members of the
org.reactivestreams package. This dependency contains nothing but those interfaces.

It has been discussed that MicroProfile could copy those interfaces itself, so as to not add this
dependency, however this would most likely frustrate use of Reactive Streams in MicroProfile.
There is a large ecosystem built around the org.reactivestreams interfaces. If application
developers wanted to leverage that ecosystem in their application, they would have to write
adapters to bridge the two APIs. Given that the org.reactivestreams dependency is a jar that
contains only these interfaces, identical to the interfaces in JDK9, there doesn’t seem to be any
value in copying them again into MicroProfile.

To facilitate an eventual migration to the JDK9 interfaces, once MicroProfile adopts JDK9 or later as
a baseline JDK version, all methods that pass org.reactivestreams interfaces to the user (either as a
return value, or by virtue of a user providing a callback to the method to receive it) will have Rs
added to their name. For example, getSubscriber will be called getRsSubscriber. This will allow new
methods to be added in future that return java.util.concurrent.Flow interfaces, without the Rs in
the name, allowing the existing Rs methods to be kept for a limited time for backwards
compatibility. Methods that accept a org.reactivestreams interface do not need to be given the same
treatment, as support for the JDK9 interfaces can be added by overloading them, with backwards
compatibility being maintained (see reactive approach for MicroProfile).

Where reactive streams objects are imported, core requirements are specified by the combination
of the Reactive Streams specification and this specification but there may be other requirements in
the context of a specific implementation. Similarly, reactive streams objects that are generated by
APIs in this specification will behave according to the Reactive Streams specification but aspects of
their behaviour beyond that, such as handling contexts, buffering policy, fan-out and so on are
implementation specific. Users should consult the relevant documentation for their environment.

6

https://github.com/eclipse/microprofile-reactive/blob/master/approach.asciidoc

Design
The design of MicroProfile Reactive Streams Operators is centered around builders for the various
shapes of streams.

Stages
Each builder contains zero or more stages. There are three different shapes of stages:

• Publisher. A publisher stage has an outlet, but no inlet.

stage

• Processor. A processor stage has an inlet and an outlet.

stage

• Subscriber. A subscriber stage has an inlet, but no outlet.

stage

Graphs
Stream stages can be built into graphs, using the builders. There are four different shapes of graphs
that can be built:

• Publishers. A publisher has one outlet but no inlet, and is represented as a Reactive Streams
Publisher when built. It contains one publisher stage, followed by zero or more processor
stages. This is called a PublisherBuilder

Publisher

• Processors. A processor has one inlet and one outlet, and is represented as a Reactive Streams

7

Processor when built. It contains zero or more processor stages. This is called a
ProcessorBuilder.

Processor

• Subscribers. A subscriber has one inlet but no outlet, and it also has a result. It is represented as
a product of a Reactive Streams Subscriber and a CompletionStage that is redeemed with the
result, or error if the stream fails, when built. It contains zero or more processor stages,
followed by a single subscriber stage. This is called a SubscriberBuilder.

Subscriber

• Closed graphs. A closed graph has no inlet or outlet, both having being provided in during the
construction of the graph. It is represented as a CompletionStage of the result of the stream. It
contains a publisher stage, followed by zero or more processor stages, followed by a subscriber
stage. This is called a CompletionRunner. The result is retrieved using the run method.

Closed Graph

While building a stream, the stream may change shape during its construction. For example, a
publisher may be collected into a List of elements. When this happens, the stream becomes a
closed graph, since there is no longer an outlet, but just a result, the result being the List of
elements:

Here’s an example of a more complex situation where a PublisherBuilder is plumbed to a
SubscriberBuilder, producing a CompletionRunner:

8

PublisherBuilder<Integer> evenIntsPublisher =
 ReactiveStreams.of(1, 2, 3, 4)
 .filter(i -> i % 2 == 0); ①

SubscriberBuilder<Integer, List<Integer>> doublingSubscriber =
 ReactiveStreams.<Integer>builder()
 .map(i -> i = i * 2)
 .toList(); ②

CompletionRunner<List<Integer>> result =
 eventIntsPublisher.to(doublingSubscriber); ③

① A publisher of integers 2 and 4.

② A subscriber that first doubles integers, then collects into a list.

③ A closed graph that when run, will produce the result in a CompletionStage.

of(1,..) filter map toList

map toListof(1,..) filter .to

Usage
When MicroProfile specifications provide an API that uses Reactive Streams, it is intended that
application developers can return and pass the builder interfaces directly to the MicroProfile APIs.
In many cases, application developers will not need to run the streams themselves. However,
should they need to run the streams directly themselves, they can do so by using the streams build
or run methods. PublisherBuilder, SubscriberBuilder and ProcessorBuilder all provide a build
method that returns a Publisher, CompletionSubscriber and Processor respectively, while
CompletionRunner, since it actually runs the stream, provides a run method that returns a
CompletionStage.

The CompletionSubscriber class is so named because, where a CompletionStage is a stage of
asynchronous computation that completes with a value or an error, a CompletionSubscriber is
subscriber to an asynchronous stream that completes with a value or an error.

The build and run methods both provide a zero arg variant, which uses the default Reactive Streams
engine provided by the platform, as well as an overload that takes a ReactiveStreamsEngine,
allowing application developers to use a custom engine when they please.

9

Implementation
The behavior of each stage is specified in the javadocs for stages in the SPI, and tested by the TCK.

Generally, across all stages, the following requirements exist:

Memory visibility
Within a single stage in a single stream, implementations must guarantee a happens-before
relationship between any invocation of all callbacks supplied to that stage.

Between different stages of a single stream, it is recommended that a happens-before relationship
exists between callbacks of different stages, however this is not required, and end users of the API
must not depend on this. Implementations are expected to implement this for performance
reasons, this is also known as operator fusing. Implementations may decide, for whatever reason,
not to fuse stages in certain circumstances, when this is done, it is said that there is an
asynchronous boundary between the two stages.

When Reactive Streams interfaces, that is, Publisher, Subscriber or Processor, are wrapped in a
stage, implementations may place an asynchronous boundary between that stage and its neighbors
if they choose. Whether implementations do or don’t place an asynchronous boundary there, they
must conform to the Reactive Streams specification with regards to memory visibility.

User exceptions
Exceptions thrown by user supplied callbacks must be caught and propagated downstream, unless
otherwise handled by an error handling stage.

User exceptions must not be thrown by the build or run methods of the builders. For example, if a
user supplies an Iterable as a source for a PublisherBuilder, and the iterator() method is invoked
synchronously from the build method on the publisher, and it throws an exception, this exception
must be caught, and propagated through the stream, not thrown from the build method.

An exception to this is the callbacks provided in user supplied Reactive Streams, ie Publisher,
Subscriber and Processor. Since these interfaces are specified not to throw any exceptions when the
consumer is adhering to the spec, implementations may assume that these interfaces won’t throw
exceptions, and the behavior of an implementation should these interfaces throw exceptions is
unspecified.

In some cases, exceptions may be wrapped, for example, CompletableFuture wraps exceptions in a
CompletionException. It is recommended that implementations do not wrap exceptions if they don’t
need to, but rather that they propagate them downstream as is.

Error propagation
Errors may be eagerly propagated by stages if an implementation chooses to do this. Such
propagation can aid with fast failure of stages, to ensure things like connection failures do not wait
excessively to discover that they have failed.

10

A consequence of this is that errors can in certain circumstances overtake elements. For example,
the flatMapCompletionStage stage may receive an error while an element is being asynchronously
processed. This error may immediately be propagated downstream, which will mean the eventual
redemption of the CompletionStage returned by the mapper function for the stage will be ignored,
and the element it is redeemed with will be dropped.

When a user does not desire this behavior, and wants to guarantee that stages don’t drop elements
when upstream errors arrive, they may insert an error recovery stage, such as onErrorResume,
before the stage that they don’t want to drop elements from. They will then need to implement an
out of band mechanism to propagate the error, such as wrapping it in an element, should they wish
to handle it downstream.

Cleanup
Implementations must assume that any PublisherBuilder, SubscriberBuilder or ProcessorBuilder
supplied to them, or any stages within, potentially hold resources, and must be cleaned up when
the stream shuts down. For example, a concat stage accepts two `PublisherBuilder’s. If the stream is
cancelled before the first is finished, the second must still be built, and then cancelled too.

null elements
Reactive Streams does not allow null elements. Hence, any user callbacks that return null as an
element to be emitted by a stage must cause the stage to fail with a NullPointerException.

11

CDI Integration
MicroProfile Reactive Streams Operators implementations may be used independently of a CDI
container. Consequently, implementations are not required to provide any integration with CDI.

This section of the specification is intended to provide advice for how other specifications may
integrate CDI with MicroProfile Reactive Streams Operators.

Injection of engines
If a MicroProfile container provides an implementation of MicroProfile Reactive Streams
Operators, then it must make an application scoped ReactiveStreamsEngine available for injection.

Contexts
This specification places no requirements on the propagation of CDI context, or what context(s)
should be active when user supplied callbacks are executed during the running of a stream.

Other specifications that use this specification may require that implementations make certain
context’s to be active when user callbacks are executed. In this case, it is expected that such
specifications will have the responsibility of running the streams.

For example, a hypothetical WebSocket specification may allow user code to return a
ProcessorBuilder to handle messages:

@WebSocket("/echo")
public ProcessorBuilder<Message, Message> echoWebsocket() {
 return ReactiveStreams.<Message>builder().map(message ->
 new Message("Echoing " + message.getText())
);
}

In this case, the implementation of that hypothetical WebSocket specification is responsible for
running the ProcessorBuilder returned by the user, and that specification may require that the
engine it uses to run it makes the request context active in callbacks, such as the map callback above.
Since the implementation of that specification is in control of which engine is used to run the
processor, this requirement can be made by that specification. It is the responsibility of that
implementation (and the MicroProfile container that pulls these implementations together) to
ensure that the MicroProfile Reactive Streams Operators implementation used is able to support
CDI context propagation.

In contrast, if a user is responsible for executing a stream, like in the following hypothetical
example:

12

@WebSocket("/echo")
public void echoWebsocket(PublisherBuilder<Message> incoming,
 SubscriberBuilder<Message, Void> outgoing) {

 incoming.map(message ->
 new Message("Echoing " + message.getText()
).to(outgoing).run();
}

Then there is no clear way for the container to control how the engine used there, which in this
case would be loaded through the Java ServiceLoader API, would propagate context. For this reason,
any cases where users are running their own streams are not expected to require any CDI context
propagation, and it is recommended that specifications favour APIs where the container runs the
stream, not the user, to facilitate context propagation.

13

Reactive Streams Usage Examples

Trivial closed graph
This just shows the fluency of the API. It wouldn’t make sense to actually do the below in practice,
since the JDK8 streams API itself is better for working with in memory streams.

CompletionStage<Optional<Integer>> result = ReactiveStreams
 .fromIterable(() -> IntStream.range(1, 1000).boxed().iterator())
 .filter(i -> (i & 1) == 1)
 .map(i -> i * 2)
 .collect(Collectors.reducing((i, j) -> i + j))
 .run();

Building a publisher
This shows how common collection types can be converted to a Publisher of the elements in the
collection.

List<MyDomainObject> domainObjects = ...

Publisher<ByteBuffer> publisher = ReactiveStreams
 .fromIterable(domainObjects)
 .buildRs(); ①

① The Rs suffix indicates the method produces a Reactive Streams Publisher.

The above example shows a very simple conversion of a List to a Publisher, of course other
operations can be done on the elements before building the Publisher, in this case we go on to
transform each object to a line in a CSV file, and then represent it as a stream of bytes.

Publisher<ByteBuffer> publisher = ReactiveStreams
 .map(obj -> String.format("%s,%s\n", obj.getField1(), obj.getField2()))
 .map(line -> ByteBuffer.wrap(line.getBytes()))
 .buildRs();

A Publisher built in this way has its behaviour specified by the Reactive Streams specification. Most
reactive streams implementations enable the detailed control of further aspects of stream stage
behaviour such as fan-out, back pressure policy, buffer sizes and so on. If you require control of
such aspects, consult your implementation’s documentation. One approach would be to create a
single Processor using your implementation library’s native API having the detailed behaviour
required, subscribe that to the built Publisher and then subscribe downstream stream processing
stages to that.

14

Building a subscriber
This shows building a subscriber for a byte stream, such as for the JDK9 HttpClient API. It assumes
another library has provided a Reactive Streams Processor that parses byte streams into streams of
objects.

Processor<ByteBuffer, MyDomainObject> parser = createParser();

CompletionSubscriber<ByteBuffer, List<MyDomainObject>> subscriber =
 ReactiveStreams.<ByteBuffer>builder()
 .via(parser)
 .toList()
 .build();

Subscriber<ByteBuffer> subscriber = subscriber; ①
CompletionStage<List<MyDomainObject>> result = subscriber.getCompletion(); ②

① The object can be deconstructed into the Subscriber part

② The CompletionStage can be retrieve using getCompletion

As a particular SubscriberBuilder may be constructed from a user supplied reactive streams
Subscriber and subscribers can only be used once, care should be taken not to reuse builders where
this may cause subscriber reuse, either for the emitted subscriber or a subscribing stage, such as a
Processor, that is internal to a stream.

Building a processor
This shows building a processor, for example, a message library may require processing messages,
and then emitting an ACK identifier so that each handled element can be acknowledged as handled.

Processor<Message<MyDomainObject>, MessageAck> processor =
 ReactiveStreams.<Message<MyDomainObject>>builder()
 .map(message -> {
 handleDomainObject(message.getMessage());
 return message.getMessageAck();
 })
 .buildRs();
 }

The comments above on avoiding inadvertent subscriber reuse are also relevant to Processor
objects as these may contain internal subscription relationships as well as user supplied reactive
streams Processor objects.

Consuming a publisher
A library may provide a Reactive Streams publisher that the application developer needs to

15

consume. This shows how that can be done.

Publisher<ByteBuffer> bytesPublisher = makeRequest();

Processor<ByteBuffer, MyDomainObject> parser = createParser();

CompletionStage<List<MyDomainObject>> result = ReactiveStreams
 .fromPublisher(bytesPublisher)
 .via(parser)
 .toList()
 .run();

Even though the MicroProfile Reactive Streams Operators API can be considered a 'lifted' API. The
parser object above is directly embedded in the stream and such cannot be used to build more than
one stream instance.

Feeding a subscriber
A library may provide a subscriber to feed a connection. This shows how that subscriber can be fed.

List<MyDomainObject> domainObjects = new ArrayList<>();

Subscriber<ByteBuffer> subscriber = createSubscriber();

CompletionStage<Void> completion = ReactiveStreams
 .fromIterable(domainObjects)
 .map(obj -> String.format("%s,%s\n", obj.getField1(), obj.getField2()))
 .map(line -> ByteBuffer.wrap(line.getBytes()))
 .to(subscriber)
 .run();

16

Similarities and differences with the Java
Stream API
The API shares a lot of similarities with the Java Stream API. This similarity has been done on
purpose to ease the adoption of the API. However, there are some differences and this section
highlights them.

Asynchronous processing
The goal of the Reactive Stream Operators specification is to define building blocks to enable the
implementation of asynchronous processing of stream of data. On the other hand, the Java Stream
API provides a synchronous approach to compute a result by analyzing data conveyed in a stream.
Because of this asynchronous vs. synchronous processing, the terminal stages (such as collect,
findFirst…) define by this API return CompletableStage<T> and not T. Indeed, only when the result
has been computed the returned CompletableStage is completed. As an example, here is the two
versions of the same processing:

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

// Java Stream version
int sum = list.stream()
 .map(i -> i + 1)
 .mapToInt(i -> i)
 .sum();
// At the point the sum is computed
System.out.println("sum: " + sum);

// Reactive Streams Operators version
CompletionStage<Integer> future = ReactiveStreams.fromIterable(list)
 .map(i -> i + 1)
 .collect(Collectors.summingInt(i -> i))
 .run();
future.whenComplete((res, err) -> System.out.println("async sum: " + res));

The asynchronous vs. synchronous difference also means that the error propagation works
differently. In the Java Streams API, the processing can be wrapped in a try/catch construct. In the
asynchronous case, the error is propagated into the returned future. In the example above, the
function passed to the whenComplete stage receives the result as well as the failure (if any). If the
processing throws an exception, the function can react by looking at the err parameter.

No parallel processing
The Reactive Streams specification is intrinsically sequential. So none of the parallel processing
ability from the Java Stream API are supported. As a consequence, the API does not provide a
parallel() method. Also, operations like findAny are not provided as the behavior would be
equivalent to the provided findFirst method.

17

https://docs.oracle.com/javase/9/docs/api/java/util/stream/Stream.html

Other differences
• allMatch, anyMatch and nonMatch can be achieved by combining filter and findFirst

• collect(Collector<? super T,A,R> collector) - the combiner part of the collector is not used
because of the sequential nature of Reactive Streams.

• collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R>
combiner) is provided as collect (Supplier<R> supplier, BiConsumer<R,? super T> accumulator).
Indeed, the combiner is not used because of the sequential nature of Reactive Streams.

• count is not provided but can be implemented using .collect(Collectors.counting()) instead.

• findAny is not supported, use findFirst instead. Because of the sequential nature of Reactive
Streams, the method has the same semantic.

• flatMapTo and mapTo are not provided. These can easily be replaced using regular flatMap and
map methods, or methods from Collectors.

• forEachOrdered is not provided as Reactive Streams mandates ordering. So forEach should be
used instead.

• max and min can be achieved using .collect(Collectors.maxBy(…)) and
.collect(Collectors.minBy(…))

• sorted is not supported

• toArray is not supported, toList can be used instead

• onClose is replaced by onComplete. Notice that the API also provides the onError and onTerminate
methods.

18

SPI
The API is responsible for building graphs of stages based on the operators the user invoked. This is
done using builder classes that implement the fluent API that is used to compose the graph. These
builders are obtained using the ReactiveStreamsFactory interface, a default implementation of
which exists in the core package. The static methods of the ReactiveStreams class delegate to a
service loaded implementation of ReactiveStreamsFactory, enabling the core implementation to be
replaced.

The stages form an SPI for ReactiveStreamsEngine implementations to build into a running stream.
Examples of stages include:

• Map

• Filter

• Elements to publish

• Collect

• Instances of Reactive Streams Publisher, Subscriber and Processor

Each stage has either an inlet, an outlet, or both. A graph is a sequence of stages, consecutive stages
will have an outlet and and inlet so that they can join - a graph that has a stage with no outlet
followed by a stage that has an inlet is impossible, for example. Only the stages at the ends of the
graph may have no inlet or outlet, whether these end stages have an inlet or outlet determines the
shape of the overall graph. The API is responsible for ensuring that as graphs are constructed, only
graphs that are logically possible are passed to the ReactiveStreamsEngine to construct.

The implementation discovery relies on the Java ServiceLoader mechanism. However, for
environments not supporting this mechanism, the user can pass custom implementations using the
following methods:

• org.eclipse.microprofile.reactive.streams.operators.core.ReactiveStreamsEngineResolver#setI
nstance - to configure the ReactiveStreamEngine

• org.eclipse.microprofile.reactive.streams.operators.spi.ReactiveStreamsFactoryResolver#setI
nstance - to configure the ReactiveStreamsFactory

These methods must be called before the access to the API and should only be used for integration
purpose.

19

Release Notes for MicroProfile Reactive
Streams Operator 3.0
A full list of changes delivered in the 3.0 release can be found at MicroProfile Reactive Streams
Operators 3.0 Milestone.

Other Changes
• Loading ReactiveStreamsEngine and ReactiveStreamsFactory should also work running with a

security manager (#170)

Incompatible Changes

This release aligns with Jakarta EE 9.1, so it won’t work with earlier versions of Jakarta or Java EE.

API/SPI Changes

There are no functional changes introduced in this release, except updating the dependencies from
javax to jakarta.

20

https://github.com/eclipse/microprofile-reactive-streams-operators/milestone/8
https://github.com/eclipse/microprofile-reactive-streams-operators/milestone/8
https://github.com/eclipse/microprofile-reactive-streams-operators/pull/170

Release Notes for MicroProfile Reactive
Streams Operator 2.0
A full list of changes delivered in the 2.0 release can be found at MicroProfile Reactive Streams
Operators 2.0 Milestone.

Incompatible Changes
• OSGi dependencies marked as "provided" (#132)

API/SPI Changes
• ReactiveStreamsFactory.fromSubscriber parameter type change (#134)

Other Changes
• Update to Jakarta EE8 APIs for MP 4.0 (#128)

• Javadoc clarification: (#135) (#137)(#142) (#129)

• TCK clarification: (#141)

21

https://github.com/eclipse/microprofile-reactive-streams-operators/milestone/3?closed=1
https://github.com/eclipse/microprofile-reactive-streams-operators/milestone/3?closed=1
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/132
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/134
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/128
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/135
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/137
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/142
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/129
https://github.com/eclipse/microprofile-reactive-streams-operators/issues/141

	MicroProfile Reactive Streams Operators Specification
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	MicroProfile Reactive Streams Operators
	Introduction
	Rationale
	Scope
	Reactive Streams API dependency

	Design
	Stages
	Graphs
	Usage

	Implementation
	Memory visibility
	User exceptions
	Error propagation
	Cleanup
	null elements

	CDI Integration
	Injection of engines
	Contexts

	Reactive Streams Usage Examples
	Trivial closed graph
	Building a publisher
	Building a subscriber
	Building a processor
	Consuming a publisher
	Feeding a subscriber

	Similarities and differences with the Java Stream API
	Asynchronous processing
	No parallel processing
	Other differences

	SPI
	Release Notes for MicroProfile Reactive Streams Operator 3.0
	Other Changes
	Incompatible Changes
	API/SPI Changes

	Release Notes for MicroProfile Reactive Streams Operator 2.0
	Incompatible Changes
	API/SPI Changes
	Other Changes

