Rest Client for MicroProfile

John D. Ament, Andy McCright

1.0.1, February 14, 2018

Table of Contents

Microprofile Rest Client
MicroProfile Rest Client Definition Examples
Sample Definitions
Invalid Client Interface Examples
MicroProfile Rest Client Programmatic Lookup
Sample Builder Usage
MicroProfile Rest Client Provider Registration
ClientResponseFilter
ClientRequestFilter
MessageBodyReader
MessageBodyWriter
ParamConverter
ReaderInterceptor
WriterInterceptor
ResponseExceptionMapper
How to Implement ResponseExceptionMapper
Provider Declaration
Provider Priority
Feature Registration
Automatic Provider Registration
JSON-P Provider
Default Message Body Readers and Writers
Values supported with text/plain
Default ResponseExceptionMapper
MicroProfile Rest Client CDI Support
Support for MicroProfile Config
Release Notes for MicroProfile Rest Client 1.0

© ©O© 00 00 00 0 00 00 00 00 I NN U1 W wWw N

Y Y Y
O Ul R W NN NN R

Specification: Rest Client for MicroProfile

Version: 1.0.1

Status: Draft

Release: February 14, 2018

Copyright (c) 2017 Contributors to the Eclipse Foundation

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Microprofile Rest Client

MicroProfile Rest Client Definition
Examples

MicroProfile TypeSafe Rest Clients are defined as Java interfaces.
Sample Definitions

public interface MyServiceClient {

("/greet")
Response greet();

This simple API exposes one API call, located at /greet from the base URL of the client. Invoking this
endpoint returns a javax.ws.rs.core.Response object that represents the raw response from
invoking the API. Below is a more comprehensive example of a client.

@Path("/users")
@Produces("application/json")
@Consumes("application/json")
public interface UsersClient {
@OPTIONS
Response options();

@HEAD
Response head();

@GET
List<User> getUsers();

@GET
@Path("/{userId}")
User getUser(@PathParam("userId") String userld);

@HEAD
@Path("/{userId}")
Response headUser (@PathParam("userId") String userId);

@POST
Response createUser (@HeaderParam("Authorization") String authorization, User user

@PUT
@Path("/{userId}")
Response updateUser(@BeanParam PutUser putUser, User user);

@DELETE

@Path("/{userId}")

Response deleteUser(@CookieParam("AuthToken") String authorization, @PathParam(
"userId") String userld);
+

public class PutUser {
@HeaderParam("Authorization")
private String authorization;
@PathParam("userId")
private String userId;
// getters, setters, constructors omitted

All built in HTTP methods are supported by the client API. Likewise, all base parameter types
(query, cookie, matrix, path, form and bean) are supported. If you only need to inspect the body,
you can provide a POJO can be processed by the underlying MessageBodyReader or MessageBodyWriter.
Otherwise, you can receive the entire Response object for parsing the body and header information
from the server invocation.

Invalid Client Interface Examples

Invalid client interfaces will result in a RestClientDefinitionException (which may be wrapped in a
DefinitionException if using CDI). Invalid interfaces can include:

* Using multiple HTTP method annotations on the same method

A client interface method may contain, at most, one HTTP method annotation (such as
javax.ws.rs.GET, javax.ws.rs.PUT, javax.ws.rs.OPTIONS, etc.). If a method is annotated with more
than one HTTP method, the implementation must throw a RestClientDefinitionException.

public interface MultipleVerbsClient {

Response ambiguousClientMethod()

* Invalid URI templates

A client interface that accepts parameters based on the URI path must ensure that the path
parameter is defined correctly in the @Path annotation. For example:

("/somePath/{someParam}")
public interface GoodInterfaceOne {

public Response deleteEntry(("someParam") String entryNameToDelete);

("/someOtherPath")
public interface GoodInterfaceTwo {

("/{someOtherParam}")
public Response quickCheck(("someOtherParam") String entryNameToCheck);

Both of these interfaces show valid usage of the @PathParam annotation. In GoodInterfaceOne, the URI
template is specified at the class-level @Path annotation; in GoodInterfaceTwo, the template is
specified at the method-level.

Implementations must throw a RestClientDefinitionException if a @Path annotation specifies an
unresolved URI template or if a @PathParam annotations specifies a template that is not specified in a
@Path annotation on the enclosing method or interface. For example, the following three interfaces
will result in a RestClientDefinitionException:

@Path("/somePath/{someParam}")
public interface BadInterfaceOne {
@DELETE
public Response deleteEntry();

}

@Path("/someOtherPath")
public interface BadInterfaceTwo {

@HEAD

@Path("/abc")

public Response quickCheck(@PathParam("someOtherParam") String entryNameToCheck);
}

@Path("/yetAnotherPath")
public interface BadInterfaceThree {
@GET
@Path("/{someOtherParam}")
public Response quickCheck(@PathParam("notTheSameParam") String entryNameToCheck);

BadInterfaceOne declares a URI template named "someParam" but the deleteEntry method does not
specify a @PathParam("someParam") annotation. BadInterfaceTwo does not declare a URI template, but
the quickCheck method specifies a @PathParam annotation on a parameter. BadInterfaceThree has a
mismatch. The @Path annotation declares a URI template named "someOtherParam" but the
@PathParam annotation specifies a template named "notTheSameParam". All three interfaces will
result in a RestClientDefinitionException.

MicroProfile Rest Client Programmatic
Lookup

Type Safe Rest Clients support both programmatic look up and CDI injection approaches for usage.
An implementation of MicroProfile Rest Client is expected to support both use cases.

Sample Builder Usage

public class SomeService {
public Response doWorkAgainstApi(URL apiUrl, ApiModel apiModel) {
RemoteApi remoteApi = RestClientBuilder.newBuilder()
.baseUr1(apilrl)
.build(RemoteApi.class);
return remoteApi.execute(apiModel);

Specifying the baseUr1l is the URL to the remote service. The proxy method takes an interface that
defines one or more API methods to be invoked, returning back an instance of that interface that

can be used to perform API calls.

MicroProfile Rest Client Provider
Registration

The RestClientBuilder interface extends the Configurable interface from JAX-RS, allowing a user to
register custom providers while its being built. The behavior of the providers supported is defined
by the JAX-RS Client API specification. Below is a list of provider types expected to be supported by
an implementation:

ClientResponseFilter

Filters of type ClientResponseFilter are invoked in order when a response is received from a
remote service.

ClientRequestFilter

Filters of type ClientRequestFilter are invoked in order when a request is made to a remote service.

MessageBodyReader

The MessageBodyReader interface defined by JAX-RS allows the entity to be read from the API
response after invocation.

MessageBodyWriter

The MessageBodyWriter interface defined by JAX-RS allows a request body to be written in the
request for @POST, @PUT operations, as well as other HTTP methods that support bodies.

ParamConverter

The ParamConverter interface defined by JAX-RS allows a parameter in a resource method to be
converted to a format to be used in a request or a response.

ReaderInterceptor

The ReaderInterceptor interface is a listener for when a read occurs against the response received
from a remote service call.

WriterInterceptor

The WriterInterceptor interface is a listener for when a write occurs to the stream to be sent on the
remote service invocation.

ResponseExceptionMapper

The ResponseExceptionMapper is specific to MicroProfile Rest Client. This mapper will take a Response
object retrieved via an invocation of a client and convert it to a Throwable, if applicable. The
runtime should scan all of the registered mappers, sort them ascending based on getPriority(),
find the ones that can handle the given status code and response headers, and invoke them. The
first one discovered where toThrowable returns a non-null Throwable that can be thrown given the
client method’s signature will be thrown by the runtime.

How to Implement ResponseExceptionMapper

The specification provides default methods for getPriority() and handles(int status,
MultivaluedMap<String,Object> headers) methods. Priority is meant to be derived via a @Priority
annotation added to the ResponseExceptionMapper implementation. The runtime will sort ascending,
taking the one with the lowest numeric value first to check if it can handle the Response object
based on it’s status code and headers. The usage of ascending sorting is done to be consistent with
JAX-RS behavior.

Likewise, the handles method by default will handle any response status code >= 400. You may
override this behavior if you so choose to handle other response codes (both a smaller ranger and a
larger range are expected) or base the decision on the response headers.

The toThrowable(Response) method actually does the conversion work. This method should not raise
any Throwable, instead just return a Throwable if it can. This method may return null if no throwable
should be raised. If this method returns a non-null throwable that is a sub-class of
RuntimeException or Error (i.e. unchecked throwables), then this exception will be thrown to the
client. Otherwise, the (checked) exception will only be thrown to the client if the client method
declares that it throws that type of exception (or a super-class). For example, assume there is a
client interface like this:

(ll/")
public interface SomeService {

public String get() throws SomeException;

public String put(String someValue);

and assume that the following ResponseExceptionMapper has been registered:

public class MyResponseExceptionMapper implements ResponseExceptionMapper
<SomeException> {

public SomeException toThrowable(Response response) {
return new SomeException();

}

In this case, if the get method results in an exception (response status code of 400 or higher),
SomeException will be thrown. If the put method results in an exception, SomeException will not be
thrown because the method does not declare that it throws SomeException. If another
ResponseExceptionMapper (such as the default mapper, see below) is registered that returns a
subclass of RuntimeException or Error, then that exception will be thrown.

Any methods that read the response body as a stream must ensure that they reset the stream.

10

Provider Declaration

In addition to defining providers via the client definition, interfaces may use the @RegisterProvider

annotation to define classes to be registered as providers in addition to providers registered via the
RestClientBuilder

Provider Priority

Providers may be registered via both annotations and the builder pattern. Providers registered via
a builder will take precedence over the @RegisterProvider annotation. The @RegisterProvider
annotation takes precedence over the @Priority annotation on the class.

Provider priorities can be overridden using the various register methods on Configurable, which
can take a provider class, provider instance as well as priority and mappings of those priorities.

Feature Registration

If the type of provider registered is a Feature, then the priority set by that Feature will be a part of
the builder as well. Implementations must maintain the overall priority of registered providers,
regardless of how they are registered. A Feature will be used to register additional providers at
runtime, and may be registered via @RegisterProvider, configuration or via RestClientBuilder. A
Feature will be executed immediately, as a result its priority is not taken into account (features are
always executed).

11

Automatic Provider Registration

Implementations may provide any number of providers registered automatically, but the following
providers must be registered by the runtime.

JSON-P Provider

When an interface is registered that contains:

* @Produces("*/json") or

* @Consumes("*/json") or

* a method that declares input or output of type javax.json.JsonValue or any subclass therein
Then a JSON-P MessageBodyReader and MessageBodyWriter will be registered automatically by the
implementation. This is in alignment with the JAX-RS 2.0 specification. The provider registered will

have a priority of Integer.MAX_VALUE, allowing a user to register a custom provider to be used
instead.

Default Message Body Readers and Writers

For the following types, and any media type, the runtime must support "MessageBodyReader s and
"MessageBodyWriter "s being automatically registered.

« byte[]

o String

o InputStream
« Reader

« File

Values supported with text/plain

The following types are supported for automatic conversion, only when the media type is
text/plain.

« Number

* Character and char
* Long and long

* Integer and int

* Double and double
* Float and float

* Boolean and boolean (literal value of true and false only)

12

Default ResponseExceptionMapper

Each implementation will provide out of the box a ResponseExceptionMapper implementation that
will map the response into a WebApplicationException whenever the response status code is >= 400.
It has a priority of Integer.MAX_VALUE. It is meant to be used as a fall back whenever an error is
encountered. This mapper will be registered by default to all client interfaces.

This behavior can be disabled by adding a configuration property
microprofile.rest.client.disable.default.mapper with value true that will be resolved as a boolean
via MicroProfile Config.

It can also be disabled on a per client basis by using the same property when building the client,
RestClientBuilder.newBuilder().property("microprofile.rest.client.disable.default.mapper”,true)

13

MicroProfile Rest Client CDI Support

Rest Client interfaces may be injected as CDI beans. The runtime must create a CDI bean for each
interface annotated with RegisterRest(Client. The bean created will include a qualifier @RestClient
to differentiate the use as an API call against any other beans registered of the same type. Based on
the rules of how CDI resolves bean, you are only required to use the qualifier if you have multiple
beans of the same type. Any injection point or programmatic look up that uses the qualifier
RestClient is expected to be resolved by the MicroProfile Rest Client runtime. Below is an example
of said interface, with its matching injection point:

package com.mycompany.remoteServices;

public interface MyServiceClient {

("/greet")
Response greet();

public class MyService {

private MyServiceClient client;

Likewise, a user can perform programmatic look up of the interface. Here is one example, but any
CDI look up should work:

public class MyService {
public void execute() {
MyServiceClient client = CDI.current().select(MyServiceClient.class,
RestClient.LITERAL).get();
}
}

The qualifier is used to differentiate use cases of the interface that are managed by this runtime,
versus use cases that may be managed by other runtimes.

Interfaces are assumed to have a scope of @Dependent unless there is another scope defined on the
interface. Implementations are expected to support all of the built in scopes for a bean. Support for
custom registered scopes should work, but is not guaranteed.

14

Support for MicroProfile Config

For CDI defined interfaces, it is possible to use MicroProfile Config properties to define additional
behaviors of the rest interface. Assuming this interface:

package com.mycompany.remoteServices;
public interface MyServiceClient {

("/greet")
Response greet();

The values of the following properties will be provided via MicroProfile Config:

» com.mycompany.remoteServices.MyServiceClient/mp-rest/url: The base URL to use for this service,
the equivalent of the baseUrl method. This property is considered required, however
implementations may have other ways to define these URLs.

* com.mycompany.remoteServices.MyServiceClient/mp-rest/scope: The fully qualified classname to a
CDI scope to use for injection, defaults to javax.enterprise.context.Dependent as mentioned
above.

» com.mycompany.remoteServices.MyServiceClient/mp-rest/providers: A comma separated list of
fully-qualified provider classnames to include in the client, the equivalent of the register
method or the @RegisterProvider annotation.

« com.mycompany.remoteServices.MyServiceClient/mp-
rest/providers/com.mycompany.MyProvider/priority will override the priority of the provider for
this interface.

Implementations may support other custom properties registered in similar fashions or other ways.

The url property must resolve to a value that can be parsed by the URL converter required by the
MicroProfile Config spec.

The providers property is not aggregated, the value will be read from the highest property
ConfigSource

15

Release Notes for MicroProfile Rest Client
1.0

MicroProfile Rest Client Spec PDF MicroProfile Rest Client Spec HTML MicroProfile Rest Client Spec
Javadocs

Key features:

* Built in alignment to other MicroProfile Specs - automatic registration of JSON provider, CDI
support for injecting clients, fully configurable clients via MicroProfile Config

* Can map JAX-RS Response objects into “Exception s to be handled by your client code

Fully declarative annotation driven configuration, with supported builder patterns

Closely aligned to JAX-RS with configuration and behavior based on the JAX-RS Client object

To get started, simply add this dependency to your project, assuming you have an implementation
available:

<dependency>
<groupld>org.eclipse.microprofile.rest.client</groupId>
<artifactId>microprofile-rest-client-api</artifactId>
<version>1.0</version>
<scope>provided</scope>

</dependency>

And then programmatically create an interface:

public interface SimpleGetApi {

Response executeGet();

}

// in your client code

SimpleGetApi simpleGetApi = RestClientBuilder.newBuilder()
.baseUr1(getApplicationUrl())
.build(SimpleGetApi.class);

or you can use CDI to inject it:

16

http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/microprofile-rest-client.pdf
http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/microprofile-rest-client.html
http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/apidocs/
http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/apidocs/

@Path("/")

@Dependent

@RegisterRestClient

public interface SimpleGetApi {
OGET
Response executeGet();

¥

// in your client code

@Inject

private SimpleGetApi simpleGetApi
// 1in your config source
com.mycompany.myapp.client.SimpleGetApi/mp-rest/url=http://microprofile.io

17

	Rest Client for MicroProfile
	Table of Contents
	Microprofile Rest Client
	MicroProfile Rest Client Definition Examples
	Sample Definitions
	Invalid Client Interface Examples

	MicroProfile Rest Client Programmatic Lookup
	Sample Builder Usage

	MicroProfile Rest Client Provider Registration
	ClientResponseFilter
	ClientRequestFilter
	MessageBodyReader
	MessageBodyWriter
	ParamConverter
	ReaderInterceptor
	WriterInterceptor
	ResponseExceptionMapper
	How to Implement ResponseExceptionMapper

	Provider Declaration
	Provider Priority
	Feature Registration

	Automatic Provider Registration
	JSON-P Provider
	Default Message Body Readers and Writers
	Values supported with text/plain

	Default ResponseExceptionMapper

	MicroProfile Rest Client CDI Support
	Support for MicroProfile Config

	Release Notes for MicroProfile Rest Client 1.0

