Rest Client for MicroProfile

John D. Ament, Andy McCright, Ken Finnigan, Michal Szynkiewicz

1.3.2, May 31, 2019

Table of Contents

Microprofile Rest Client
MicroProfile Rest Client Definition Examples
Sample Definitions
Specifying Additional Client Headers
Invalid Client Interface Examples
MicroProfile Rest Client Programmatic Lookup
Sample Builder Usage
MicroProfile Rest Client Provider Registration
ClientResponseFilter
ClientRequestFilter
MessageBodyReader
MessageBodyWriter
ParamConverter
ReaderInterceptor
WriterInterceptor
ResponseExceptionMapper

How to Implement ResponseExceptionMapper

Provider Declaration
Provider Priority
Feature Registration

Automatic Provider Registration
JSON-P and JSON-B Providers
Default Message Body Readers and Writers

Values supported with text/plain

Default ResponseExceptionMapper

MicroProfile Rest Client CDI Support
Support for MicroProfile Config
Configuration Keys

Lifecycle of Rest Clients

MicroProfile Rest Client Asynchronous Support
Asynchronous Methods
ExecutorService
AsyncInvocationInterceptors

MicroProfile Rest Client SSL Support
Trust store
Hostname verification
Key store
SSL Context

© © 9 U W W N

10
10
10
10
10
10
10
11
11
11
13
13
13
14
14
14
14
15
16
17
18
19
21
21
21
21
23
23
23
23
24

Integration with other MicroProfile technologies
CDI
MicroProfile Config
MicroProfile Fault Tolerance
JAX-RS
Other MicroProfile Technologies
Release Notes for MicroProfile Rest Client 1.3
Release Notes for MicroProfile Rest Client 1.2
Release Notes for MicroProfile Rest Client 1.1

Release Notes for MicroProfile Rest Client 1.0

25
25
25
25
25
26
27
28
29
30

Specification: Rest Client for MicroProfile

Version: 1.3.2

Status: Final

Release: May 31, 2019

Copyright (c) 2017-2019 Contributors to the Eclipse Foundation

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and
limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Microprofile Rest Client

MicroProfile Rest Client Definition
Examples

MicroProfile TypeSafe Rest Clients are defined as Java interfaces.
Sample Definitions

public interface MyServiceClient {

("/greet")
Response greet();

This simple API exposes one API call, located at /greet from the base URL of the client. Invoking this
endpoint returns a javax.ws.rs.core.Response object that represents the raw response from
invoking the API. Below is a more comprehensive example of a client.

@Path("/users")
@Produces("application/json")
@Consumes("application/json")
public interface UsersClient {
@OPTIONS
Response options();

@HEAD
Response head();

@GET
List<User> getUsers();

@GET
@Path("/{userId}")
User getUser(@PathParam("userId") String userld);

@HEAD
@Path("/{userId}")
Response headUser (@PathParam("userId") String userId);

@POST
Response createUser(@HeaderParam("Authorization") String authorization,
User user);

@PUT
@Path("/{userId}")
Response updateUser(@BeanParam PutUser putUser, User user);

@DELETE
@Path("/{userId}")
Response deleteUser(@CookieParam("AuthToken") String authorization,
@PathParam("userId") String userId);
}

public class PutUser {
@HeaderParam("Authorization")
private String authorization;
@PathParam("userId")
private String userId;
// getters, setters, constructors omitted

All built in HTTP methods are supported by the client API. Likewise, all base parameter types
(query, cookie, matrix, path, form and bean) are supported. If you only need to inspect the body,
you can provide a POJO can be processed by the underlying MessageBodyReader or MessageBodyWriter.
Otherwise, you can receive the entire Response object for parsing the body and header information
from the server invocation.

Users may specify the media (MIME) type of the outbound request using the @Consumes annotation
(this determine the Content-Type HTTP header), and the expected media type(s) of the response by
using the @Produces annotation (the Accept HTTP header). This indicates that the client interface
expects that the remote service consumes/produces the specified types. If no @Consumes or @Produces
annotation is specified for a given request, it will default to
javax.ws.rs.core.MediaType.APPLICATION_JSON ("application/json").

Specifying Additional Client Headers

While it is always possible to add a @HeaderParam-annotated method argument to specify headers,
some times that does not make sense within the context of the application. For example, you may
want to specify a username/password in the Authorization header to a secure remote service, but
you may not want to have a String authHeader parameter in the client interface method. The
@ClientHeaderParam annotation can allow users to specify HTTP headers that should be sent without
altering the client interface method signature.

The annotation contains three attributes: name, value. and required. The name attribute is used to
specify the header name. The value attribute is used to specify the value(s) of the header. The value
can be specified explicitly or it can reference a method that would compute the value of the header
- in this latter case, the compute method name must be surrounded by curly braces. The compute
method must be either a default method on the interface or a public static method that is accessible
to the interface, must return a String or String[] and must either contain no arguments or contain
a single String argument - the implementation will use this String argument to pass the name of the
header. When specifying a compute method as the value attribute, only one method may be
specified - if more than one string is specified as the value attribute, and one of the strings is a
compute method (surrounded by curly braces), then the implementation will throw a
RestClientDefinitionException. The required attribute determines what should happen in the event
that the compute method throws an exception. Note: If the required attribute is set to true
(default), then the client request will fail if the compute method throws an exception. If it is
set to false and the compute method throws an exception, then the client request will continue, but
without sending the HTTP header.

Note that if a @ClientHeaderParam annotation on a method specifies the same header name as an
annotation on the client interface, the annotation on the method will take precedence. Likewise, if
the same header name is used in a @HeaderParam annotation on a client interface method parameter
or in a bean class when a @BeanParam annotation is on a client interface method parameter, the
value of the @HeaderParam annotation takes precedence over any value specified in the
@ClientHeaderParam. It is invalid for the same header name to be specified in two different

@ClientHeaderParam annotations on the same target - in this case, the implementation will throw a
RestClientDefinitionException.

Here are a few examples:

@Path("/somePath")
public interface MyClient {

@POST
@ClientHeaderParam(name="X-Http-Method-Override", value="PUT")
Response sentPUTviaPOST(MyEntity entity);

@POST
@ClientHeaderParam(name="X-Request-ID", value="{generateRequestId}")
Response postWithRequestId(MyEntity entity);

@GET

@ClientHeaderParam(name="CustomHeader",
value="{some.pkg.MyHeaderGenerator.generateCustomHeader}",
required=false)

Response getWithoutCustomHeader();

default String generateRequestId() {
return UUID.randomUUID().toString();
}
}

public class MyHeaderGenerator {
public static String generateCustomHeader (String headerName) {
if ("CustomHeader".equals(headerName)) {
throw UnsupportedOperationException();

}

return "SomeValue";

}

@Path("/someOtherPath")

@ClientHeaderParam(name="CustomHeader", value="valuel")
@ClientHeaderParam(name="CustomHeader", value="{generateCustomHeader}")
// will throw a RestClientDefinitionException at build time

public interface MyInvalidClient {

}

It is also possible to add or propagate headers en masse using a ClientHeadersFactory. This interface
has a single method and takes two read-only MultivaluedMap parameters: The first map represents
headers for the incoming request - if the client is executing in a JAX-RS environment then this map
will contain headers from the inbound JAX-RS request. The second map represents the headers to
be sent, and it contains headers that have been specified via @ClientHeaderParam, @HeaderParam,
@BeanParam, etc. The method should return a MultivaluedMap that contains the headers to merge with
this second map for the "final" map of headers to be sent to the outbound processing flow.
Providers such as filters, interceptors, message body writers, etc. could still modify the final map of
headers prior to sending the HTTP request.

By default, no ClientHeadersFactory implementation is used. To enable a ClientHeadersFactory, the
client interface must be annotated with the @RegisterClientHeaders annotation. If this annotation
specifies a value, the client implementation must invoke an instance of the specified
(lientHeadersFactory implementation class. If no value is specified, then the client implementation
must invoke the DefaultClientHeadersFactoryImpl. This default factory will propagate specified
headers from the inbound JAX-RS request to the outbound request - these headers are specified
with a comma-separated list using the following MicroProfile Config property:

org.eclipse.microprofile.rest.client.propagateHeaders

Invalid Client Interface Examples

Invalid client interfaces will result in a RestClientDefinitionException (which may be wrapped in a
DefinitionException if using CDI). Invalid interfaces can include:

» Using multiple HTTP method annotations on the same method

A client interface method may contain, at most, one HTTP method annotation (such as
javax.ws.rs.GET, javax.ws.rs.PUT, javax.ws.rs.OPTIONS, etc.). If a method is annotated with more
than one HTTP method, the implementation must throw a RestClientDefinitionException.

public interface MultipleVerbsClient {

Response ambiguousClientMethod()

 Invalid URI templates

A client interface that accepts parameters based on the URI path must ensure that the path
parameter is defined correctly in the @Path annotation. For example:

("/somePath/{someParam}")
public interface GoodInterfaceOne {

public Response deleteEntry(("someParam") String entryNameToDelete);

("/someOtherPath")
public interface GoodInterfaceTwo {

("/{someOtherParam}")
public Response quickCheck(("someOtherParam") String entryNameToCheck);

Both of these interfaces show valid usage of the @PathParam annotation. In GoodInterfaceOne, the URI
template is specified at the class-level @Path annotation; in GoodInterfaceTwo, the template is
specified at the method-level.

Implementations must throw a RestClientDefinitionException if a @Path annotation specifies an
unresolved URI template or if a @PathParam annotations specifies a template that is not specified in a
@Path annotation on the enclosing method or interface. For example, the following three interfaces
will result in a RestClientDefinitionException:

@Path("/somePath/{someParam}")
public interface BadInterfaceOne {
@DELETE
public Response deleteEntry();

}

@Path("/someOtherPath")
public interface BadInterfaceTwo {
@HEAD
@Path("/abc")
public Response quickCheck(@PathParam("someOtherParam") String entryNameToCheck);

}

@Path("/yetAnotherPath")
public interface BadInterfaceThree {
@GET
@Path("/{someOtherParam}")
public Response quickCheck(@PathParam("notTheSameParam") String entryNameToCheck);

BadInterfaceOne declares a URI template named "someParam" but the deleteEntry method does not
specify a @PathParam("someParam") annotation. BadInterfaceTwo does not declare a URI template, but
the quickCheck method specifies a @PathParam annotation on a parameter. BadInterfaceThree has a
mismatch. The @Path annotation declares a URI template named "someOtherParam" but the
@PathParam annotation specifies a template named "notTheSameParam". All three interfaces will
result in a RestClientDefinitionException.

As previously mentioned, specifying the same header name in multiple @ClientHeaderParam
annotations on the same target will result in a RestClientDefinitionException. Likewise, specifying
multiple compute methods in the @ClientHeaderParam value attribute will result in a
RestClientDefinitionException.

MicroProfile Rest Client Programmatic
Lookup

Type Safe Rest Clients support both programmatic look up and CDI injection approaches for usage.
An implementation of MicroProfile Rest Client is expected to support both use cases.

Sample Builder Usage

public class SomeService {
public Response doWorkAgainstApi(URI apiUri, ApiModel apiModel) {
RemoteApi remoteApi = RestClientBuilder.newBuilder()
.baseUri(apilri)
.build(RemoteApi.class);
return remoteApi.execute(apiModel);

Specifying the baseUri is the URL to the remote service. The build method takes an interface that
defines one or more API methods to be invoked, returning back an instance of that interface that

can be used to perform API calls.

MicroProfile Rest Client Provider
Registration

The RestClientBuilder interface extends the Configurable interface from JAX-RS, allowing a user to
register custom providers while its being built. The behavior of the providers supported is defined
by the JAX-RS Client API specification. Below is a list of provider types expected to be supported by
an implementation:

ClientResponseFilter

Filters of type ClientResponseFilter are invoked in order when a response is received from a
remote service.

ClientRequestFilter
Filters of type ClientRequestFilter are invoked in order when a request is made to a remote service.

Both the ClientRequestFilter and ClientResponseFilter interfaces contains methods that pass an
instance of ClientRequestContext. The Rest Client implementation must provide a property via that
(lientRequestContext called org.eclipse.microprofile.rest.client.invokedMethod - the value of this
property should be the java.lang.reflect.Method object representing the Rest Client interface
method currently being invoked.

MessageBodyReader

The MessageBodyReader interface defined by JAX-RS allows the entity to be read from the API
response after invocation.

MessageBodyWriter

The MessageBodyWriter interface defined by JAX-RS allows a request body to be written in the
request for @P0ST, @PUT operations, as well as other HTTP methods that support bodies.

ParamConverter

The ParamConverter interface defined by JAX-RS allows a parameter in a resource method to be
converted to a format to be used in a request or a response.

ReaderInterceptor

The ReaderInterceptor interface is a listener for when a read occurs against the response received
from a remote service call.

10

WriterInterceptor

The WriterInterceptor interface is a listener for when a write occurs to the stream to be sent on the
remote service invocation.

ResponseExceptionMapper

The ResponseExceptionMapper is specific to MicroProfile Rest Client. This mapper will take a Response
object retrieved via an invocation of a client and convert it to a Throwable, if applicable. The
runtime should scan all of the registered mappers, sort them ascending based on getPriority(),
find the ones that can handle the given status code and response headers, and invoke them. The
first one discovered where toThrowable returns a non-null Throwable that can be thrown given the
client method’s signature will be thrown by the runtime.

How to Implement ResponseExceptionMapper

The specification provides default methods for getPriority() and handles(int status,
MultivaluedMap<String,Object> headers) methods. Priority is meant to be derived via a @Priority
annotation added to the ResponseExceptionMapper implementation. The runtime will sort ascending,
taking the one with the lowest numeric value first to check if it can handle the Response object
based on it’s status code and headers. The usage of ascending sorting is done to be consistent with
JAX-RS behavior.

Likewise, the handles method by default will handle any response status code >= 400. You may
override this behavior if you so choose to handle other response codes (both a smaller ranger and a
larger range are expected) or base the decision on the response headers.

The toThrowable(Response) method actually does the conversion work. This method should not raise
any Throwable, instead just return a Throwable if it can. This method may return null if no throwable
should be raised. If this method returns a non-null throwable that is a sub-class of
RuntimeException or Error (i.e. unchecked throwables), then this exception will be thrown to the
client. Otherwise, the (checked) exception will only be thrown to the client if the client method
declares that it throws that type of exception (or a super-class). For example, assume there is a
client interface like this:

"/")

public interface SomeService {

public String get() throws SomeException;

public String put(String someValue);

and assume that the following ResponseExceptionMapper has been registered:

11

public class MyResponseExceptionMapper implements ResponseExceptionMapper
<SomeException> {

public SomeException toThrowable(Response response) {
return new SomeException();

}

In this case, if the get method results in an exception (response status code of 400 or higher),
SomeException will be thrown. If the put method results in an exception, SomeException will not be
thrown because the method does not declare that it throws SomeException. If another
ResponseExceptionMapper (such as the default mapper, see below) is registered that returns a
subclass of RuntimeException or Error, then that exception will be thrown.

Any methods that read the response body as a stream must ensure that they reset the stream.

12

Provider Declaration

In addition to defining providers via the client definition, interfaces may use the @RegisterProvider
annotation to define classes to be registered as providers in addition to providers registered via the
RestClientBuilder.

Providers may also be registered by implementing the Rest(ClientBuilderListener or
RestClientListener interfaces. These interfaces are intended as SPIs to allow global provider
registration. The implementation of these interface must be specified in a META-
INF/services/org.eclipse.microprofile.rest.client.spi.RestClientBuilderListener or META-
INF/services/org.eclipse.microprofile.rest.client.spi.RestClientListener file, respectively,
following the Serviceloader pattern.

Provider Priority

Providers may be registered via both annotations and the builder pattern. Providers registered via
a builder will take precedence over the @RegisterProvider annotation. The @RegisterProvider
annotation takes precedence over the @Priority annotation on the class.

Provider priorities can be overridden using the various register methods on Configurable, which
can take a provider class, provider instance as well as priority and mappings of those priorities.

Feature Registration

If the type of provider registered is a Feature, then the priority set by that Feature will be a part of
the builder as well. Implementations must maintain the overall priority of registered providers,
regardless of how they are registered. A Feature will be used to register additional providers at
runtime, and may be registered via @RegisterProvider, configuration or via RestClientBuilder. A
Feature will be executed immediately, as a result its priority is not taken into account (features are
always executed).

13

Automatic Provider Registration

Implementations may provide any number of providers registered automatically, but the following
providers must be registered by the runtime.

JSON-P and JSON-B Providers

Implementations of the MicroProfile Rest Client should behave similar to JAX-RS implementations
with regard to built-in JSON-P and JSON-B providers. Implementations must provide a built-in
JSON-P entity provider. If the implementation supports JSON-B, then it must also provide a built-in
JSON-B entity provider. Note that the JSON-B provider should take precedence over the JSON-P
provider unless the client interface method’s entity parameter or return type is a JSON-P object type
(javax.json.JsonObject, javax.json.JsonArray, etc.).

When an interface is registered that contains:

* @Produces("*/json") or
» @Consumes("*/json") or

* a method that declares input or output of type javax.json.JsonValue or any subclass therein
(JSON-P only) or

* no @Produces or @Consumes
Then a JSON-B or JSON-P MessageBodyReader and MessageBodyWriter will be registered automatically
by the implementation. This is in alignment with the JAX-RS 2.1 specification. The provider

registered will have a priority of Integer.MAX_VALUE, allowing a user to register a custom provider to
be used instead.

Default Message Body Readers and Writers

For the following types, and any media type, the runtime must support "MessageBodyReader s and
"MessageBodyWriter "s being automatically registered.

« byte[]

o String

o InputStream
« Reader

« File

Values supported with text/plain

The following types are supported for automatic conversion, only when the media type is
text/plain.

o Number

e Character and char

* Long and long

14

* Integer and int
* Double and double
e Float and float

* Boolean and boolean (literal value of true and false only)

Default ResponseExceptionMapper

Each implementation will provide out of the box a ResponseExceptionMapper implementation that
will map the response into a WebApplicationException whenever the response status code is >= 400.
It has a priority of Integer.MAX_VALUE. It is meant to be used as a fall back whenever an error is
encountered. This mapper will be registered by default to all client interfaces.

This behavior can be disabled by adding a configuration property
microprofile.rest.client.disable.default.mapper with value true that will be resolved as a boolean
via MicroProfile Config.

It can also be disabled on a per client basis by using the same property when building the client,
RestClientBuilder.newBuilder().property("microprofile.rest.client.disable.default.mapper”,true)

15

MicroProfile Rest Client CDI Support

Rest Client interfaces may be injected as CDI beans. The runtime must create a CDI bean for each
interface annotated with RegisterRest(Client. The bean created will include a qualifier @RestClient
to differentiate the use as an API call against any other beans registered of the same type. Based on
the rules of how CDI resolves bean, you are only required to use the qualifier if you have multiple
beans of the same type. Any injection point or programmatic look up that uses the qualifier
RestClient is expected to be resolved by the MicroProfile Rest Client runtime. Below is an example
of said interface, with its matching injection point:

package com.mycompany.remoteServices;

(baseUri="http://someHost/someContextRoot")
public interface MyServiceClient {

("/greet")
Response greet();

public class MyService {

private MyServiceClient client;

Likewise, a user can perform programmatic look up of the interface. Here is one example, but any
CDI look up should work:

public class MyService {
public void execute() {
MyServiceClient client = CDI.current().select(MyServiceClient.class,
RestClient.LITERAL).get();

The qualifier is used to differentiate use cases of the interface that are managed by this runtime,
versus use cases that may be managed by other runtimes.

Interfaces are assumed to have a scope of @Dependent unless there is another scope defined on the
interface. Implementations are expected to support all of the built in scopes for a bean. Support for
custom registered scopes should work, but is not guaranteed.

16

Support for MicroProfile Config

For CDI defined interfaces, it is possible to use MicroProfile Config properties to define additional
behaviors or override values specified in the @RegisterRestClient annotation of the rest interface.
Assuming this interface:

package com.mycompany.remoteServices;

public interface MyServiceClient {

("/greet")
Response greet();

The values of the following properties will be provided via MicroProfile Config:

» com.mycompany.remoteServices.MyServiceClient/mp-rest/url: The base URL to use for this service,
the equivalent of the baseUrl method. This property (or */mp-rest/uri) is considered required,
however implementations may have other ways to define these URLs/URISs.

» com.mycompany.remoteServices.MyServiceClient/mp-rest/uri: The base URI to use for this service,
the equivalent of the baseUri method. This property (or */mp-rest/url) is considered required,
however implementations may have other ways to define these URLs/URIs. This property will
override any baseUri value specified in the @RegisterRestClient annotation.

* com.mycompany.remoteServices.MyServiceClient/mp-rest/scope: The fully qualified classname to a
CDI scope to use for injection, defaults to javax.enterprise.context.Dependent as mentioned
above.

* com.mycompany.remoteServices.MyServiceClient/mp-rest/providers: A comma separated list of
fully-qualified provider classnames to include in the client, the equivalent of the register
method or the @RegisterProvider annotation.

« com.mycompany.remoteServices.MyServiceClient/mp-
rest/providers/com.mycompany.MyProvider/priority will override the priority of the provider for
this interface.

* com.mycompany.remoteServices.MyServiceClient/mp-rest/connectTimeout: Timeout specified in
milliseconds to wait to connect to the remote endpoint.

* com.mycompany.remoteServices.MyServiceClient/mp-rest/readTimeout: Timeout specified in
milliseconds to wait for a response from the remote endpoint.

Implementations may support other custom properties registered in similar fashions or other ways.

The url property must resolve to a value that can be parsed by the URL converter required by the
MicroProfile Config spec. Likewise, the uri property must resolve to a value that can be parsed by
the URI converter. If both the url and uri properties are declared, then the uri property will take
precedence.

The providers property is not aggregated, the value will be read from the highest property

17

ConfigSource.

Configuration Keys

It is possible to simplify configuration of client interfaces by using configuration keys. Config keys
are specified in the @RegisterRestClient annotation and can be used in place of the fully-qualified
classname in MP Config. For example, if we modify the previous example to be:

package com.mycompany.remoteServices;

@RegisterRestClient(configKey="myClient")
public interface MyServiceClient {

@GET

@Path("/greet")

Response greet();

Then config properties can be specified like: - myClient/mp-rest/url - myClient/mp-rest/uri -
myClient/mp-rest/scope - myClient/mp-rest/providers - myClient/mp-

rest/providers/com.mycompany.MyProvider/priority - myClient/mp-rest/connectTimeout - myClient/mp-
rest/readTimeout

Multiple client interfaces may have the same configKey value, which would allow many interfaces
to be configured with a single MP Config property.

If the same property exists for the same interface specified by both the configKey and the fully-
qualified classname, the property specified by the fully-qualified classname takes precedence.

18

Lifecycle of Rest Clients

Instances of a MicroProfile Rest Client can have two states: open and closed. When open, a client
instance is expected to invoke RESTful services as defined by the config and annotations described
throughout this document. When closed, a client instance is expected to throw an
I1legalStateException when a service method is invoked.

When a client instance is closed, the implementation is expected to clean up any underlying
resources.

A client instance can be closed by casting the instance to a Closeable or AutoCloseable and invoking
the the close() method (or auto-invoked if using in a try-with-resources block). For example:

public interface MyServiceClient {

("/greet")
String greet();

MyServiceClient client = RestClientBuilder.newBuilder()
.baseUri(apilri)
.build(MyServiceClient.class);
String responsel = client.greet(); // works
((Closeable)client).close();
String response2 = client.greet(); // throws IllegalStateException

Likewise, if the client interface extends java.lang.AutoCloseable or java.io.(Closeable, the client can
be closed by simply calling the inherited close() method. For example:

19

20

public interface MyServiceClient extends AutoCloseable {
@GET
@Path("/greet")
String greet();

MyServiceClient client = RestClientBuilder.newBuilder()
.baseUri(apilri)
.build(MyService(Client.class);
String responsel;
try (MyServiceClient c = client) {
responsel = c.greet(); // works
} // client is auto-closed

String response2 = client.greet(); // throws IllegalStateException

MicroProfile Rest Client Asynchronous
Support

It is possible for Rest Client interface methods to be declared asynchronous. This allows the
implementation to utilize non blocking behavior in handling the request.

Asynchronous Methods

A method is considered to be asynchronous if the method’s return type is
java.util.concurrent.CompletionStage.

For example, the following methods would be declared asynchronous:

public interface MyAsyncClient {

("/One")
CompletionStage<Response> get();

("/two")
CompletionStage<String> post(String entity);
}
ExecutorService

By default, the MicroProfile Rest Client implementation can determine how to implement the
asynchronous request. The primary requirement for the implementation is that the response from
the remote server should be handled asynchronously from the invoking method.

Callers may override the default implementation by providing their own ExecutorService via the
RestClientBuilder.executorService(ExecutorService) method. The implementation must use the
ExecutorService provided for all asynchronous methods on any interface built via the
RestClientBuilder.

AsyncInvocationInterceptors

There may be cases where it is necessary for client application code or runtime components to be
notified when control of the client request/response is being invoked asynchronously. This can be
accomplished by registering an implementation of the AsyncInvocationInterceptorFactory provider
interface. MP Rest Client implementations must invoke the newInterceptor method of each
registered factory provider prior to commencing execution on async method requests. That method
will return an instance of AsyncInvocationInterceptor - the MP Rest Client implementation must
then invoke the prepareContext method while still executing on the thread that invoked the async
method. After commencing asynchronous processing, but before invoking further providers or
returning control back to the async method caller, the MP Rest Client implementation must invoke

21

the applyContext method. The implementation must then invoke all inbound response providers
(filters, interceptors, MessageBodyReaders, etc.) and then must invoke the removeContext method on
the AsyncInvocationInterceptor. This allows the provider to remove any contexts before returning
control back to the user.

The following example shows how the AsyncInvocationInterceptorFactory provider and associated
AsyncInvocationInterceptor interface could be used to propagate a ThreadlLocal value:

public class MyFactory implements AsyncInvocationInterceptorFactory {

public AsyncInvocationInterceptor newInterceptor() {
return new MyInterceptor();
}
¥

public class MyInterceptor implements AsyncInvocationInterceptor {
// This field is temporary storage to facilitate copying a ThreadlLocal value
private volatile String someValue;

public void prepareContext() {
someValue = Some(Class.getValueFromThreadlocal();

}

public void applyContext() {
SomeClass.setValueIntoThreadlLocal(someValue);

}

public void removeContext() {
SomeClass.setValueIntoThreadLocal(null);

}

}

@RegisterProvider (MyFactory.class)
public interface MyAsyncClient {...}

22

MicroProfile Rest Client SSL Support

MicroProfile Rest Client provides a uniform way to configure SSL for the client.

Trust store

By default, a MicroProfile Rest Client implementation uses the JVM trust store. MicroProfile Rest
Client provides a way to specify a custom trust store.

For clients created programmatically, the trust store should be read to a KeyStore object and

specified as follows:

KeyStore trustStore = readTrustStore();
RestClientBuilder.newBuilder()
.trustStore(trustStore)

For CDI injected clients, the trust store can be specified with MicroProfile Config properties:

* myClient/mp-rest/trustStore to set the trust store location. Can point to either a classpath
resource (e.g. classpath:/client-truststore.jks) or a file (e.g. file:/home/user/client-
truststore. jks)

* myClient/mp-rest/trustStorePassword to set the password for the keystore

* myClient/mp-rest/trustStoreType to set the type of the trust store. Defaults to "JKS"

Hostname verification

A custom HostnameVerifier can be used to determine if an SSL connection that fails on a URL’s
hostname and a server’s identification hostname mismatch should be allowed.

To specify a hostname verifier for a programmatically created client, use:

RestClientBuilder.newBuilder()
.hostnameVerifier(verifier)

For CDI, the verifier can be specified by setting the myClient/mp-rest/hostnameVerifier MicroProfile
Config property to the class name of the verifier. The class must have a public no-argument
constructor.

Key store

Client key stores are useful for two-way SSL connections.

The programmatic API provides a keystore method for specifying the client key store. The method
accepts a KeyStore object.

23

For the CDI usage, the keystore can be specified with MicroProfile Config properties similar to the
trust store properties:

* myClient/mp-rest/keyStore to set the key store location. Can point to either a classpath resource
(e.g. classpath:/client-keystore.jks) or a file (e.g. file:/home/user/client-keystore.jks)

* myClient/mp-rest/keyStorePassword to set the password for the keystore

* myClient/mp-rest/keyStoreType to set the type of the key store. Defaults to "JKS"

SSL Context

For the programmatically created client, it is also possible to configure SSL by setting the SSLContext
using the RestClientBuilder#sslContext method.

24

Integration with other MicroProfile
technologies

The MicroProfile Rest Client can be used as a standalone technology. That means that an
implementation could work without CDI, MicroProfile Config, etc. This section documents how the
MicroProfile Rest Client should interact when it is executed in an environment that provides other
MicroProfile technologies.

CDI

Integration with CDI is already built-in to the Rest Client specification, and is documented in the
MicroProfile Rest Client CDI Support section.

If CDI is available, the MP Rest Client implementation must ensure that CDI business method
interceptors are invoked when the appropriate interceptor binding is applied to the client interface
or method.

MicroProfile Config

MP Rest Client uses MP Config in order to declaratively configure the client behavior. The remote
URI, client providers and priority, connect and read timeouts, etc. can all be configured using MP
Config. See Support for MicroProfile Config for more details.

MicroProfile Fault Tolerance

MP Rest Client implementations must ensure that MP Fault Tolerance annotations on client
interfaces are honored. In general, these annotations are treated as CDI interceptor bindings.

MP Rest Client should ensure that the behavior of most Fault Tolerance annotations should follow
the behavior outlined in the MP Fault Tolerance specification. This includes the @Asynchronous,
@Bulkhead, @CircuitBreaker, @Fallback and @Retry annotations.

The @Timeout annotation presents a problem since some parts of the MP Rest Client request are non-
blocking and non-interruptible. Implementations should override the default connect and read
timeouts and use the timeout value specified in the @Timeout annotation instead. This will ensure
that the actual time spent in blocking/non-interruptible operations should be less than or equal to
the time specified in the annotation, allowing the MP Fault Tolerance implementation to interrupt
the request and the throw the appropriate TimeoutException.

JAX-RS

When a client interface is executed from within a JAX-RS context (resource or provider class), it is
possible to propagate HTTP headers using the DefaultClientHeadersFactoryImpl by adding the
@RegisterClientHeaders annotation to the interface with no value. To specify which headers to
propagate from the inbound JAX-RS request to the outbound MP Rest Client request, users must use
a comma-separated list of headers in the following MicroProfile Config property:

25

org.eclipse.microprofile.rest.client.propagateHeaders.

Other MicroProfile Technologies

Client requests can be automatically traced when using MP OpenTracing. Likewise, requests can be
measured using MP Metrics. Configuration and usage of these technologies should be defined in
their respective specification documents.

26

Release Notes for MicroProfile Rest Client
1.3

Changes since 1.2:

» Spec-defined SSL support via new RestClientBuilder methods and MP Config properties.
» Allow client proxies to be cast to Closeable/AutoCloseable.
» Simpler configuration using configKeys.

* Defined application/json to be the default MediaType if none is specified in @Produces/@Consumes.

27

Release Notes for MicroProfile Rest Client
1.2

Changes since 1.1:

28

Generate headers en masse, including propagation of headers from inbound JAX-RS requests.

New @ClientHeaderParam API for defining HTTP headers without modifying the client interface
method signature.

New section documenting the Integration with other MicroProfile technologies.
Clarification on built-in JSON-B/JSON-P entity providers.
New baselUri property added to @RegisterRestClient annotation.

New connectTimeout and readTimeout methods on RestClientBuilder - and corresponding MP
Config properties.

ClientRequestContext should have a property named
org.eclipse.microprofile.rest.client.invokedMethod containing the Rest Client Method currently
being invoked.

New SPI interface, RestClientListener interface for intercepting new client instances.

New removeContext method for AsyncInvocationInterceptor interface.

Release Notes for MicroProfile Rest Client
1.1

Changes since 1.0:

* Asynchronous method support when Rest Client interfaces return CompletionStage.
» New SPI interface, RestClientBuilderListener for intercepting new client builders.
* @RegisterRestClient is now considered a bean-defining annotation.

¢ New baseUri method on RestClientBuilder.

29

Release Notes for MicroProfile Rest Client
1.0

MicroProfile Rest Client Spec PDF MicroProfile Rest Client Spec HTML MicroProfile Rest Client Spec
Javadocs

Key features:

* Built in alignment to other MicroProfile Specs - automatic registration of JSON provider, CDI
support for injecting clients, fully configurable clients via MicroProfile Config

* Can map JAX-RS Response objects into “Exception s to be handled by your client code

Fully declarative annotation driven configuration, with supported builder patterns

Closely aligned to JAX-RS with configuration and behavior based on the JAX-RS Client object

To get started, simply add this dependency to your project, assuming you have an implementation
available:

<dependency>
<groupld>org.eclipse.microprofile.rest.client</groupId>
<artifactId>microprofile-rest-client-api</artifactId>
<version>1.0</version>
<scope>provided</scope>

</dependency>

And then programmatically create an interface:

public interface SimpleGetApi {

Response executeGet();

}

// in your client code

SimpleGetApi simpleGetApi = RestClientBuilder.newBuilder()
.baseUri(getApplicationUri())
.build(SimpleGetApi.class);

or you can use CDI to inject it:

30

http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/microprofile-rest-client.pdf
http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/microprofile-rest-client.html
http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/apidocs/
http://download.eclipse.org/microprofile/microprofile-rest-client-1.0/apidocs/

@Path("/")

@Dependent

@RegisterRestClient

public interface SimpleGetApi {
OGET
Response executeGet();

¥

// in your client code

@Inject

private SimpleGetApi simpleGetApi
// 1in your config source
com.mycompany.myapp.client.SimpleGetApi/mp-rest/url=http://microprofile.io

31

	Rest Client for MicroProfile
	Table of Contents
	Microprofile Rest Client
	MicroProfile Rest Client Definition Examples
	Sample Definitions
	Specifying Additional Client Headers
	Invalid Client Interface Examples

	MicroProfile Rest Client Programmatic Lookup
	Sample Builder Usage

	MicroProfile Rest Client Provider Registration
	ClientResponseFilter
	ClientRequestFilter
	MessageBodyReader
	MessageBodyWriter
	ParamConverter
	ReaderInterceptor
	WriterInterceptor
	ResponseExceptionMapper
	How to Implement ResponseExceptionMapper

	Provider Declaration
	Provider Priority
	Feature Registration

	Automatic Provider Registration
	JSON-P and JSON-B Providers
	Default Message Body Readers and Writers
	Values supported with text/plain

	Default ResponseExceptionMapper

	MicroProfile Rest Client CDI Support
	Support for MicroProfile Config
	Configuration Keys

	Lifecycle of Rest Clients
	MicroProfile Rest Client Asynchronous Support
	Asynchronous Methods
	ExecutorService
	AsyncInvocationInterceptors

	MicroProfile Rest Client SSL Support
	Trust store
	Hostname verification
	Key store
	SSL Context

	Integration with other MicroProfile technologies
	CDI
	MicroProfile Config
	MicroProfile Fault Tolerance
	JAX-RS
	Other MicroProfile Technologies

	Release Notes for MicroProfile Rest Client 1.3
	Release Notes for MicroProfile Rest Client 1.2
	Release Notes for MicroProfile Rest Client 1.1
	Release Notes for MicroProfile Rest Client 1.0

