
EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #1eclipse.org/objectteams

Hands-on introduction to Object Teams

Stephan Herrmann, GK Software AG

Olaf Otto, Unic AG

March 24th, 2011

EclipseCon 2011, Santa Clara

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #2eclipse.org/objectteams

Hands-on Introduction to Object Teams

With good connectivity:
follow links from the EclipseCon program page

Else unpack these archives from USB to your hard disk
OTEclipseConTutorial.zip

creates a directory OTEclipseConTutorial/

the Eclipse SDK for your platform
✔ done with the USB stick

Within Eclipse (new empty workspace!) install OTDT:
local repository: OTEclipseConTutorial/otdt-updateSite

select everything (two features) & install

Open tutorial data
within OTDT import existing project

OTEclipseConTutorial/StarterKit.zip

slides are in OTEclipseConTutorial/Slides.pdf

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #3eclipse.org/objectteams

Speaker Introduction (1/2)

stephan:Person

name: “Herrmann”
firstName: “Stephan”
title: “Dr.”

SoftwareArchitect Committer

JDT/Core

ProjectLead

NPE

???

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #4eclipse.org/objectteams

Model Review

stephan:Person

name: “Herrmann”
firstName: “Stephan”
title: “Dr.”

SoftwareArchitect

«instanceof»

Committer

JDT/Core

ProjectLead

«instanceof»

«instanceof»?
?

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #5eclipse.org/objectteams

Not Classes – Roles!

stephan:Person

name: “Herrmann”
firstName: “Stephan”
title: “Dr.”

:SoftwareArchitect

«roleof»

:ProjectLead

«roleof»

«roleof»

:Committer

:Committer
«roleof»

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #6eclipse.org/objectteams

Classes vs. Roles

Roles are instances
modeled by classes

«roleof» is an instance relation
modeled by a playedBy relation

Roles are dynamic
add at runtime

remove at runtime

Roles are independent
object may have several roles ...

… even of the same type
(„I am 2 committers”)

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #7eclipse.org/objectteams

Speaker Introduction (2/2)

olaf:Person

name: “Otto”
firstName: “Olaf”
title: “Dipl. Inf.”

:SoftwareArchitect

«roleof»

:CMS expert

«roleof»

«roleof»

:Committer

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #8eclipse.org/objectteams

OT/J since 2001

Java += roles, teams, bindings

Object Teams Development Tooling since 2003

Java Compiler += OT/J constructs

JDT for OT/J (code assist, ui, launch …)

OT/Equinox since 2006

Equinox += aspect bindings

Eclipse Object Teams Project since 2010

Indigo train += OTDT

Planning to graduate for Indigo

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #9eclipse.org/objectteams

Why?

modularityencapsulation
maintenance refactoring

re-usedesign intent
OSGi

Equinoxadapt Java
evolution

composition

SEPARATION

OF CONCERNS
specialization

generalization

variants

scalable structures

views collaboration

prototyping

O
b

je ct
T

ea
m

s
product line

context

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #10eclipse.org/objectteams

Lesson 1

Use Case Modules

Transfer Money

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #11eclipse.org/objectteams

Lesson 1: Use Case Modules

Separation of layers
domain layer: pretty dumb objects

use case layer: behavior implemented as roles

for maximum re-use: make border permeable

Wiring of layers
bind classes

bind instances

bind methods

Use case API
entire use case is one class

instantiate and invoke

Motto:
Modules are boring
Connections are

where the music plays

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #12eclipse.org/objectteams

Use Case Modules: Concepts (1/2)

Split: behavior object → domain object
role → base

Access to domain objects
only via role (“gateway”)

access to base methods via “callout” method binding

«playedBy»
R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #13eclipse.org/objectteams

Use Case Modules: Concepts (2/2)

Use case module
team class & team instance

container for roles

Instantiate
teams

roles inside a team instance
role instance needs a base instance

may invoke base constructor

R R

R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #14eclipse.org/objectteams

Use case modules: Syntax

public class Person {
 private String name;
 public Person(String name) { this.name = name; }
 public String getName() { return this.name; }
}

public team class Company {
 protected class Employee playedBy Person {
 private String officePhoneNo;
 String getName() -> String getName();
 }
 ...
}

«playedBy»
R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #15eclipse.org/objectteams

Use case modules: Syntax

public class Person {
 private String name;
 public Person(String name) { this.name = name; }
 public String getName() { return this.name; }
}

RR RR

RR

public team class Company {
 protected class Employee playedBy Person {
 private String officePhoneNo;
 String getName() -> String getName();
 }
 ...
}

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #16eclipse.org/objectteams

Use case modules: Syntax

public class Person {
 private String name;
 public Person(String name) { this.name = name; }
 public String getName() { return this.name; }
}

public team class Company {
 protected class Employee playedBy Person {
 private String officePhoneNo;
 String getName() -> String getName();
 }
 ...
}

RR RR

RR

«playedBy»
RRR RR

RR

«playedBy»
R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #17eclipse.org/objectteams

Code-along Lesson 1.1

Create team “Company”

Create role “Employee”

Create callout to “getName()”

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #18eclipse.org/objectteams

Obtaining and wiring instances

Explicit role creation

Implicit role creation

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #19eclipse.org/objectteams

Obtaining and wiring instances

Explicit role creation
requires a base instance

e.g. by passing an existing base as argument

Implicit role creation

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #20eclipse.org/objectteams

Obtaining and wiring instances

Explicit role creation

Implicit role creation
already have a team instance and a base instance

team and outside use this base as a shared handle
do you know “Olaf”?
­ “Ah, that funny guy!” (Person)
­ “Oh, he's our best software architect!” (Employee)

team translates the base to an appropriate role: “lifting”

translation may create a role (on-demand)
when to lift?

rule-of-thumb: lifting affects all data flows ...
­ entering a team instance
­ involving a base instance
­ for which a bound role class exists

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #21eclipse.org/objectteams

Use Case API

Team class as a façade to hidden roles
new syntax “declared lifting”

 void hire(Person as Employee emp, …)

partial information sharing

ouside (client): pass base instance,
cannot see roles

inside (team): treat as a role,
should mention base only after playedBy

inverse: lowering

team trying to pass a role to the outside

the outside will only see the base instance

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #22eclipse.org/objectteams

Code-along Lesson 1.2

Create API methods in “Company”
Method “hire(Person)”

Method “getBusinessCard(Person)”

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #23eclipse.org/objectteams

Exercise 1.1: Money transfer between accounts

Given a pretty dumb base class world.Account

Write a use case module (team) for the transfer
distinct role classes for the participating objects
­ access base members using callout

implement this use case in a non-static team method:
“if amount can be withdrawn from the source,
let the sink accept this amount”

­ handle insufficient funds inside the source account
­ optional: add simple checkPoint/rollBack capability to source account

Implement API as required by TransferTest:
provide methods for invoking the transfer from the outside
­ clients cannot see role types, but still invoke role behavior
­ client will provide Accounts as arguments

Hint: to make roles printable declare (overriding callout):
toString => toString;

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #24eclipse.org/objectteams

Exercise 1.2: Generalization

Support loading a pre-paid phone, too
generalize: extract a role interface IMoneySink

use the interface where appropriate

create a new role class bound to PrepaidPhone

uncomment statements for testing the new case

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #25eclipse.org/objectteams

Exercise 1: Summary

Roles are context specific views
bound to base class using playedBy

base properties are exposed using “callout”

more properties can be added as needed

Teams define context for interacting roles
team = container & façade

data flows into/out off team: “lifting” / “lowering”

Post-hoc generalization
roles can abstract about unrelated base classes

unbound super role (interface)

more specific roles bind to individual base classes

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #26eclipse.org/objectteams

Lesson 2: Adapting Existing Behavior (1/2)

A role may intercept calls to its base
“callin” method binding

inverse to callout

three flavors: before, after, replace

No pre-planning
neither base object nor its caller need to know

«playedBy»
R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #27eclipse.org/objectteams

Adaptation: Syntax

public class Person {
 private String phoneNo;
 public String getPhoneNo() { return this.phoneNo; }
}

public team class Company {
 protected class Employee playedBy Person {
 private String officePhoneNo;

 String getPhoneNo() <- replace String getPhoneNo();
 callin String getPhoneNo() {

 return officePhoneNo;
 }
 }
}

«playedBy»
R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #28eclipse.org/objectteams

Code-along Lesson 2.1

Create callin method & binding in “Company”
Person should answer his/her officePhoneNo.

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #29eclipse.org/objectteams

Lesson 2: Adapting Existing Behavior (2/2)

Enablement at different levels
main switch: team activation

methods activate / deactivate of class org.objectteams.Team
block construct “within”

global / per thread

fine tuning: guard predicates
per role class

per callin binding

Off On

«playedBy»
R

?

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #30eclipse.org/objectteams

Code-along Lesson 2.2

Try different ways to activate “Company”
methods activate/deactivate

within

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #31eclipse.org/objectteams

Transfer and Talk are concurrently modifying Phone
Implement a transaction that synchronizes talk().

The transaction synchronizes access to its participants while
it is .
The participants are only modifiable by the current thread.
Other threads are blocked until the transaction is
 .

Hints
Use the provided TransferTest for TDD

A java.util.concurrent.ReentrantLock() is a great tool for
thread-exclusive locking

Exercise 2: Transaction

active

deactivated

R

R R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #32eclipse.org/objectteams

Exercise 2: Cheat sheet

Calling bindings
roleMethod <- [before | after | replace] baseMethod

Team Activation
activate(): Activates a Team for the current thread

activate(Thread): Activates a team for the given thread,
activate(Team.ALL_THREADS) activates it for all.

Advanced tips:
A guard predicate of the form
protected class MyRole … base when(hasRole(base)) {…
can be used to prevent automatic role creation.

A team method of the form (BaseType as RoleType identifier)
creates a role instance in the team.

within(Team) { … } activates a team for its scope and the
current thread.

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #33eclipse.org/objectteams

Exercise 2: Summary

Achievements:
Factored out the pervasive synchronization aspect

No changes in base and transfer

Entire synchronization context reified in team

Synchronization on demand

Used techniques:
Callin bindings

Guard predicates

Team activation

R

R R

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #34eclipse.org/objectteams

The dilemma of SW evolution

For implementing & integrating a new feature
need to modify many existing classes & their structure

For comprehensibility, maintainability
need to keep changes well localized

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #35eclipse.org/objectteams

Solution: add another Dimension

Zoom out off the base plane

Define suitable structure using teams & roles

Create connections using playedBy, callout & callin

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #36eclipse.org/objectteams

Lesson 3: Superimpose Structure

Find employees living in the same city for ride sharing
needs relation City →* Person

this relation is missing from the model

this relation may be unwanted in the domain layer

consider possible solution Relation Manager
may be considered an anti-pattern

want information right in the objects operating on it

relation is a must, but we cannot pay for it

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #37eclipse.org/objectteams

Code-along Lesson 3

Find employees living in the same city for ride sharing
Forget about City →* Person

instead add a new role HomeTown playedBy City and ...

Add missing relation HomeTown →* Employee
add collection commuters in role HomeTown

maintain collection during hiring of people
­ using inverse relation livesIn: Person → City

Find ride sharing
iterate all known HomeTowns
­ using API ITeam.getAllRoles(Class<?> roleClass)

iterate all registered commuters

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #38eclipse.org/objectteams

Lesson 3: Summary

Not just classes: structure, too.
views on existing relations: “callout”

getLivesIn(): Employee → HomeTown, view on Person → City

add new relation
commuters: HomeTown → Employee, derived from getLivesIn()

Team is a view of a base model
role → base class & object

callout → base method / field

inheritance

relations

All:
selectively expose existing

adjust

and add more

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #39eclipse.org/objectteams

Bonus Exercise

Implement the following demo-mode for the JDT
When creating a Java project let the user select:
 Project is for demo purpose only

When creating a class in a Demo project
insert class name as “Foo1”, “Foo2” …

Hints into the JDT/UI and JDT/Core (incomplete)
org.eclipse.jdt.ui.wizards.NewJavaProjectWizardPageOne.NameGroup

org.eclipse.jdt.core.IJavaProject

org.eclipse.jdt.ui.wizards.NewTypeWizardPage

Configuration hints
cf. http://wiki.eclipse.org/Object_Teams_Quick-Start#OT.2FEquinox_Hello_World_Example

new Object Teams Plug-in Project

dependencies: org.eclipse.jdt.ui & org.eclipse.jdt.core

extension: org.eclipse.objectteams.otequinox.aspectBinding
one extension for each affected base plug-in

don't forget “activation”

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #40eclipse.org/objectteams

Summary I

Questions?

RR RR

RR

«playedBy»
R

Off On

EclipseCon 2011, Santa Clara | © 2011 by Stephan Herrmann and Olaf Otto; made available under the EPL v1.0 #41eclipse.org/objectteams

Summary II

More questions? mailto:stephan@cs.tu-berlin.de

mailto:olaf.otto@unic.com

http://www.eclipse.org/newsportal/thread.php?group=eclipse.objectteams

