Py %
OTITAN

Titanium Refactoring Description

Krist6f Szabados, Adam Knapp

Version 11.1.0, 2025-05-28

Table of Contents

. Introduction
1.1. How to read this document
1.2. Overview of TitaniumRefactoring
1.3. The TITAN implementation of TTCN-3
1.4. Intended audience
1.5. Presumed knowledge
1.6. Typographical conventions
1.7. Installation
1.8. How to report an error for the tool
. Getting started
2.1. The perspective
2.2. Setting workbench preferences
2.3. TITAN preferences
. Actions
3.1. Editor actions
3.2. Project explorer actions
. Headless mode
4.1. Important settings
4.2. The general structure of invocation
4.2.1. Pitfalls
. Extract definition into a new project
5.1. Usage
5.2. Headless mode
5.3. Known limitations
. Extract code into a new function
6.1. Usage
6.2. Known limitations
. Lazy-fication of formal parameters
7.1. Usage
7.2. Known limitations
. Minimize visibility modifiers
8.1. Usage
8.2. Known limitations
. Expand value list notation
9.1. Usage

9.2. Known limitations

10. Order value list notation

10.1. Usage

N O O R R R0 WD DN

S T e S ey
© © 00 00 00 I J 9 o O O U b b W W NhNDNDR~R o o o

10.2. Known limitations

11. Add context info to log statements

11.1. Usage
11.1.1. Settings

11.2. Known limitations

12. Extract module parameters into a new project

12.1. Usage
12.2. Headless mode

12.3. Known limitations

13. Minimize scope of local variables in function

13.1. Usage
13.1.1. Settings

13.2. Algorithm behaviour

13.3. Known limitations
14. Organize imports

14.1. Usage

14.2. Known limitations
15. Runs on scope reduction

15.1. Usage

15.2. Known limitations
16. Ungroup module parameters

16.1. Usage

16.2. Known limitations
17. Insert field

17.1. Usage

17.2. Known limitations
18. Change union to select union

18.1. Usage

18.2. Known limitations
19. Move function

19.1. Usage

19.2. Algorithm behaviour

19.3. Known limitations
20. References

21. Glossary

19
20
20
20
21
22
22
22
23
24
24
24
25
25
27
27
27
28
28
28
29
29
29
30
30
30
31
31
32
33
33
33
33
34
35

Abstract

This document describes Titanium Refactoring, the refactoring tool for TTCN-3 testing software.
Copyright

Copyright (c) 2000-2025 Ericsson Telecom AB.

All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of
any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. Introduction

1.1. How to read this document

This description contains detailed information on using the TitaniumRefactoring tool.

1.2. Overview of TitaniumRefactoring

The TitaniumRefactoring tool is an Eclipse plug-in, extending the TITAN Designer for the Eclipse
IDE Toolset with refactoring functionality. The Designer is required to be installed and be present
for the correct operation.

1.3. The TITAN implementation of TTCN-3

The TitaniumRefactoring plug-in is extending the TITAN Designer plug-in, which is an
implementation of TTCN-3 Core Language standard ([3]), supporting of ASN.1 language ([4]).

The limitations present in the Designer plug-in also apply here: there are TTCN-3 language
constructs which are not yet supported in the current version, while there are also some non-
standard extensions implemented by TITAN. Information on these limitations and extensions and
also some clarifications of how the standard has been implemented in TITAN, can be found in the
TITAN Programmer’s Technical Reference.

1.4. Intended audience

This document is intended for users of the TITAN TTCN-3 Test Toolset.

1.5. Presumed knowledge

This document is intended to be read by users already familiar with the TITAN Designer toolset. For
this reason this document includes TITAN related information only when necessary.

This document does not wish to describe elements of Eclipse or Titan, and how to
use them. Every time such a feature is described, it is done with simplicity in mind,
assuming a minimal level of experience with Integrated Development
Environments from the user. However, it is advised to read the manuals of Eclipse
and Titan Designer (mainly contained in its included help system), because it can
provide better descriptions of the elements.

NOTE

1.6. Typographical conventions
This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with

"+" to represent key combinations. For example, Ctrl + Click
The slash (/) character is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used to represent system elements such as command and parameter names,
program and path names, URLs, directory names and code examples.

1.7. Installation

For details on installing the TitaniumRefactoring plug-in, see the Installation Guide for TITAN
Designer and TITAN Executor for the Eclipse IDE [1].

1.8. How to report an error for the tool

The following information should be included into trouble reports:

* a short description of the problem;
* what seems to have caused it, or how it can be reproduced;

* If the problem is graphical in some way (displaying something wrong), screenshots should also
be included;

* Output appearing on the TITAN Console or the TITAN Debug Console;
» contents of the Error view if it contains some relevant information;

Before reporting a trouble, try to identify whether the trouble really relates to the Titanium plug-in.
It might be caused by other third party plug-ins, or by Eclipse itself.

Reporting the contents of the Consoles and the Error log is important as TITAN consoles might
display important debug information. The location on which the Error Log view can be opened can
change with Eclipse versions, but it is usually found at Window / Show View / Other... /| PDE
Runtime / Error Log or Window / Show View / Other... /| General / Error Log.

Chapter 2. Getting started

This section explains how to setup Eclipse and the TITAN Designer to access every feature provided
by TitaniumRefactoring.

2.1. The perspective

TitaniumRefactoring does not provide its own perspective, for convenience we recommend using
the "TITAN Editing" perspective.

For those who have not yet used the TITAN Designer before, it is recommended to read chapter
"The TITAN Editing perspective” of the TITAN Designer’s user guide on how to set up a default
perspective for working with TTCN-3.

2.2. Setting workbench preferences

In Eclipse, workbench preferences are used to set user specific general rules, which apply to every
project; for example, preferred font styles, access to version handling systems and so on.

Workbench preferences are accessible selecting Window / Preferences. Clicking on the menu item
will bring up the preferences page.

This section only concerns the preferences that are available under the TITAN preferences node of
this preference tree. There are no preferences in this window concerning the TitaniumRefactoring
plugin.

2.3. TITAN preferences

r 3
= Preferences E@I&J
type filter text TITAN Preferences - -

- Java . £ Preferences for TITAN -

- Metrics Preferences —

- Plug-in Development TITAN installation path: Ch\eygwin\mnt\ TTCN\Releases\TTCAv3-18.p13
> Profiling and Logging
. Remote Systems License file: Ciheygwinthome\ekrisza\license_1484.dat
» Run/Debug l Use markers for build error netification instead of a dialog.
g Ieam [7] Treat on-the-fly errors as fatal for build (the project will not build). =
» Test
. TITAN Log Viewer When On-the-Fly analyzation ends the compiler markers: Become outdated -
4 TITAN Preferences When the compiler runs the on-the-fly markers:
Content Assist
Excluded resources | Maximum number of build processes to use: 2
Folding 1 Display debug information. in
Highlight matching bracket The version of the compiler used: RED01

Indentation
- On-the-fly checker

License information:

iI
2
| » i

. Unigue ID z l4g4
Syntax CDI_D”ng Licensee : Eristdf Szabados
TITAN actions L4 E-mail : kristof_ szabados@ericsson.com
Typing |: Company : Ericsson Hungary Ltd.
< = [y o Department : ETH/RZX o
® [QK] ’ Cancel]

= 4

Figure 1. TITAN Preferences

The setting of the TITAN license file is mandatory for the refactoring features to work. Without a

valid license the TITAN Designer plug-in will not create the semantic data, that the
TitaniumRefactoring plug-in requires to work on.

In case the license file is not provided, is not valid or has expired an additional link
will appear on this page. Clicking on this link a browser will open directing the user
to a web page where he can order a new license or can ask for a renewal of his
existing one.

NOTE

Chapter 3. Actions

The TitaniumRefactoring plug-in extends some of the context-sensitive menus of Eclipse where
appropriate, providing a convenient way to use the available tools.

3.1. Editor actions

File Edit Mavigate Search Project Run Window Help
] o 55 S O @ ToggleComment (N ixr Qv QviH @vi® YL vdv O

cree—] T

=

[# Package Explorer 3 = g
i=4
16

(g 3GPP_EUTRA

I g ASN_Example [-fg -¢]

[.\’.. f_EPTF_CLI_Client_commandHandle
1 i friendship [fg -2]

b g hello [-fg -2]

& i@ HelloWorld [-fg -2]

['\; import_example [-fg -2]

& (g minimal [-fg -]

[> él refactoring_debug [-fg -2]
i@ REFTEST_def sourcel [-fg -]
[.\’.. REFTEST_def_source2 [-fg -2]
[.\’.. REFTEST_def_source3 [-fg -2]
i@ REFTEST fun_sourcel [-fg -]
i@ REFTEST fun_source2 [-fg -]
1 igp REFTEST log_sourcel [-fg -2]
| REFTEST vis_sourcel [fg -¢]
| REFTEST vis_source? [fg -¢]
b i smellstb [-fg -2]

[
oW

Lh oL L LA L Ld L L RD R ORI ORI R ORI R R R

B T TR

Problems & Console |
TITAN Debug console

[T R

-

-

|3| EFTF_CLL_Base_Definiions ticn
4 158 {
map (mte:MyPCO BT,

|3] HS47680.tcn

Do

|3] MyExample ftcn 23

system:MyECC PT) ;

MyPCO PT.ser
setcverdict (g
}

testcase tc He

timer TL T
map (mto:MyPO
MyPCO PT.serq
TL T.start;
alt {

[1 MyPCO E

[1 TL_T.td

[1 MyPCO E
}

B

testcase tc He

Undo

Revert File
Save

Open With
Show In

Cut

Copy

Paste

Run As
Debug As
Team
Compare With
Replace With

Ctrl+Z

Ctrl+S

Alt+Shift+W

Ctrl+X
Ctrl+C
Ctrl+V

3
3

T.=stop; setverdict(pass);: }

(fail):

CTvpe

TitaniumRefactoring

Extract definition into a new project

var integer

map (mto:MyPOd)

Correct Indentation
Open Declaration
Find References
Rename refactoring
Titanium

Toggle Comment

Preferences...

Ctrl+|
F3

F\d
Ctrl+F4

Ctrl+/

Extract code into a new function
Minimize visibility modifiers in module
Add context info to log statements

Extract module parameters into a new project

3

Figure 2. Editor actions context menu

Writable

Smart Insert

25:

34

While editing a TTCN-3 source file, the context menu can be opened by right clicking in the editor
on some selection. Under the TitaniumRefactoring menu item, the available actions on this file can

be found.

» Extract definition into a new project: Copies the selected definition and all of its dependencies
to a new project. See Chapter Extract definition into a new project for details.

» Extract code into a new function: Extracts the selected code into a new function. See Chapter
Extract code into a new function for details.

» Lazy-fication of formal parameters: Automatically detects formal module parameters where
applying the @lazy modifier would be beneficial see Chapter Lazy-fication of formal

parameters for details.

* Minimize visibility modifiers in module: Minimizes all visibility modifiers in a single module.
This means, that all the definitions in the module which can be private are given a private
visibility modifier. See Chapter Minimize visibility modifiers in module for details.

* Expand value list notation in module: Automatically transforms values given with value list
notation into assignment notation. See Chapter Expand value list notation in module for details.

* Order value list notation in module: Automatically correct the order of elements in
assignment notation to mimic the order seen in the type of the value. See Chapter Order value
list notation in module for details.

* Add context info to log statements: Adds context info to log statements in the selected piece of
code. See Chapter Add context info to log statements for details.

+ Extract module parameters into a new project: Extracts all module parameters and all of
their dependencies from an entire project into a new project. See Chapter Extract module
parameters into a new project for details.

* Minimize scope of local variables in function: This is a complex refactoring operation that is
able to automatically delete unused variables, move the declaration of variables closer to the
first usage, if needed into a smaller scope unit. See Chapter Minimize scope of local variables in
function for details.

* Organize imports: Automatically organizes the import statements into lexicographical order,
removing all unused imports. See Chapter Organize imports for details.

* Ungroup module parameters in module: For all instances where module parameters are
declared using the deprecated grouped syntax, automatically replaces them with a separated
list of the same module parameters. See Chapter Ungroup module parameters in module for
details.

* Insert field: This refactoring can be used on record and set types, to add a new field to the type.
When a default value is provided for the new field the refactoring will automatically update all
usage locations of the type with this default value. See Chapter Insert field for details.

* Change union to select union: Automatically transforms select statements used with a union
parameter, to the more specific select union statement. See Chapter Change union to select
union for details.

* Move function: With the involvement of the user, this refactoring tries to detect which
functions are located in a module they do not belong to, find a better new location for them and
automatically move them to their new location. Automatically correcting the imports as needed.
See Chapter Move function for details.

3.2. Project explorer actions

File Edit Source Refactor Mavigate Search Project Run Window Help

CETT | G BB S G @ @ Tagle Comiment F SR - O QP (8 T P G e
Quick Access Ej ﬁ| aJJaua
[% Package Ex New » [Efinitions ttcn 3] HS47680 ttcn |3 MyExample ticn 23 = 08
Go Into l, ~ 0
== PCO_PT, system:MyPCO PT):;
[3GPP_E - - = £
. % Open in New Window send ("Hella, world!"™):
A\ |
N —. f EPTE Show In Alt+Shift+W » E(pass);
A\ | - =
[\! friendsh [Copy Ctrl+C o
" \! hello [4 % Copy Qualified Name HelloW2 () runs on MICType system MICType
> g HelloW i
b \:. import. @ Paste Ctrl+V - iz 15.0;
1 i@ minimg ¥ Delete Delete lVPCO PT, system:MyPCO PET):
ay refact T my .
[@ refa o_ Build Path v Eend ("Hello, world!™);
I» e REFTES E;
b -\’.‘I REFTES] Refactor Alt+Shift+T »
[\! REFTES] fuy Import.. b_lz-".l'.receive t":-lellrj‘n, T'FCN—S! ") { TL T.stop; setverdict(pass); }
I i\ge REFTES] 2 timeout { setverdict (inconc); }
b -\’.', REFTES| &2 Bxport... b_P’.l'.receive { TL_T.stop; setverdict(fail); }
b i REFTES| & Refresh Fs
4 REFFES_ Close Project
I i\ge REFTES .
N él cmells] Close Unrelated Projects ' HelloW3 () runs on MICType system MICType
Assign Working Sets...
er akarmi := 5;
Run As 3 PPCO PT, system:MyPCO FT): W
Debug As r
T » = =
sam ple 3 B BBl A B ~rH~ 8
Compare With r
Restore from Local History...
Titan r
Titanium r
Configure r
£
TitaniumRefactoring 3 Minimize visibility modifiers
3GPP_EUTRA Prrais Alt+Enter Add context info to log statements

Figure 3. Project explorer context menu

Extract module parameters into a new project

Some of the refactoring operations can work on files, folders or projects. These operations can be
found in the Project Explorer context menu, under the TitaniumRefactoring menu item.

* Lazy-fication of formal parameters: Automatically detects formal module parameters where

applying the @lazy modifier would be beneficial see Chapter Lazy-fication of formal
parameters for details.

* Minimize visibility modifiers: Minimizes all visibility modifiers in the selected file(s), folder(s)

or project(s). This means, that all the definitions in these resources which can be private are
given a private visibility modifier. See Chapter Minimize visibility modifiers for details.

* Expand value list notation in module: Automatically transforms values given with value list

notation into assignment notation. See Chapter Expand value list notation in module for details.

* Order value list notation in module: Automatically correct the order of elements in

assignment notation to mimic the order seen in the type of the value. See Chapter Order value
list notation in module for details.

* Add context info to log statements: Adds context info to all log statements in the selected

file(s), folder(s) or project(s). See Chapter Add context info to log statements for details.

* Extract module parameters into a new project: Extracts all module parameters and all of

their dependencies from an entire project into a new project. See Chapter Extract module
parameters into a new project for details.

* Minimize scope of local variables in function: This is a complex refactoring operation that is

able to automatically delete unused variables, move the declaration of variables closer to the

first usage, if needed into a smaller scope unit. See Chapter Minimize scope of local variables in
function for details.

Organize imports: Automatically organizes the import statements into lexicographical order,
removing all unused imports. See Chapter Organize imports for details.

Ungroup module parameters in module: For all instances where module parameters are
declared using the deprecated grouped syntax, automatically replaces them with a separated
list of the same module parameters. See Chapter Ungroup module parameters in module for
details.

Insert field: This refactoring can be used on record and set types, to add a new field to the type.
When a default value is provided for the new field the refactoring will automatically update all
usage locations of the type with this default value. See Chapter Insert field for details.

Change union to select union: Automatically transforms select statements used with a union
parameter, to the more specific select union statement. See Chapter Change union to select
union for details.

Move function: With the involvement of the user, this refactoring tries to detect which
functions are located in a module they do not belong to, find a better new location for them and
automatically move them to their new location. Automatically correcting the imports as needed.
See Chapter Move function for details.

Chapter 4. Headless mode

The TitaniumRefactoring plug-in offers some commands which can be called in headless mode.
This way it can be used from command line, and for example integrated into nightly build systems.

In headless mode eclipse plug-ins can offer entry point, called applications, through which the user
is able to invoke functionalities of the plug-in without starting the graphical interface of Eclipse. In
this mode everything is working exactly the same way as it is when invoked from the graphical
user interface, but there are no windows popping up, no user interaction.

It is important to note, that as in this mode there is no interaction between eclipse and the user, all
of the settings should be set beforehand. Otherwise the operation might not be able to work
properly, or produce unexpected result.

4.1. Important settings

There are two settings that are always important to be set correctly; otherwise the headless mode
will not be able to operate correctly:

* The license file has to be set in the Designer and it has to be active, otherwise the on-the-fly
analyzer will not be able to execute.

* The "Display debug information" setting in the Designer has to be turned off. If that option is
turned on, the Designer will try to write debug information to the Titan Debug Console, which
does not exist in headless mode and the execution aborts.

* The on-the-fly analysis of code smells must be enabled on the Code smells preference page
under Titanium Preferences, otherwise only the Designer will check the code.

4.2. The general structure of invocation

A generic call to a headless entry point of eclipse follows this pattern:

eclipse.exe -noSplash -data <path to workspace to use> -application <entry point>
<parameters>

The items in this call have the following meaning:
Eclipse.exe : this is the binary executable of Eclipse to be used.
"-noSplash": Eclipse should not display even the splash screen.

"-data <path to workspace to use>": The data parameter tells Eclipse which workspace to use. A
workspace is usually needed, to work with resources.

"-application <entry point> <parameters>": The application parameter tells Eclipse which entry point
to call, and what parameters to pass to that entry point.

An example call could be:

10

-noSplash -application
org.eclipse.titanium.refactoring.definition.ExtractDefinitionHeadlessRunner -data
"C:\Users\JohnDoe\workspace" -in proj1 -out ExtDefTest05 -module test -definition
funtest -location "D:\Refactoring\Tests\Headless"

4.2.1. Pitfalls

On Linux eclipse should be invoked using the "eclipse" command (without file
extension). On Windows we recommend using "eclipse*c*exe" not "eclipse.exe".

NOTE The plugins will work with both eclipse versions, but error messages are only
printed to the console when using "eclipse*c*.exe". "eclipse.exe" is not able to print
to the console it was started from.

11

Chapter 5. Extract definition into a new
project

Often it is problem in practice to create a set of the contents of a project, which is still able to
reproduce some behaviour of the project and is small enough to debug/analyse.

This functionality extracts a definition and all of its dependencies to a new TITAN project. Even the
settings are copied to the new project.

5.1. Usage

To extract a definition and all of its dependencies to a new project, right click on a definition
identifier in the editor window and choose TitaniumRefactoring / Extract definition from the
context menu. If the type of the selection is not supported for the operation, an error message is
displayed in the status bar.

If the selection is supported for the operation, then a wizard dialog is presented for the user to
specify the name of the new project. Project names that are already present in the workspace are
not accepted. After entering the name and clicking on the Finish button, the new project is created
and added to the workspace.

Create a new project to extract definition dependencies into

Extract definition and its dependencies into a new project

Project name:

Uze default location

Location: | ChUsers\Viktor\Documents\runtime-MNew_configuration

Figure 4. Extract definition wizard

12

5.2. Headless mode

The plug-in also can be called in headless mode, this way it can be used from command line, and
for example integrated into nightly build systems.

The entry point can be invoked as:

-noSplash -application
org.eclipse.titanium.refactoring.definition.ExtractDefinitionHeadlessRunner -data
<Workspace> -in <InputProjectName> -out <OutputProjectName> -module <ModuleName>
-definition <DefinitionName> [-location <LocationToPutTheProject>]

5.3. Known limitations

Please note that the "Extract definition" feature is working only on TTCN-3 files. ASN.1 and pre-
processable TTCN-3 files are not supported; their whole content will be copied without selection.

NOTE The algorithm ignores missing references in the source project.

13

Chapter 6. Extract code into a new function

This functionality extracts TTCN-3 statements to a new function and replaces their old location with
the invocation of the newly created function. The parameters of the new function are automatically
determined by the algorithm.

6.1. Usage

To extract parts of the code into a new function, select an arbitrary piece of code and right click on
it. From the context menu choose TitaniumRefactoring / Extract to a new function.

The algorithm searches for whole statements in the selection, half selected statements are not
included. If the selection does not contain any complete statements, then an error message is
displayed in the status bar.

If the selection is valid for the operation, then a wizard is presented for the user to specify the name
of the new function and the names of its parameters. After this, the produced changes can be
reviewed and accepted by clicking on the Finish button.

Mew function name: | newFunction

Figure 5. Extract to function wizard - specify new function name

14

Specify new function parameter names:

Passing type Typename

INOUT null
I integer

Figure 6. Extract to function wizard - specify parameter names

6.2. Known limitations

The "Extract to a new function" feature is working only on TTCN-3 files. ASN.1 and pre-processable
TTCN-3 files are not supported, and so will be skipped by the algorithm.

15

Chapter 7. Lazy-fication of formal
parameters

This functionality allows users automatic lazy-fication of non-lazy formal parameters, if they
evaluation could be delayed.

7.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Lazy-fication of
formal parameters from the editor right-click context menu.

To use the operation on any number of files, folders or projects, select TitaniumRefactoring / Lazy-
fication of formal parameters from the Project Explorer right-click context menu.

A wizard dialog is presented for the user to review the changes, before executing them.

7.2. Known limitations

Please note that the "Lazy-fication of formal parameters" feature is working only on TTCN-3 files.
ASN.1 and pre-processable TTCN-3 files are not supported, and so will be skipped by the algorithm.

16

Chapter 8. Minimize visibility modifiers

This operation sets the visibility modifier of all definitions in the selected resources to private,
where possible. If a definition is referred from another module, its visibility modifier will not be
replaced.

8.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Minimize
visibility modifiers in module from the editor right-click context menu.

To use the operation on any number of files, folders or projects, select TitaniumRefactoring /
Minimize visibility modifiers from the Project Explorer right-click context menu.

8.2. Known limitations

Please note that the "Minimize visibility modifiers" feature is working only on TTCN-3 files. ASN.1
and pre-processable TTCN-3 files are not supported, and so will be skipped by the algorithm.

17

Chapter 9. Expand value list notation

This functionality allows users to automatically expand value list notations with field names,
throughout the entire project or smaller parts of the code. Making the tests easier to understand
and maintain.

While it might be tempting to save development time, on not writing out field names in value list
notations, this can cause problems during maintenance. During maintenance reviewing a large
data structure, where the values are listed without direct information on what they are assigned to,
can add an unnecessary complexity and slow down the effort. Using this feature, such value list
notations are automatically expanded with the names of the fields, making navigation and
understanding much easier.

Examples:

//given the type:
type record my_rec {
integer field1,

integer field2
}

// this constant is refactored
const my_rec my_const := {1,2}

//to have more information
const my_rec my_const := {fieldl := 1,field2 := 2}

9.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Expand value
list notation in module from the TTCN-3 editor’s right-click context menu.

To use the operation on any number of files, folders or projects, select TitaniumRefactoring /
Expend value list notation from the Project Explorer right-click context menu.

A wizard dialog is presented for the user to review the changes, before executing them.

9.2. Known limitations

Please note that the "Expand value list notation" feature is working only on TTCN-3 files. ASN.1 and
pre-processable TTCN-3 files are not supported.

18

Chapter 10. Order value list notation

This functionality allows users to automatically re-order the values in assignment list notations, to
reflect the field’s order in the original type, throughout the entire project or smaller parts of the
code.

It can easily happen during the development of a test system, that a value given with an assignment
notation, does not follow the order of the original type. During maintenance this can cause
problems. For example checking that a value of a set type has its fields set to the right value, in case
of different field ordering, provide an overhead of tracking which field of the type is where in the
value. Using this feature, such assignment list notations are automatically reordered to reflect the
order of fields in the original type, making navigation and understanding much easier.

Examples:

//given the type:
type set my_set {
integer field1,
integer field2
}

// this constant is refactored
const my_set my_const := {field2 := 2,field1 := 1}

//to have its assignment in the order of fields present in type my_set
const my_set my_const := {fieldl := 1,field2 := 2}

10.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Order
assignment list notation in module from the TTCN-3 editor’s right-click context menu.

To use the operation on any number of files, folders or projects, select TitaniumRefactoring /
Order assignment list notation from the Project Explorer right-click context menu.

A wizard dialog is presented for the user to review the changes, before executing them.

10.2. Known limitations

Please note that the "Order assignment list notation" feature is working only on TTCN-3 files. ASN.1
and pre-processable TTCN-3 files are not supported.

19

Chapter 11. Add context info to log
statements

This functionality allows users to add automatically constructed additional content to existing log
statements throughout the entire project or smaller parts of code.

11.1. Usage

To

add context info to log statements in a part of the code, select an arbitrary piece of code and

right click on it. From the context menu choose TitaniumRefactoring / Add context info to log
statements. To run the refactoring process on entire files, folders or projects, right click on the
specific resource in the Package Explorer and choose the same entry from the context menu, as
given above.

Th

e algorithm searches for log statements in the selection and modifies them if necessary, to log

additional variables. Variables that are already logged in the statement, will not be inserted again.

After selecting the appropriate options, click on the OK button to finish the operation.

Maodify refactoring settings:

Log function parameters

Log variables in if conditions

[|Log local variables before log statement

Only log local variables in the parent block of the log statement

[#] Log loop variables
Modify log staternents which already log variables

Figure 7. Add context info wizard - modify settings

11.1.1. Settings

20

Log function parameters: Adds all function parameters of the parent function to the log
statement.

Log variables in if conditions: Adds all variables present in the condition expression of
ancestor if blocks.

Log local variables before log statement: Adds all local variables that were declared before
the log statement.

Only log local variables in the parent block of the log statement: Adds all local variables that
were declared before the log statement only in the direct parent block.

* Log loop variables: Adds the loop variables from all ancestor loop blocks.

* Modify log statements which already log variables: If this option is disabled, only those log
statements will be modified which do not log any variables.

11.2. Known limitations

Please note that the "Extract to a new function" feature is working only on TTCN-3 files. ASN.1 and
pre-processable TTCN-3 files are not supported, and so will be skipped by the algorithm.

21

Chapter 12. Extract module parameters into
a new project

This functionality extracts all module parameters and all of their dependencies from an entire
project to a new TITAN project. The project settings are also copied to the new project.

12.1. Usage

To extract all module parameters and all of its dependencies to a new project, right click on
anywhere in the editor window, or right click on the project, or any file or folders of the project in
Package Explorer, and choose TitaniumRefactoring / Extract module parameters from the
context menu.

A wizard dialog is presented for the user to specify the name of the new project. Project names that
are already present in the workspace are not accepted. After entering the name and clicking on the
Finish button, the new project is created and added to the workspace.

Create a new project to extract module parameters into

Extract all module parameters and their dependencies into a new project

Project name: | |

Use default location

Location: | C\Users\Viktor\Documents\runtime-EclipseApplication

Figure 8. Extract module parameters wizard

12.2. Headless mode

The plug-in also can be called in headless mode, this way it can be used from command line, and
for example integrated into nightly build system:s.

The entry point can be invoked as:

22

-noSplash -application
org.eclipse.titanium.refactoring.modulepar.ExtractModuleParHeadlessRunner -data
<Workspace> -in <InputProjectName> -out <OutputProjectName> [-location

<LocationToPutTheProject>]

12.3. Known limitations

Please note that the "Extract definition" feature is working only on TTCN-3 files. ASN.1 and pre-
processable TTCN-3 files are not supported; their whole content will be copied without selection.

NOTE The algorithm ignores missing references in the source project.

23

Chapter 13. Minimize scope of local
variables in function

This functionality allows users to rearrange local variable declarations in functions. Declarations
which could have a narrower scope can be moved into the appropriate code blocks, or declarations
which are declared too early can be moved to a latter location. Also, unused variable declarations
can be removed.

13.1. Usage

To run the refactoring operation on a specific TTCN-3 function, move the cursor into the function
body and right click using the mouse. From the context menu choose TitaniumRefactoring /
Minimize scope of local variables in function. To run the refactoring process on entire files,
folders or projects, right click on the specific resource in the Package Explorer and choose the same
entry from the context menu, as given above.

After selecting the appropriate options, click on the OK button to finish the operation, or use the
Preview action to browse the changes before accepting them.

e Minimize scope of local variables - B

Meodify refactoring settings:

Mowve variable declarations

Move variable declarations when their scope is correct

[] Remove unused variables

Awvoid refactoring variables with function calls in their declaration statements (disabling may alter the refactored code behavicur)
Avoid moving variables with unchecked references in their declaration statements (disabling may alter the refactored code behaviour)

[] Avoid moving and/or taking apart declaration lists (unused variables can still be removed from them)

Preview = Cancel

Figure 9. Minimize scope wizard - modify settings

13.1.1. Settings

* Move variable declarations: If this option is disabled, variable declarations will not be moved
(just removed if unused and other settings and circumstances allow this)

* Move variable declarations when their scope is correct: If this option is disabled, variable
declarations will only be moved to a new location if their scope could be narrower.

« Remove unused variables: Removes unused variable declarations.

* Avoid refactoring variables with function calls in their declaration statements (disabling
may alter the refactored code behaviour): If this option is enabled, variable declarations
containing function calls are not going to be moved or removed. When such declaration is
moved or removed and the function called in the declaration has side effects, the behaviour of
the code may change.

24

* Avoid moving variables with unchecked references in their declaration statements
(disabling may alter the refactored code behaviour): Some reference types in a variable
declaration are currently not checked for other occurrences in the code. If this option is
disabled and a variable declaration contains such unchecked references, then moving this
variable (possibly beyond a left-hand-side occurrence of this specific unchecked variable) may
result in the change of the code behaviour.

* Avoid moving and/or taking apart declaration lists (unused variables can still be removed
from them): When large declaration lists with many declarations are moved, the current
algorithm doesn’t preserve the declaration list itself, but creates individual declaration
statements for each variable declaration. Sometimes this can be annoying, so disabling this
option leaves all variables declared in declaration lists unmoved. Unused entries can still be
removed from these declaration lists.

13.2. Algorithm behaviour

The main steps of the refactoring operation are the following:

 For a single function, local variables are processed in reverse order. This guarantees that for a
variable A and a latter declared variable B referencing A in its declaration, when B is moved, A
could be moved along if possible.

 If a variable declaration contains a function call, the algorithm declares it unsafe to move or
remove this declaration. Similarly, if a declaration contains a reference for an unchecked
variable, then the algorithm declares it unsafe to move (but not to remove) this declaration. The
default settings for the refactoring operation ensure the unchanged behaviour of the resulted
code.

* The new scope of a variable V is calculated as the smallest common containing block of all
references of this variable let this scope be S.

« If the variable V declaration does not contain references to any other variables, then the new
location of the declaration is inside S (the new scope), just before the first reference to variable
V let this location be L.

o If the variable V declaration does contain references to other variables, then all left hand side
usages (before the location L, but after the declaration of V) of these other variables are
collected and their smallest common containing block is calculated. Let this be S2. The new
scope of the variable V will become the smallest common containing block of S and S2 (for
clarity: a block contains itself in this case) Let this be S3. The new location of the declaration will
be in S3 right before the location of the first reference to V or the first left hand side reference
mentioned above (the earliest of these).

o If the calculated new scope of a variable is a loop block, then the new scope is going to be the
smallest ancestor block of the loop block which is not greater than the original scope. Moving a
variable declaration into a loop block even when all references are inside the loop block may
result in changed behaviour.

13.3. Known limitations

"Minimize scope of local variables in function" feature is working only on TTCN-3 files. ASN.1 and

25

pre-processable TTCN-3 files are not supported, and so will be skipped by the algorithm.

26

Chapter 14. Organize imports

This functionality allows users to rearrange and correct imports in their TTCN-3 modules. As part of
the functionality the existing imports are order in alphabetical order. When the algorithm
encounters an unused import it is removed. When the algorithm finds that an import is missing,
and it can identify which module needs to be imported, the import is inserted.

14.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Organize
imports from the TTCN-3 editor’s right-click context menu.

To use the operation on any number of files, folders or projects, select TitaniumRefactoring /
Organize imports from the Project Explorer right-click context menu.

A wizard dialog is presented for the user to review the changes, before executing them.

14.2. Known limitations

Please note that the "Organize imports" feature is working only on TTCN-3 files. ASN.1 and pre-
processable TTCN-3 files are not supported.

27

Chapter 15. Runs on scope reduction

This functionality allows users to reduce the "runs on" components of functions, altsteps and
testcases to the minimal needed.

When writing functions, altsteps or testcases it is quite common to start with a blueprint of what
component they might need to run on. However sometimes it just happens that the function
written, does not actually need to run on the component mentioned in its "runs on" clause, as it
does not use any of that component’s member declarations. This feature analyzes the function,
altstep or testcase in question, and based on the declarations it uses from the component hierarchy
it determines the smallest possible component it could run on (which the current one is extending).
This effectively also means, that the same function will now be applicable in many more situations,
as a "smaller” component means possibly more calling sites.

15.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Runs on scope
reduction from the TTCN-3 editor’s right-click context menu.

To use the operation on any number of files, folders or projects, select TitaniumRefactoring / Runs
on scope reduction from the Project Explorer right-click context menu.

A wizard dialog is presented for the user to review the changes, before executing them.

15.2. Known limitations

Please note that the "Runs on scope reduction" feature is working only on TTCN-3 files. ASN.1 and
pre-processable TTCN-3 files are not supported.

28

Chapter 16. Ungroup module parameters

This functionality allows users to ungroup module parameters, that are present in the code using
the group style definition.

Group style definition of module parameters have been deprecate in the TTCN-3 for a long time and
this style is planned to be removed from the standard soon. This feature lets users update their
code automatically to the replacement notation.

Examples:

// this deprecated syntax is refactored
modulepar {
integer mp_1 := 1, mp_2 := 2;
charstring mp_3 := "example";

}

//to the following ungruped version
modulepar integer mp_1 := 1;

modulepar integer mp_2 := 2;

modulepar charstring mp_3 := "example";

16.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Ungroup
module parameters in module from the TTCN-3 editor’s right-click context menu.

To use the operation on any number of files, folders or projects, select TitaniumRefactoring /
Ungroup module parameters from the Project Explorer right-click context menu.

A wizard dialog is presented for the user to review the changes, before executing them.

16.2. Known limitations

Please note that the "Ungroup module parameters" feature is working only on TTCN-3 files. ASN.1
and pre-processable TTCN-3 files are not supported.

29

Chapter 17. Insert field

This functionality allows users to insert a new field into the selected record or set type. The new
field appears at all of the type’s occurrences in the project.

17.1. Usage

To insert a new field into a record or set type, right click on the type definition identifier in the
editor window and choose TitaniumRefactoring / Insert field from the context menu. If the type
of the selection is not supported for the operation, an error message is displayed in the status bar.

If the selection is supported for the operation, then a wizard dialog is presented for the user to
specify the position, name, type and value of the new field. Names that are already present in the
selected type definition are not accepted. After this, the produced changes can be reviewed and
accepted by clicking on the Finish button.

17.2. Known limitations

Please note that the "Insert field" feature is working only on TTCN-3 files. ASN.1 and pre-
processable TTCN-3 files are not supported, and so will be skipped by the algorithm.

NOTE The algorithm does not check if the type and the value of the new field are valid.

30

Chapter 18. Change union to select union

This functionality allows users to automatically convert already existing select statements, to more
efficient and descriptive select union statements, if possible.

The TTCN-3 standard has been extended recently with the select union statement, to provide better
support for the situation, when several execution path are possible based on the currently selected
field of a union typed value. As the below example shows, previously select statements could be
used for this purpose, but were lacking. The new syntax not only communicates its purpose better,
but also allows for checking if all possible fields are covered (leading to safer code).

Examples:

//given the following union type
type union my_union {

integer fieldT,

integer field2
}

// this example function
function f_example(in my_union my_par) {
select(true) {
case (ischosen(my_par.fieldl)) {

}
case (ischosen(my_par.field2)) {

}
}
}

//can be refactored to
function f_example(in my_union my_par) {
select union(my_par) {
case(field1){

}
case(field2){

}

}
}

18.1. Usage

To use the refactoring operation on a single module, select TitaniumRefactoring / Change union
to select union from the TTCN-3 editor’s right-click context menu.

31

To use the operation on any number of files, folders or projects, select TitaniumRefactoring /
Change union to select union from the Project Explorer right-click context menu.

A wizard dialog is presented for the user to review the changes, before executing them.

18.2. Known limitations

Please note that the "Change union to select union" feature is working only on TTCN-3 files. ASN.1
and pre-processable TTCN-3 files are not supported.

32

Chapter 19. Move function

This refactoring tries to detect functions that are located in a module they do not belong to, find a
better new location for them and automatically move them there while also inserting the missing
imports.

19.1. Usage

To run the refactoring operation, select the modules or the project to be refactored and from the
context menu that appears on right click, choose TitaniumRefactoring / Move function.

A wizard is presented for the user to choose the functions to be moved from the selected modules,
the method used for finding their new destination and the name filtering option. After this, the
produced changes can be reviewed and accepted by clicking on the Finish button.

19.2. Algorithm behaviour

The main steps of the refactoring operation are the following:

o At first, the methods to be moved are detected from the selected modules. If the function does
not use anything (fields, methods, etc.) from its own module and is not private, it is added to a
list that contains the methods to be moved.

* The implementation provides three main approaches for the possible target modules of the
functions; selecting the shortest module that is used by the method, selecting that of the used
ones that needs the least new imports after inserting the function and finding the one which
contains the most methods running on the same component as the one to be moved.

* Modules can be excluded from the destinations list by filtering by their name.

* The possible new destinations are rated between 0% and 100%, which represents to what
degree they are recommended.

» After the final destination for the method has been selected, the missing imports are inserted as
well into the destination module. The missing imports are those modules, that the method uses
but are not among the imported modules of the destination.

* Those modules that import the original location of the method are checked to see if they contain
references to the function. If they do, then their imports are examined to decide if they import
the new destination. If they do not, then a new import to the destination module is inserted.

19.3. Known limitations

Please note that the "Move function" feature is working only on TTCN-3 files. ASN.1 and pre-
processable TTCN-3 files are not supported, and so will be skipped by the algorithm.

33

Chapter 20. References

* [1] Installation Guide for TITAN Designer and TITAN Executor for the Eclipse IDE
* [2] Programmers Technical Reference for TITAN TTCN-3 Test Executor

* [3] Methods for Testing and Specification (MTS);The Testing and Test Control Notation version
3.Part 1: Core Language European Telecommunications Standards Institute. ES 201 873-1
Version 4.1.1, July 2009

* [4] Methods for Testing and Specification (MTS);The Testing and Test Control Notation version
3.Part 7: Using ASN.1 with TTCN-3 European Telecommunications Standards Institute. ES 201
873-7 Version 4.1.1, July 2009

34

https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/blob/master/org.eclipse.titan.help/docs/Eclipse_installationguide/Eclipse_installationguide.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/referenceguide/ReferenceGuide.adoc
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.01.01_60/es_20187301v040101p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf
http://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.01.01_60/es_20187307v040101p.pdf

Chapter 21. Glossary

ASN.1
Abstract Syntax Notation One

IDE

Integrated Development Environment

TTCN-3
Tree and Tabular Combined Notation version 3 (formerly)Testing and Test Control Notation

(new resolution)

35

	Titanium Refactoring Description
	Table of Contents
	Chapter 1. Introduction
	1.1. How to read this document
	1.2. Overview of TitaniumRefactoring
	1.3. The TITAN implementation of TTCN-3
	1.4. Intended audience
	1.5. Presumed knowledge
	1.6. Typographical conventions
	1.7. Installation
	1.8. How to report an error for the tool

	Chapter 2. Getting started
	2.1. The perspective
	2.2. Setting workbench preferences
	2.3. TITAN preferences

	Chapter 3. Actions
	3.1. Editor actions
	3.2. Project explorer actions

	Chapter 4. Headless mode
	4.1. Important settings
	4.2. The general structure of invocation
	4.2.1. Pitfalls

	Chapter 5. Extract definition into a new project
	5.1. Usage
	5.2. Headless mode
	5.3. Known limitations

	Chapter 6. Extract code into a new function
	6.1. Usage
	6.2. Known limitations

	Chapter 7. Lazy-fication of formal parameters
	7.1. Usage
	7.2. Known limitations

	Chapter 8. Minimize visibility modifiers
	8.1. Usage
	8.2. Known limitations

	Chapter 9. Expand value list notation
	9.1. Usage
	9.2. Known limitations

	Chapter 10. Order value list notation
	10.1. Usage
	10.2. Known limitations

	Chapter 11. Add context info to log statements
	11.1. Usage
	11.1.1. Settings

	11.2. Known limitations

	Chapter 12. Extract module parameters into a new project
	12.1. Usage
	12.2. Headless mode
	12.3. Known limitations

	Chapter 13. Minimize scope of local variables in function
	13.1. Usage
	13.1.1. Settings

	13.2. Algorithm behaviour
	13.3. Known limitations

	Chapter 14. Organize imports
	14.1. Usage
	14.2. Known limitations

	Chapter 15. Runs on scope reduction
	15.1. Usage
	15.2. Known limitations

	Chapter 16. Ungroup module parameters
	16.1. Usage
	16.2. Known limitations

	Chapter 17. Insert field
	17.1. Usage
	17.2. Known limitations

	Chapter 18. Change union to select union
	18.1. Usage
	18.2. Known limitations

	Chapter 19. Move function
	19.1. Usage
	19.2. Algorithm behaviour
	19.3. Known limitations

	Chapter 20. References
	Chapter 21. Glossary

