
Xlib and X Protocol Test Suite
X Version 11 Release 6.1

Programmers Guide for the X Test Suite

July 1992

Copyright © 1991, 1992 UniSoft Group Limited

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is

hereby granted without fee, provided that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting documentation, and that the name of

UniSoft not be used in advertising or publicity pertaining to distribution of the software without specific,

written prior permission. UniSoft makes no representations about the suitability of this software for any

purpose. It is provided "as is" without express or implied warranty.

Programmers Guide for the X Test Suite

Programmers Guide for the X Test Suite

1. Introduction

This document is a Programmers Guide to the X Test Suite.

Instructions for installing and running the X Test Suite are contained in the document

"User Guide for the X Test Suite". It is not necessary to read the Programmers Guide in

order to install and run the test suite.

2. Purpose of this guide

The information in this section is designed to be used by a programmer intending to

review the source code in the revised X Test Suite. It is also intended to be used by an

experienced programmer, familiar with the X Window System, to modify or extend the

X Test Suite to add additional tests.

Before reading this document, it is necessary to read the document "User Guide for the

X Test Suite". This is because the nomenclature used in this document is explained in the

"User Guide". Appendix F of that document is a glossary, which explains the meaning of

some terms which may not be in common usage.

The directory structure used within the X Test Suite is described further in "Appendix A -

Contents of X Version 11 Release 6.1" in the "User Guide". You should be familiar with

that appendix before reading further.

3. Contents of this guide

The test set source files in the revised X Test Suite have been developed in the format of a

simple language, specially produced as part of the test suite development project. Files in

the test suite which use this language have the suffix ".m" and are known as dot-m files.

The syntax of this language is described in the next section of this document entitled

"Source file syntax".

During the stage one review of the development project, it was determined that there were

some advantages in methods of automatically generating source code for the tests from

templates. The dot-m file may be seen as a template for the tests. At the same time, it was

important that any utilities associated with the code generation should be commonly

available or provided within the test suite.

For this reason, a utility mc has been provided to convert dot-m files into C source code

and produce Makefiles automatically for the test set. The file formats which may be

produced are described in the section entitled "Source file formats". Summaries of usage

of the utilies are given in appendices D-F.

As part of the test suite development, a number of conventions were established to define

how the syntax of this language should be used in writing test sets. It is useful to

understand these conventions in order to understand the structure of the existing tests.

You are recommended to use the existing tests as a model, and follow the same structure

when modifying or extending the X Test Suite. This is described in the section entitled

"Source file structure".

The test set structure has deliberately been kept as simple as possible, and common

functions have been developed in libraries. The contents of these libraries is described in

- 1 -

Programmers Guide for the X Test Suite

the section entitled "Source file libraries".

3.1 Typographical conventions used in this document

The following conventions have been used in this document:

1. Items appearing in angle brackets <> should be substituted with a suitable value.

2. Items appearing in square brackets [] are optional.

- 2 -

Programmers Guide for the X Test Suite

4. Source file syntax

It is a design requirement that the test code for each test purpose has an associated

description of what is being tested (an assertion) and a description of the procedure used

to test it (a test strategy). All of these items are contained in dot-m files, and programs

are used to extract the relevant parts. The utilies developed for the purpose are outlined

in appendices D-F, and the format of the files they output is described in the section

entitled "Source file formats.

The format of a dot-m file consists of a number of sections introduced by keywords. The

sections of a dot-m file are as follows:

1. A copyright notice.

2. A section introduced by the >>TITLE keyword. This section defines the name of

the function being tested and its arguments.

The >>TITLE keyword, and the declaration and arguments which follows it, are

together known as the "title section".

3. Optionally, there may be a section introduced by the >>MAKE keyword. This

section defines additional rules for make beyond the default rules.

The >>MAKE keyword, and the text which follows it, are together known as a

"make section".

4. Optionally, there may be a section introduced by the >>CFILES keyword. This

section defines additional C source files source files that should be compiled and

linked (together with the C source files produced by mc) when building a test set.

5. Optionally, there may be a section introduced by the >>EXTERN keyword. This

section defines C source code which will be in scope for all test purposes in the

test set.

The >>EXTERN keyword, and the source code which follows it, are together

known as an "extern section".

6. For each test purpose in the test set, there will be a section introduced by an

>>ASSERTION keyword. These sections each contain the text of an assertion for

the function being tested.

The >>ASSERTION keyword, and the text which follows it, are together known

as an "assertion section".

7. An assertion section is normally followed by a section introduced by a

>>STRATEGY keyword, which is followed by the strategy. This is a description

of how the assertion is tested.

The >>STRATEGY keyword, and the strategy which follows it, are together

known as a "strategy section".

8. The strategy is always followed by a section introduced by a >>CODE keyword,

which is followed by a section of C source code which will test whether the

assertion is true or false on the system being tested.

The >>CODE keyword, and the C source code which follows it, are together

known as a "code section".

- 3 -

Programmers Guide for the X Test Suite

9. Optionally, the >>INCLUDE keyword includes, from a file, one or more of the

above sections, at that point in the dot-m file. It terminates the previous section.

The keywords introducing the sections are defined in detail below.

There are also optional keywords which may appear anywhere in a dot-m file:

1. The >>SET keyword sets options which apply in the dot-m file.

2. The >># keyword introduces a comment in a dot-m file.

The optional keywords are also defined in detail below.

4.1 Title section - >>TITLE

4.1.1 Description

>>TITLE <function> <section>

This keyword must be used at the start of a test purpose immediately after the copyright

message.

It may be followed by the declaration of the data type returned and the function

arguments. These lines may be omitted if XCALL is never used in any code section in

the test set.

1. The line after >>TITLE should specify the data type returned.

2. The next line should specify the function call with any arguments. This is no

longer mandatory, since the information is not used in the current version of mc.

So the second line may be left completely blank.

3. The following lines should specify the arguments and may set them to any

expression (not necessarily a constant expression). Usually arguments are set to

the return value of a function call, a global variable inserted by the mc utility, or a

global variable declared in an >>EXTERN section.

Static variables will be created to match these arguments, and will be reset as

specified automatically before the start of each test purpose, by the function

setargs() (described in the section entitled "Source file formats").

4.1.2 Arguments

function This is the name of the function in the X Window System to be tested. In

the X Protocol tests it should be the name of an X Protocol request or an

X event. In the Xlib tests it should be the name of an Xlib function or an

X event.

The XCALL macro will invoke the named function or macro (which

should be in Xlib) with the arguments specified on the lines following

>>TITLE.

section This is the section of the X Test Suite in which this particular test set is

stored. It should be the name of a directory in $TET_ROOT/tset. The

section name is used in formatting the assertions in the test set, and for

output to the journal file for reporting purposes. The section name does

not affect the building and execution of the tests.

- 4 -

Programmers Guide for the X Test Suite

4.2 Make section - >>MAKE

4.2.1 Description

>>MAKE

This keyword may be used anywhere in the dot-m file after the end of a section.

It should be followed by lines which will be copied into the Makefile by the mc utility,

when the Makefile is remade using the -m option.

The lines specified will be joined together and placed in order before the first rule in the

Makefile. In this way, the lines copied may contain both initialisation of Make variables,

and additional rules.

This keyword should be used sparingly, since the additional Makefile lines must be

consistent with the rest of the Makefile (see later section entitled "Makefile").

These lines are designed to allow auxiliary programs to be made by make (in addition to

the default target which is Test). For example, if test purposes in the test set execute

programs Test1 and Test2, which must also be built, the >>MAKE keyword can be

followed by lines which specify rules for building these executable programs. This can be

done as follows:

>>MAKE

AUXFILES=Test1 Test2

AUXCLEAN=Test1.o Test1 Test2.o Test2

all: Test

Test1 : Test1.o $(LIBS) $(TCMCHILD)

$(CC) $(LDFLAGS) -o $@ Test1.o $(TCMCHILD) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

Test2 : Test2.o $(LIBS) $(TCMCHILD)

$(CC) $(LDFLAGS) -o $@ Test2.o $(TCMCHILD) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

Notice that the default target Test is still made by the new default Make rule. Also,

notice that Test1 and Test2 are not dependencies for the all target. They are

dependencies for Test. (See the later section entitled "Makefile".)

4.3 Additional source files - >>CFILES

4.3.1 Description

>>CFILES <filename> ...

This keyword may be used anywhere in the dot-m file after the end of a section.

The list of files following the keyword are taken as the names of C source files that

should be compiled and linked (together with the C source files produced by mc) when

building a test set. This allows code to be split among several files.

The only effect is to alter the Makefile that is produced by mmkf.

- 5 -

Programmers Guide for the X Test Suite

4.4 Extern section - >>EXTERN

4.4.1 Description

>>EXTERN

This keyword may be used anywhere in the dot-m file after the end of a section.

It should be followed by lines of C source code which will be copied into the C source

file by the mc utility, when the C source code is remade.

These lines will be copied unaltered into the C source file before the source code for the

first test purpose.

This section is useful for including three types of source code:

1. static variables declarations which are used by a number of test purposes in the

test set.

2. static functions which are used by a number of test purposes in the test set.

3. header file inclusions which are needed in addition to the default header file

inclusions in the C source code.

4.5 Assertion section - >>ASSERTION

4.5.1 Description

>>ASSERTION <test-type> [<category> [<reason>]]

This keyword is used at the start of each test purpose.

It should be followed by the text of the assertion which is a description of what is tested

by this particular test purpose.

The text should not contain troff font change commands (or any other nroff/troff

commands). This is because the majority of nroff/troff commands will not be understood

by the ma utility. Howev er, various macros can be used to enable mapping of the format

of special text onto similar fonts to those used in the X Window System documentation.

These are described in appendix B.

The keyword xname in the assertion text will be replaced by mc with the name of the

function under test obtained from the >>TITLE keyword.

Unless the category argument specifies an extended assertion, or the test-type is

gc or def, the assertion text must be followed by the >>STRATEGY keyword, strategy

section, >>CODE keyword and code section. Refer to the description of the category

argument.

If the >>CODE keyword is missing, following the text of an assertion which is not an

extended assertion, the mc utility will insert code to produce a result code

UNREPORTED for this test purpose when the test set is executed.

4.5.2 Arguments

- 6 -

Programmers Guide for the X Test Suite

test-type

Good

This is a "good" test. The function under test is expected to give a

successful result.

By convention these assertions appear in the dot-m file before all

assertions with test-type Bad.

Bad

This is a "bad" test. The function under test is expected to give an

unsuccessful result under the conditions that the test imposes.

By convention these assertions appear in the dot-m file after all

assertions with test-type Good.

The assertion text for many of these assertions is included via the

.ER keyword, described below.

gc

The assertion text states which gc components affect the function

under test. In this case the remaining arguments are unused, and

mc inserts into the C source file a series of assertions, strategies

and test code corresponding to the gc components listed in the

assertion text via the macro

.M gc-comp ,

or

.M gc-comp .

The assertions, strategies and test code are included, from files in

the directory $TET_ROOT/xtest/lib/gc.

The .M macro is used, since the gc components correspond to

structure members in a gc structure.

def

The assertion text is tested in the test for another assertion. These

assertions are often definitions of terms, which cannot be tested in

isolation, hence the abbreviation "def". The remaining arguments

are unused, and mc inserts code into the C file to issue the result

code NOTINUSE, and issues a message stating that the assertion is

tested elsewhere.

category

This is the assertion category, modelled on the corresponding codes in the

document1 POSIX.3 entitled "Test Methods for Measuring Conformance

to POSIX". It is either A, B, C or D.

1. Obtainable from Publication Sales, IEEE Service Center, P.O. Box 1331, 445 Hoes Lane, Piscataway,

NJ 08854-1331, (201) 981-0060

- 7 -

Programmers Guide for the X Test Suite

If the assertion tests a conditional feature, it is categorised as type C or D,

otherwise it is categorised as type A or B.

If the assertion is classified as an "extended assertion" it is categorised as

type B or D. Otherwise it is categorised as type A or C and is known as a

"base assertion".

Base Assertion Extended Assertion

Required Feature A B

Conditional Feature C D

Tests are always required for base assertions. Tests are not required for

extended assertions, but should be provided if possible. Extended

assertions are used to describe features that may be difficult to test.

In some cases partial testing may be performed for extended assertions.

An example is that it may be possible to test that some specific common

faults are not present. In this the result code would be FAIL if an error is

detected, or UNTESTED if no failure is detected, but the assertion is still

not fully tested.

For this reason, the strategy and code sections are optional for extended

assertions. If they are not supplied, mc will automatically generate source

code to put out a result code UNTESTED, with a message which describes

the reason. If they are supplied, they will override the automatically

generated sections.

Since there is not yet an equivalent document to POSIX.3 for the

X Window System then these codes are subject to change. For example, an

assertion classified as an "extended assertion" (type B) might become a

"base assertion" (type A) if a test method is later identified.

The following table lists the allowed test result codes for each category.

Category Allowed Result Codes

A PASS, FAIL, UNRESOLVED

B PASS, FAIL, UNTESTED, UNRESOLVED

C PASS, FAIL, UNSUPPORTED, UNRESOLVED

D PASS, FAIL, UNSUPPORTED, UNTESTED, UNRESOLVED

reason

In the case of extended assertions (category B or D) a reason code must be

supplied. These are the same as in POSIX.3. A list of the reason codes,

and the corresponding text of the reason, are shown in appendix A.

4.6 Strategy section - >>STRATEGY

4.6.1 Description

>>STRATEGY

If the category of an assertion is A or C, this keyword must be used immediately after the

- 8 -

Programmers Guide for the X Test Suite

assertion section.

If the category of an assertion is B or D, this keyword may be optionally be used

immediately after the assertion section.

It should be followed by the strategy, which is a description of how the assertion is to be

tested.

The text of the strategy is in free format sentences. It may contain the xname keyword,

which is an abbreviation for the name of the function under test.

The use of the XCALL keyword in the strategy section as an abbreviation for "Call

xname" is discontinued, although in this release, some occurrences remain.

4.7 Code section - >>CODE

4.7.1 Description

>>CODE [<BadThing>]

This keyword must be used immediately after the strategy section.

It should be followed by the C source code which will test the assertion.

The C source code will be converted by mc into a format suitable for the use by the TET

API. The way in which this is done is described in the section entitled "Source file

formats".

A blank line must separate the declarations of automatic variables in the test function

from the first executable statement. There must be no other blank lines within these

declarations.

The utility mc also expands the XCALL macro to call the function under test, and to call

library functions, before and after the function under test, to install and deinstall error

handlers and flush pending requests to the X server. The way in which this is done is

described in the section entitled "Source file formats".

4.7.2 Arguments

BadThing

This is an optional argument to the >>CODE macro.

If it is omitted, the XCALL macro will cause code to be inserted to ensure

that the function under test produces no X Protocol error, and issues a

result code FAIL if an error is detected.

If it is set to the symbolic value of an X Window System error code, the

XCALL macro will cause code to be inserted to ensure that the function

under test produces that X Protocol error, and issues a result code FAIL if

the wrong error, or no error, is detected.

4.8 Included section - >>INCLUDE

4.8.1 Description

>>INCLUDE <filename>

- 9 -

Programmers Guide for the X Test Suite

This keyword includes the contents of filename, which must be a file containing one

or more sections in the dot-m file format, optionally containing a copyright header. The

sections in the included file should produce a valid dot-m file, if they were included

directly at the point of inclusion. The >>INCLUDE keyword terminates the preceding

section - it cannot be used in the middle of a section.

The included sections are processed at the point of inclusion when the C source code is

generated by the mc utility.

The >>INCLUDE keyword is usually used when including test purposes which are

common to more than one test set. The >>INCLUDE mechanism allows an entire test

purpose (including assertion, strategy and code sections) to be included.

The >>INCLUDE keyword should not be used for merely including common functions

called by a number of test purposes. If the functions are common to one dot-m file, they

should be placed in an extern section. If the functions are common to many test sets, they

should be placed in one of the X Test Suite libraries.

- 10 -

Programmers Guide for the X Test Suite

4.9 Included errors - .ER

4.9.1 Description

.ER [Bad]Access grab

.ER [Bad]Access colormap-free

.ER [Bad]Access colormap-store

.ER [Bad]Access acl

.ER [Bad]Access select

.ER [Bad]Alloc

.ER [Bad]Atom [val1] [val2] ... †

.ER [Bad]Color

.ER [Bad]Cursor [val1] [val2] ... †

.ER [Bad]Drawable [val1] [val2] ... †

.ER [Bad]Font bad-font

.ER [Bad]Font bad-fontable

.ER [Bad]GC

.ER [Bad]Match inputonly

.ER [Bad]Match gc-drawable-depth

.ER [Bad]Match gc-drawable-screen

.ER [Bad]Match wininputonly

.ER [Bad]Name font

.ER [Bad]Name colour

.ER [Bad]Pixmap [val1] [val2] ... †

.ER [Bad]Value <arg> [mask] <val1> [val2] ... ‡

.ER [Bad]Window [val1] [val2] ... †

† - these arguments are optional.

‡ - the <arg> and at least <val1> argument must be supplied. The mask argument, and additional

arguments, are optional.

Note - the Bad prefix is in each case optional.

This keyword causes mc to insert into the C source file the text of an assertion, and in

some cases default strategy and default test code to test for the generation of a particular

X Protocol error by an Xlib function.

In some cases there is no strategy and code in the included file, because only the assertion

is common - the strategy and code sections are specific to each test purpose, and must be

provided immediately after the .ER keyword.

The default strategy and code sections (if included) may be overridden by sections in the

dot-m file immediately after the .ER keyword.

Note that this keyword does not insert the >>ASSERTION keyword - this must appear on

the line before .ER is invoked. Thus the keyword does not include the entire assertion

section.

The assertion text, strategy and test code are included from files in the directory

$TET_ROOT/xtest/lib/error.

The names of these files, and the assertion text in each file, is shown in appendix C.

- 11 -

Programmers Guide for the X Test Suite

4.10 Set options - >>SET

4.10.1 Description

>>SET startup <func_startup>

>>SET cleanup <func_cleanup>

>>SET tpstartup <func_tpstartup>

>>SET tpcleanup <func_tpcleanup>

>>SET need-gc-flush

>>SET fail-return

>>SET fail-no-return

>>SET return-value <return_value>

>>SET no-error-status-check

>>SET macro [<macroname>]

>>SET begin-function

>>SET end-function

These options control how the mc utility converts the dot-m file into a C source file.

Except where specifically stated, they may appear anywhere in the dot-m file and apply

from that point on, unless reset by a further >>SET keyword with the same first

argument.

4.10.2 Arguments

startup

The name of the function called before all test purposes is to be set to

func_startup (rather than the default, startup()).

cleanup

The name of the function called after all test purposes is to be set to

func_cleanup (rather than the default, cleanup()).

tpstartup

The name of the function called before each test purpose is to be set to

func_tpstartup (rather than the default, tpstartup()).

tpcleanup

The name of the function called after each test purpose is to be set to

func_tpcleanup (rather than the default, tpcleanup()).

need-gc-flush

When the XCALL macro is expanded, code to call the X Test Suite library

function gcflush(display, gc) will be inserted after the code to call the

function under test.

fail-return

When the XCALL macro is expanded, code to end the test purpose will be

inserted where an error is reported (the default is to continue after an error

is reported).

fail-no-return

When the XCALL macro is expanded, no code to end the test purpose will

be inserted where an error is reported (this reverses the effect earlier using

- 12 -

Programmers Guide for the X Test Suite

>>SET fail-return).

return-value

When the XCALL macro is expanded, and the Xlib function call has

return type Status, and the return value of XCALL is not saved for

testing in the calling code, code will be inserted to report an error if the

function under test does not return <return_value>. (By default, when the

Xlib function call has return type Status, an error is reported for

assertions with test-type Good if the return value is zero, and for assertions

with test-type Bad if the return value is non-zero).

no-error-status-check

When the XCALL macro is expanded, the default code to check for X

Protocol errors will not be inserted. The test purpose can perform

alternative checking after invoking XCALL. This setting only applies up

to the end of the current section.

macro

There is a macro in an X Window System header file for which a test set

source file will be produced which uses identical test purposes to the

function under test. This is used to automatically generate test purposes for

the Display and Screen information macros, which are identical to those

for the corresponding Xlib functions.

The macro name is set to <macroname> - the default is the function

argument in the >>TITLE keyword, with the leading letter ‘X’ removed.

This option must be specified before the title section of the dot-m file.

Note - this option may not be used for macros which have no arguments.

begin-function

The name of an additional function called before each test purpose, after

tpstartup() and global function arguments are initialised.

end-function

The name of an additional function called after each test purpose, before

tpcleanup().

4.11 Comment lines - >>#

4.11.1 Description

>># <Comment text>

This keyword specifies a one line comment. These are not intended to replace code

comments in the code section - in fact the mc utility does not copy dot-m format

comments to the C source file. Comments in the dot-m file are used for higher level

comments rather than detailed comments. For example, comments are used to record the

history of the development of the dot-m file, to preserve previous versions of assertions

where necessary, and to draw attention to unresolved problem areas.

- 13 -

Programmers Guide for the X Test Suite

5. Source file formats

This section describes the output from various utilities which may be used to format the

contents of a dot-m file.

The code-maker utility mc builds C source files from a dot-m file. Appendix D gives a

usage summary.

The Makefile utility mmkf builds Makefiles from a dot-m file. Appendix E gives a usage

summary.

The assertion utility ma produces a list of assertions from a dot-m file. Appendix F gives

a usage summary.

Instructions for building and installing the mc utility are given in the "User Guide". When

the utility mc is built and installed, the utilities mmkf and ma, which are links to the same

program mc differing only in name, are automatically installed as well.

5.1 C files for standalone executable - Test.c

The command

mc -o Test.c stclpmsk.m

produces a C file named Test.c. This may be compiled to produce a standalone

executable file named Test. Instructions on building and executing the tests are given in

the "User Guide". The Test.c files are not provided as part of this release, but are built

automatically when building the X Test Suite.

The C file contains all of the interface code required to invoke the test purposes from the

TET and a description of the assertion being tested is placed as a comment above the code

for each test purpose to make it easy to understand what is being tested.

The remaining parts of this section describe the format of the Test.c files in more

detail. The descriptions are in the order in which the text is inserted into the Test.c file.

Some parts of the Test.c file are constructed by copying in template files specifically

written to work with mc. These files are all located in the directory

$TET_ROOT/xtest/lib/mc.

5.1.1 Copyright header

A copyright header is inserted as a C source comment block. This will contain lines

showing the SCCS versions of the dot-m file and any included files.

5.1.2 SYNOPSIS section

A synopsis defining the arguments of the function being tested is inserted as a C source

comment block. This is constructed from the lines following the >>TITLE keyword in

the dot-m file. It includes the data type returned and any arguments to the function.

The synopsis section is omitted if there are no lines following the the >>TITLE keyword.

For example:

- 14 -

Programmers Guide for the X Test Suite

/*

* SYNOPSIS:

* void

* XSetClipMask(display, gc, pixmap)

* Display *display;

* GC gc;

* Pixmap pixmap;

*/

5.1.3 Include files

For the Xlib tests, when the section argument to the >>TITLE keyword is other than

XPROTO, the contents of the file mcinclude.mc are then included.

In this release the contents of this file are as follows:

#include <stdlib.h>

#include "xtest.h"

#include "Xlib.h"

#include "Xutil.h"

#include "Xresource.h"

#include "tet_api.h"

#include "xtestlib.h"

#include "pixval.h"

For the X Protocol tests, when the section argument to the >>TITLE keyword is

XPROTO the contents of the file mcxpinc.mc are then included.

In this release the contents of this file are as follows:

#include <stdlib.h>

#include "xtest.h"

#include "tet_api.h"

5.1.4 External variables

For the Xlib tests, when the section argument to the >>TITLE keyword is other than

XPROTO, the contents of the file mcextern.mc are then included.

In this release the contents of this file are as follows:

extern Display *Dsp;

extern Window Win;

extern Window ErrdefWindow;

extern Drawable ErrdefDrawable;

extern GC ErrdefGC;

extern Colormap ErrdefColormap;

extern Pixmap ErrdefPixmap;

extern Atom ErrdefAtom;

extern Cursor ErrdefCursor;

extern Font ErrdefFont;

- 15 -

Programmers Guide for the X Test Suite

The external variables are defined in the file startup.c or (when linking a program

executed via tet_exec()) in the file ex_startup.c.

For the X Protocol tests, when the section argument to the >>TITLE keyword is

XPROTO the contents of the file mcxpext.mc are then included.

In this release this file is empty.

5.1.5 Test set symbol and name

A symbol is defined indicating the function under test.

For example:

#define T_XSetClipMask 1

You may use this in a #ifdef control line, to distinguish special cases for particular

functions in code sections of a dot-m file included via the >>INCLUDE keyword.

The global variable TestName is initialised to the name of the function under test,

which is the function argument given to the >>TITLE keyword.

For example:

char *TestName = "XSetClipMask";

You can use this within a code section of a dot-m file to obtain the name of the function

under test.

5.1.6 Definitions for arguments

Symbols are defined to correspond with any arguments to the function specified in the

>>TITLE keyword.

These correspond to the lines following the >>TITLE keyword in the dot-m file.

For example:

/*

* Defines for different argument types

*/

#define A_DISPLAY display

#define A_GC gc

#define A_PIXMAP pixmap

#define A_DRAWABLE pixmap

These are used by the code in various included files, to substitute a symbol representing a

particular argument type with the actual variable used as the argument by the function

under test.

5.1.7 Static variables

Static variables are defined to correspond with any arguments to the function specified

in the >>TITLE keyword.

These correspond to the lines following the >>TITLE keyword in the dot-m file.

- 16 -

Programmers Guide for the X Test Suite

For example:

/*

* Arguments to the XSetClipMask function

*/

static Display *display;

static GC gc;

static Pixmap pixmap;

These are the arguments that will be passed to the function under test when the XCALL

macro is expanded.

You can initialise these in a code section of a dot-m file as required prior to invoking the

macro XCALL.

These variables will be initialised at the start of each test purpose using the function

setargs() described below in the section entitled "Initialising arguments".

5.1.8 Test purpose number

You can use this within a code section of a dot-m file to obtain the number of the current

test purpose.

int tet_thistest;

5.1.9 Initialising arguments

A function setargs() is defined to initialise the arguments to the function under test.

Code to call this function is inserted at the start of each test purpose before the code you

put in the code section.

The arguments are initialised to have the value of the expression you specified in the title

section. This does not have to be a constant expression - for example, it my be a return

value of a function in a library or extern section. By default arguments are initialised to

zero values.

For example:

/*

* Called at the beginning of each test purpose to reset the

* arguments to their initial values

*/

static void

setargs()

{

display = Dsp;

gc = 0;

pixmap = 0;

}

5.1.10 Initialising arguments when test-type is Bad

A function seterrdef() is defined to initialise some of the arguments to the function

under test to values which are suitable for conducting the included error tests.

- 17 -

Programmers Guide for the X Test Suite

This is called in some of the included error tests to initialise the arguments to known

good values.

For example:

/*

* Set arguments to default values for error tests

*/

static void

seterrdef()

{

gc = ErrdefGC;

pixmap = ErrdefPixmap;

}

5.1.11 Code sections

The code sections in the dot-m file are converted into a sequence of functions named

tnnn(), where nnn is a three digit number which is filled with leading zeros if necessary,

the first code section being named t001(). This is known as a "test function".

Each of the test functions is preceded by the corresponding assertion for the test purpose,

in a C source code comment, labelled with the test purpose number.

Code to call the library function tpstartup() is inserted at the start of the test

function, immediately after any automatic variables declared in your code section. This

function performs initialisation required for each test purpose, including setting error

handlers to trap unexpected errors.

Code to call the automatically generated test-set specific function setargs() is then

inserted. This function is described further in the previous section entitled "Initialising

arguments".

The contents of your code section are then inserted.

The macro XCALL in a dot-m file is expanded to call the function under test with

arguments corresponding to the lines following the >>TITLE keyword.

For example:

XCALL;

is by default expanded to

startcall(display);

if (isdeleted())

return;

XSetClipMask(display, gc, pixmap);

endcall(display);

if (geterr() != Success) {

report("Got %s, Expecting Success", errorname(geterr()));

FAIL;

}

The stages in this expansion are as follows:

- 18 -

Programmers Guide for the X Test Suite

1. The library function startcall() is called to check for any outstanding

unexpected X protocol errors, which might have been generated, for example,

during the setup part of the test. A call to XSync() is made to achieve this.

2. The library function startcall() installs a test error handler in place of the

unexpected X protocol error handler.

3. The library function isdeleted() returns True if the test purpose has already

issued a result code UNRESOLVED due to an earlier call to delete(). (This

must be done after calling startcall() in case XSync() flushed an

unexpected X protocol error.)

4. The function under test is then called with the arguments listed in the title section.

5. The library function endcall() is called to check for any X protocol errors

caused by the function under test. A call to XSync() is made to achieve this.

6. The library function endcall() installs the unexpected X protocol error

handler.

7. The test error handler saves the number of the most recent X protocol error. It is

accessed by calling the function geterr() and the value is checked. The value

is expected to be Success by default, or BadThing if the code section was

introduced in the dot-m file by

>>CODE BadThing

If it is desirable to skip checking the error status at this point, the option

>>SET no-error-status-check

may be inserted in the dot-m file in the current code section before the XCALL.

This setting only applies up to the end of the current section.

5.1.12 TET initialisation code

The mc utility adds a reference to the function into an array of functions which can be

invoked via the TET API.

For example:

struct tet_testlist tet_testlist[] = {

t001, 1,

t002, 2,

t003, 3,

NULL, 0

};

Code to calculate the number of test purposes in the test set is inserted as follows:

int ntests = sizeof(tet_testlist)/sizeof(struct tet_testlist)-1;

Finally, the names of the startup and cleanup functions are used to initialise variables

used by the TET API. These functions are called before the first test purpose and after the

last test purpose. The functions called can be overridden using the options >>SET startup

and >>SET cleanup.

- 19 -

Programmers Guide for the X Test Suite

The default library functions perform initialisation including reading the TET

configuration variables and opening a default client.

Should you override the default startup and cleanup functions, you are recommended to

call startup() as the first line of your startup function and cleanup() as the last

line of your cleanup function.

void (*tet_startup)() = startup;

void (*tet_cleanup)() = cleanup;

5.2 C files for standalone executable in macro tests - MTest.c

When the dot-m file contains the line

>>SET macro

the command

mc -m -o MTest.c scrncnt.m

produces a C file named MTest.c. This may be compiled to produce a standalone

executable file named MTest. Instructions on building and executing the tests are given

in the "User Guide". The MTest.c files are not provided as part of this release, but are

built automatically when building the X Test Suite.

The file MTest.c is identical to the file Test.c except that a macro (which is expected

to be made visible by including the file Xlib.h) is tested instead of the Xlib function

named in the title section of the dot-m file.

The macro name is set to the <macroname> argument of the >>SET macro option - if

there is no >>SET macro option in the file, or no argument specified, the default is the

function argument in the >>TITLE keyword, with the leading letter ‘X’ removed.

5.3 C files for linked executable - link.c

The command

mc -l -o link.c stclpmsk.m

produces a C file named link.c. This is identical to the Test.c file with the

exception of the initialisation code which enables the source code to be compiled and

linked into a space-saving executable file. This is an executable file which may invoke

any of the test purposes in the various link.c files, thereby reducing the number of

executable files required, and saving space. The link.c files are not provided as part of

this release, but are built automatically when building the X Test Suite.

The remaining parts of this section describe the differences in format of the link.c and

Test.c files.

The differences are associated with the TET initialisation code being in a separate source

file named linktbl.c, rather than in the test set source file.

A linktbl.c file is provided for each section of the X Test Suite in each subdirectory

of $TET_ROOT/xtest/tset. This file contains a pointer to an array of linkinfo

structures, one for each test set in the section. Each linkinfo structure contains the

following items:

- 20 -

Programmers Guide for the X Test Suite

name a unique name for that test set (the name of the test set

directory).

testname the actual Xlib function tested by the test set.

ntests the number of test purposes in the test set.

testlist a pointer to the array of test functions constructed for that test

set from the contents of the link.c file.

localstartup a pointer to the startup function specific to that test set.

localcleanup a pointer to the cleanup function specific to that test set.

Later in this section there are example values of these structure members.

When the space-saving executable is executed, the TET initialisation code in the library

function linkstart.c determines which test set is required. This is done by matching

argv[0] with a name element in the array of linkinfo structures. The test functions

specified by the corresponding testlist element of the linkinfo structure are then

executed, preceded and followed by the corresponding startup and cleanup function

respectively.

5.3.1 Test set symbol and name

The global variable TestName is made static.

static char *TestName = "XSetClipMask";

5.3.2 Test purpose number

This is defined in linktbl.c, and is made available via the following code:

extern int tet_thistest;

5.3.3 TET initialisation code

The global variable tet_testlist is made static.

For example:

static struct tet_testlist tet_testlist[] = {

t001, 1,

t002, 2,

t003, 3,

NULL, 0

};

The global variable ntests is made static.

static int ntests = sizeof(tet_testlist)/sizeof(struct tet_testlist)-1;

The linkinfo structure specific to this test set is defined.

For example:

- 21 -

Programmers Guide for the X Test Suite

struct linkinfo EXStClpMsk = {

"stclpmsk",

"XSetClipMask",

&ntests,

tet_testlist,

0,

0,

};

The TET variables for the startup and cleanup functions are defined in linktbl.c, and

are made available via the following code:

extern void (*tet_startup)();

extern void (*tet_cleanup)();

5.4 C files for linked executable in macro tests - mlink.c

When the dot-m file contains the line

>>SET macro

the command

mc -m -l -o mlink.c scrncnt.m

produces a C file named mlink.c. The mlink.c files are not provided as part of this

release, but are built automatically when building the X Test Suite.

The file mlink.c is identical to the file link.c, except that a macro (which is

expected to be made visible by including the file Xlib.h) is tested instead of the Xlib

function named in the title section of the dot-m file.

The macro name is set to the <macroname> argument of the >>SET macro option - if

there is no >>SET macro option in the file, or no argument specified, the default is the

function argument in the >>TITLE keyword, with the leading letter ‘X’ removed.

5.5 Makefile

The command

mmkf -o Makefile scrncnt.m

produces a Makefile which can be used to build all the C source files described in the

previous sections and to build the test executables from the C files.

Further instructions appear in the "User Guide" in the section entitled "Building,

executing and reporting tests without using the TET".

The Makefiles produced by mc are portable in that they use symbolic names to describe

commands and parameters which may vary from system to system. The values of these

symbolic names are all obtained by a utility pmake from the build configuration file,

which is described in the "User Guide" in the section entitled "Configuring the X Test

Suite".

The targets in the Makefile which can be invoked by pmake are as follows:

- 22 -

Programmers Guide for the X Test Suite

pmake Test

Builds standalone executable version of the test set.

pmake Test.c

Builds Test.c using mc with the format described in the earlier section

entitled "C files for standalone executable - Test.c".

pmake MTest

Builds standalone executable version of the test set to test the macro

version of the function.

pmake MTest.c

Builds MTest.c using mc with the format described in the earlier section

entitled "C files for standalone executable - MTest.c".

pmake linkexec

Builds the object files and links which can be used to produce a linked

executable file. These targets are used when building space-saving

executables as described in the "User Guide".

pmake link.c

Builds link.c using mc with the format described in the earlier section

entitled "C files for linked executable - link.c".

pmake mlink.c

Builds mlink.c using mc with the format described in the earlier section

entitled "C files for linked executable - mlink.c".

pmake clean

This removes object files and temporary files from the test set directory.

pmake clobber

This removes object files and temporary files from the test set directory

and additionally removes all the source files which mc can remake.

The remaining parts of this section describe the format of the Makefiles in more detail.

Refer to the section entitled "Make section - >>MAKE" for examples of how the

variables AUXFILES and AUXCLEAN may be set.

5.5.1 Copyright header

A copyright header is inserted as a comment block. This will contain lines showing the

SCCS versions of the dot-m file and any included files.

5.5.2 Make variables

A series of make variables are initialised to represent the names of the source, object and

executable files.

- 23 -

Programmers Guide for the X Test Suite

SOURCES=scrncnt.m

CFILES=Test.c

OFILES=Test.o

MOFILES=MTest.o

LOFILES=link.o mlink.o

LINKOBJ=scrncnt.o

LINKEXEC=scrncnt

5.5.3 Targets for X Protocol tests

For the X Protocol tests, when the section argument to the >>TITLE keyword is

XPROTO the contents of the file mmxpinit.mc are then included.

This file initialises various make variables to specific values for the X Protocol tests.

In this release the contents of this file are as follows:

#

X Protocol tests.

#

CFLAGS - Compilation flags specific to the X Protocol tests.

#

CFLAGS=$(XP_CFLAGS)

SYSLIBS=$(XP_SYSLIBS)

LIBS=$(XP_LIBS)

LINTFLAGS - Flags for lint specific to the X Protocol tests.

#

LINTFLAGS=$(XP_LINTFLAGS)

LINTLIBS=$(XP_LINTLIBS)

5.5.4 Targets for standalone executable - Test

The contents of the file mmsa.mc are included. These are the targets to create the

standalone executable file Test.

#

Build a standalone version of the test case.

#

Test: $(OFILES) $(LIBS) $(TCM) $(AUXFILES)

$(CC) $(LDFLAGS) -o $@ $(OFILES) $(TCM) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

Test.c: $(SOURCES)

$(CODEMAKER) -o Test.c $(SOURCES)

5.5.5 Targets for standalone executable - MTest

If the dot-m file contains the >>SET macro option, the contents of the file mmmsa.mc are

included. These are the targets to create the standalone executable file MTest for the

- 24 -

Programmers Guide for the X Test Suite

macro version of the specified Xlib function.

#

Build a standalone version of the test case using the macro version

of the function.

#

MTest: $(MOFILES) $(LIBS) $(TCM) $(AUXFILES)

$(CC) $(LDFLAGS) -o $@ $(MOFILES) $(TCM) $(LIBLOCAL) $(LIBS) $(SYSLIBS)

MTest.c: $(SOURCES)

$(CODEMAKER) -m -o MTest.c $(SOURCES)

5.5.6 Targets for linked executable

The contents of the file mmlink.mc are included. These are the targets to create object

files and links which can be used to produce a linked executable file. These targets are

used when building space-saving executables as described in the "User Guide".

#

A version of the test that can be combined together with

all the other tests to make one executable. This will save a

fair amount of disk space especially if the system does not

have shared libraries. Different names are used so that

there is no possibility of confusion.

#

link.c: $(SOURCES)

$(CODEMAKER) -l -o link.c $(SOURCES)

Link the objects into one large object.

#

$(LINKOBJ): $(LOFILES)

$(LD) $(LINKOBJOPTS) $(LOFILES) -o $(LINKOBJ)

Link the object file into the parent directory.

#

../$(LINKOBJ): $(LINKOBJ)

$(RM) ../$(LINKOBJ)

$(LN) $(LINKOBJ) ..

Make a link to the combined executable.

#

$(LINKEXEC): ../Tests

$(RM) $(LINKEXEC)

$(LN) ../Tests $(LINKEXEC)

../Tests: ../$(LINKOBJ)

linkexec:: $(LINKEXEC) $(AUXFILES) ;

- 25 -

Programmers Guide for the X Test Suite

5.5.7 Targets for linked executable - macro version

If the dot-m file contains the >>SET macro option, the contents of the file mmmlink.mc

are included. These are the targets to create object files and links for the macro version of

the specified Xlib function which can be used to produce a linked executable file. These

targets are used when building space-saving executables as described in the "User

Guide".

A version of the test that can be combined with all the other tests for

the macro version of the function.

#

mlink.c: $(SOURCES)

$(CODEMAKER) -m -l -o mlink.c $(SOURCES)

linkexec:: m$(LINKEXEC) $(AUXFILES) ;

m$(LINKEXEC): ../Tests

$(RM) m$(LINKEXEC)

$(LN) ../Tests m$(LINKEXEC)

5.5.8 Targets for libraries

For the Xlib tests, when the section argument to the >>TITLE keyword is other than

XPROTO, the contents of the file mmlib.mc are then included.

In this release the contents of this file are as follows:

#

This part of the makefile checks for the existance of the libraries

and creates them if necessary.

#

The xtestlib is made if it doesn’t exist

#

$(XTESTLIB):

cd $(XTESTROOT)/src/lib; $(TET_BUILD_TOOL) install

The fontlib is made if it doesn’t exist

#

$(XTESTFONTLIB):

cd $(XTESTROOT)/fonts; $(TET_BUILD_TOOL) install

For the X Protocol tests, when the section argument to the >>TITLE keyword is

XPROTO the contents of the file mmxplib.mc are then included. This file is identical to

mmlib.mc except for the following additional lines:

The X Protocol test library is made if it doesn’t exist

#

$(XSTLIB):

cd $(XTESTROOT)/src/libproto; $(TET_BUILD_TOOL) install

- 26 -

Programmers Guide for the X Test Suite

5.5.9 Targets for cleaning and linting

The contents of the file mmmisc.mc are then included.

This file includes a clean target to remove object files and temporary files, and a

clobber target which additionally removes all the source files which mc can remake.

There is also a LINT target which enables the C source files to be checked against lint

libraries specified in the build configuration file.

#

Miscellaneous housekeeping functions.

#

clean up object and junk files.

#

clean:

$(RM) Test $(OFILES) $(LOFILES) $(LINKOBJ) $(LINKEXEC) core\

MTest m$(LINKEXEC) $(MOFILES) CONFIG Makefile.bak $(AUXCLEAN)

clobber - clean up and remove remakable sources.

#

clobber: clean

$(RM) MTest.c Test.c mlink.c link.c Makefile

Lint makerules

#

lint: $(CFILES)

$(LINT) $(LINTFLAGS) $(CFILES) $(LINTTCM) $(LINTLIBS)

LINT:lint

5.5.10 Targets for building known good image files

The contents of the file mmpgen.mc are then included.

These include targets which enable the test set to be built so that it generates known good

image files.

These are not intended to be used outside the development environment at UniSoft.

- 27 -

Programmers Guide for the X Test Suite

#

Pixel generation makerules for generating the reference

known good image files.

#

PVOFILES=pvtest.o

pvgen: $(PVOFILES) $(PVLIBS) $(TCM)

$(CC) $(LDFLAGS) -o $@ $(PVOFILES) $(TCM) \

$(PVLIBS) $(SYSLIBS) $(SYSMATHLIB)

pvtest.o: pvtest.c

cc -c -DGENERATE_PIXMAPS $(CFLAGS) pvtest.c

pvtest.c: Test.c

$(RM) pvtest.c; \

$(LN) Test.c pvtest.c

5.5.11 Targets for included files

Rules are included to specify the dependency of the C source files on any included files.

For example:

Test.c link.c: $(XTESTLIBDIR)/error/EAll.mc

Test.c link.c: $(XTESTLIBDIR)/error/EGC.mc

Test.c link.c: $(XTESTLIBDIR)/error/EPix.mc

5.6 Formatting assertions

The command

ma -o stclpmsk.a -h -m stclpmsk.m

produces in the file stclpmsk.a a list of the assertions from the assertion sections of

the specified dot-m file. The assertions are output in nroff format. All macros used in the

assertion text can be obtained using the -h and -s options as described below.

The remaining parts of this section describe the output format in more detail.

5.6.1 Copyright header

A copyright header is output as an nroff comment block. This will contain lines showing

the SCCS versions of the dot-m file and any included files.

5.6.2 Macro definitions

If the -h option was specified, macros that are later used in the assertion text will be

output from the file maheader.mc.

5.6.3 Title

The line

- 28 -

Programmers Guide for the X Test Suite

.TH <function> <section>

is output, where <function> and <section> are obtained from the title section of

the dot-m file.

The default macro definition for .TH in maheader.mc causes the section and function

name to be printed at the top of each page.

5.6.4 Assertions

For each assertion section, the line

.TI <category> \" <function>-n

is output, where <category> is obtained from the second argument of the

>>ASSERTION keyword and <function> is obtained from the title section of the dot-

m file, and n is the number of the assertion in the test set.

This is followed by the assertion text in which xname is converted to <function>.

For example:

.TI A \" XSetClipMask-1

A call to

.F XSetClipMask

sets the

.M clip_mask

component of the specified GC to the value of the

.A pixmap

argument.

The other macros used in the assertion text to control font changes are described in

appendix B.

The default macro definition for .TH in maheader.mc causes the example assertion to

be printed as follows:

Assertion XSetClipMask-1(A).

A call to XSetClipMask sets the clip_mask component of the

specified GC to the value of the pixmap argument.

- 29 -

Programmers Guide for the X Test Suite

6. Source file structure

This section describes the C source coding style and conventions which which have been

used in the development of the revised X Test Suite. These conventions apply to the

structure of the code sections of the dot-m files, whose overall structure is defined in

previous sections of the Programmers Guide. In some cases (particularly in the structure

of the X Protocol tests) the style and conventions have been deleloped from the earlier T7

X Test Suite.

You are advised to study the contents of this section before attempting to modify or

extend the X Test Suite. The contents of this section will give you guidelines on how to

structure the test code so that it is easy to follow, giv es correct and reliable information

when the tests are executed, and is written as compactly as possible.

Libraries of common functions have been used and further developed in the revised

X Test Suite in order to keep the source code in the test sets as compact as possible. The

rest of this section describes recommendations on how particular library functions should

be used. It does not describe the contents of the libraries in detail. A complete list of

library contents is provided in the section entitled "Source file libraries".

During the development of the Xlib tests, a library of support functions has been

developed. This library includes functions for performing common operations required

when testing the X Window System, as well as performing common reporting operations.

This library includes a small number of functions developed for the Xlib tests within the

T7 X Test Suite. This library is known as the "X test suite library" in this document, and

the source of the library is in the directory $TET_ROOT/xtest/src/lib.

Calls to any function in this library may be made by any test set in the X Test Suite.

6.1 Structure of the Xlib tests

This section describes the structure of the code sections of the Xlib tests.

The Xlib tests are the tests for sections 2 to 10 of the X11R4 Xlib specifications. They

are stored in subdirectories of the directories CH02 to CH10 (which are to be found in the

directory $TET_ROOT/xtest/tset). There is a subdirectory for each Xlib function

containing a dot-m file which includes all the test purposes provided for that Xlib

function. The naming scheme which is used for these directories is described in appendix

B of the "User Guide".

6.1.1 Result code macros

It is good practice where possible to structure the test so that only one test result code is

assigned before the code section returns or ends.

The significance of the various test result codes that may be assigned are described more

fully in appendix D of the "User Guide".

The following macros may be used to assign the test result code. These macros call the

function tet_result() which is part of the TET API.

PASS

This assigns test result code PASS.

- 30 -

Programmers Guide for the X Test Suite

FAIL

This assigns test result code FAIL.

UNRESOLVED

This assigns test result code UNRESOLVED.

UNSUPPORTED

This assigns test result code UNSUPPORTED.

UNTESTED

This assigns test result code UNTESTED.

NOTINUSE

This assigns test result code NOTINUSE.

WARNING

This assigns test result code WARNING.

FIP

This assigns test result code FIP.

Note that there are two other test result codes which may not be assigned directly within a

test purpose.

The result code UNINITIATED will be assigned to a test purpose from within the TET

when the function tet_delete() has been called in an earlier test purpose or startup

function. This is useful to prevent initiation of later test purposes when it is not possible

to continue executing test purposes in the test set.

The result code NORESULT will be assigned to a test purpose from within the TET if the

test purpose is initiated but no result code has been output by the time control returns

from the test purpose to the TET.

The FAIL macro also increments a failure counter which is used to prevent a result code

being assigned in a later call to CHECKPASS (see below).

6.1.2 Result code functions

There are a series of convenience functions which output a particular test result code

preceded by a test information message of type REPORT. (See "Outputting test

information messages", below).

In each case the arguments are exactly like those for printf(3).

These are as follows:

untested()

This function may be used for an extended assertion to output the test

result code UNTESTED, preceded by a message.

unsupported()

This function may be used for a conditional assertion to output the test

result code UNSUPPORTED, preceded by a message.

notinuse()

This function may be used to output the test result code NOTINUSE,

preceded by a message.

- 31 -

Programmers Guide for the X Test Suite

delete()

This function may be used to output the test result code UNRESOLVED,

preceded by a message.

6.1.3 Assigning result codes

The code should be structured such that a PASS result code is only assigned if there is no

doubt that the assertion being tested has been determined to be positively true on the

system being tested. Absence of failure should not be taken as proof of success. For this

reason, there should if possible be just one place where a PASS result may be assigned,

whilst there may be many code paths which report other result codes.

The result code FAIL should not be called until the function under test has been called.

During execution of the test purpose, it may not be possible to setup the conditions for the

assertion to be conclusively tested. In this case the result code UNRESOLVED should be

assigned rather than FAIL.

For example:

>>CODE

if (setup()) {

delete("setup() failed; the test could not be completed");

return;

}

ret = XCALL;

if (ret == 0)

PASS;

else

fAIL;

6.1.4 Assigning result codes for extended assertions

Extended assertions are described in more detail as part of the >>ASSERTION keyword.

In some cases partial testing may be done for extended assertions. In this case, the result

code would be FAIL if an error is detected, or UNTESTED if no failure is detected but

the assertion is still not fully tested.

For example:

>>CODE

ret = XCALL;

if (ret == 0)

PASS;

else

untested("The assertion could not be completely tested");

- 32 -

Programmers Guide for the X Test Suite

6.1.5 Assigning result codes for conditional assertions

Conditional assertions are described in more detail as part of the >>ASSERTION

keyword.

It is usual to determine at the beginning of the test purpose whether the conditional

feature described in the assertion is supported.

For example:

>>CODE

if (!feature_supported) {

unsupported("The required feature is not supported");

return;

}

ret = XCALL;

if (ret == 0)

PASS;

else

FAIL;

6.1.6 Assigning result codes for multi-part tests

It is often the case that the test strategy for an assertion requires a number of separate

checks to be performed, all of which must pass before the test purpose can be assigned a

PASS result code.

In order to ensure that all relevant checks have been performed, a macro CHECK is

provided which increments a pass counter. At the end of the test, a further macro

CHECKPASS checks that the counter has reached the required value before assigning a

PASS result. (The expected value of the pass counter is normally a constant, but may be a

function of a loop counter if the test involves calling CHECK in a loop.)

The macro CHECK uses trace() to print the pass counter and line number in the TET

journal file. The format of the TET journal file is described further in appendix C of the

"User Guide".

CHECKPASS also ensures that the pass counter is not zero, and that the fail counter is

zero.

For example:

- 33 -

Programmers Guide for the X Test Suite

>>CODE

n_ret = -1;

ret = XCALL;

if (ret == 0)

CHECK;

else

FAIL;

if (n_ret == expected_number)

CHECK;

else

FAIL;

CHECKPASS(2);

In the case of extended assertions, the macro CHECKUNTESTED may be called, which

is identical to CHECKPASS, except that the final result code assigned will be

UNTESTED.

6.1.7 Outputting test information messages

Test information messages are normally output to describe the reason for any test result

codes which are other than PASS, and for other purposes, as described in this section.

Appendix D of the "User Guide" describes the four different categories of test

information messages which may appear in the TET journal file. This section describes

how these messages are output from the test purpose.

The functions described in this section call the function tet_infoline() which is

part of the TET API.

REPORT

A test information message with type REPORT is used to report the reason

for any test result code which is other than PASS. A warning message is

printed by the report writer rpt if a test information message of type

REPORT is giv en in a test purpose which produced a test result code

PASS.

This is output using the function report(), which takes arguments

exactly like those for printf(3).

CHECK

A test information message with type CHECK should not be output

directly - this should only be done via the CHECK macro.

TRACE

A test information message with type TRACE is used to describe the state

of the test being executed.

This is not output to the TET journal file if the execution configuration

parameter XT_OPTION_NO_TRACE is set to Yes.

- 34 -

Programmers Guide for the X Test Suite

This is output using the function trace(), which takes arguments

exactly like those for printf(3).

DEBUG

A test information message with type DEBUG is a debug message inserted

during the development of the test.

This is only output to the TET journal file if the value of the execution

configuration parameter XT_DEBUG is greater than or equal to the level

of the debug message.

This is output using the function debug(), which takes arguments

exactly like those for printf(3), except that the printf(3) arguments are

preceded by a single argument which is the debug level. The debug level

should be between 1 and 3.

For example:

>>CODE

debug(1, "about to call %s", TestName);

ret = XCALL;

if (ret == 0)

trace("%s returned %d", TestName, ret);

PASS;

} else {

report("%s returned %d instead of 0", TestName, ret);

FAIL;

}

6.1.8 Creating new test purposes

You can create new test purposes within an existing dot-m file using the guidelines in this

section.

It is expected that in doing this you will be primarily aiming to produce new test purposes

for a particular Xlib function. You should add the new test purpose to the dot-m file

containing the test purposes for that Xlib function.

6.1.8.1 Creating new sections in the dot-m file

You are advised to create an assertion section and strategy section at the end of the file,

using as a template one of the existing sections in the dot-m file.

You should then create a code section commencing with the >>CODE keyword. Since

there are many different styles of Xlib functions which may be tested, there are few

additional guidelines that can be given beyond those contained in earlier parts of this

guide.

6.1.8.2 Creating test purposes which use pixmap verification

If you have not done so yet, refer to the section entitled "Examining image files" in the

"User Guide". This explains some background to the pixmap verification scheme, and in

particular how to view image files produced when running the X Test Suite.

- 35 -

Programmers Guide for the X Test Suite

A number of test purposes supplied in the X Test Suite use a scheme known as pixmap

verification, to compare the image produced by the X server with a known good image

which is stored in a known good image file.

All the required known good image files for the test programs in the X Test Suite (as

supplied) have been created in advance. The known good image files for each test

program are supplied in the X Test Suite in the test set directory in which the dot-m file is

supplied. They are named annn.dat, where nnn is the number of the test purpose for

which the known good image file was generated.

The known good image files are generated as follows. The X Test Suite is compiled with

the additional compilation flag -DGENERATE_PIXMAPS, and linked with a

replacement Xlib which determines analytically the expected X server display contents at

any point. At the points where pixmap verification is going to be performed, the expected

image is instead written to a data file, which is the known good image file.

It is not possible to generate further known good image files in this way, because the

replacement Xlib is not part of the X Test Suite.

However, it is possible to write a server-specific image file containing the contents of the

X server display at points where pixmap verification is going to be performed. This may

be useful for the purposes of validation and regression testing against a known server.

This may be done by working through the following stages:

1. Create the test purpose with a call to the macro PIXCHECK at the point where

you want to validate the image displayed by the X server. Note that the macro

PIXCHECK calls the macros CHECK or FAIL depending on whether the image

displayed by the X server matches that in the image file. The code invoked by the

macro PIXCHECK(display, drawable) is as follows:

if (verifyimage(display, drawable, (struct area *)0))

CHECK;

else

FAIL;

The function verifyimage() is described in more detail in the section entitled

"Source file libraries".

2. Build and execute the test without using the TCC, (refer to the "User Guide") and

check that the newly created test purpose gives result code UNRESOLVED due to

the absence of a known good image file as follows:

pmake

pt

prp

3. Rerun the test, saving the image produced by the X server as follows:

pt -v XT_SAVE_SERVER_IMAGE=Yes

4. This should create a file named annn.sav, where nnn is the name of the newly

created test purpose. This is a server-specific image file. Rename this file to the

name used for known good image files as follows:

- 36 -

Programmers Guide for the X Test Suite

mv annn.sav annn.dat

5. Check that the process has worked by executing the test without using the TCC,

and enabling pixmap verification against the server-specific image file as follows:

pt

prp

The newly created test purpose should give a result code of PASS.

It is particularly important that new test purposes are added at the end of the file if an

earlier test purpose calls the macro PIXCHECK. This is because inserting a test purpose

before another test purpose will cause the later test purpose to be renumbered. As well as

causing unnecessary confusion in other ways, this will cause the later test purpose to now

look for the wrong known good image file.

6.2 Structure of the X Protocol tests

This section describes the structure of the code sections of the X Protocol tests.

The X Protocol tests are the touch tests for the X Protocol (version 11). They are stored

in subdirectories of the directory XPROTO (which is to be found in the directory

$TET_ROOT/xtest/tset). There is a subdirectory for each X Protocol request

containing a dot-m file which includes all the test purposes provided for that X Protocol

request. The naming scheme which is used for these directories is described in appendix

B of the "User Guide".

During the development of the X Protocol tests, extensive use has also been made of a

library of support functions developed in the earlier T7 X Test Suite. This library is

known as the "X Protocol library" in this document, and the source of the library is in the

directory $TET_ROOT/xtest/src/libproto.

Calls to any function in this library may be made by any of the X Protocol tests in the

X Test Suite.

6.2.1 Structure of the code sections

In the T7 release of the X Test Suite, each of the X Protocol tests consisted of a main()

function which called library functions to send an X Protocol request to the X server, and

checked for the correct response (reply, error or nothing).

In the revised X Test Suite, the test code originally in the main() function has been

moved to a function called tester() which is located in an >>EXTERN section in

each dot-m file, so that it can be called from each test purpose as described below. The

test function tester() is in turn called from a library function testfunc().

For example:

>>CODE

test_type = GOOD;

/* Call a library function to exercise the test code */

testfunc(tester);

- 37 -

Programmers Guide for the X Test Suite

By default, the library function testfunc() calls tester() for each byte

orientation. The test function tester() is called in a sub-process via the TET API

function tet_fork(), and returns the exit status of the test process to testfunc().

If required, the execution configuration parameter XT_DEBUG_BYTE_SEX may be set

to NATIVE, REVERSE, MSB or LSB to call tester() just once with the required byte

orientation.

Each client has a test type, which is initialised when the client is created. The test type

determines whether X Protocol requests sent by the client are to be good requests or

invalid requests (expecting an X Protocol error to be returned). The test type may be

modified during the lifetime of the client by invoking the macro Set_Test_Type().

In many tests, this is done by setting the test type to one of the following values before

calling Send_Req(), then setting it to GOOD immediately afterwards for subsequent

library calls:

GOOD

The request sent will be a known good X Protocol request (unless

otherwise modified in tester() before calling Send_Req()).

BAD_LENGTH

The request sent will have length field less than the minimum needed to

contain the request.

JUST_TOO_LONG

The request sent will have length field greater than the minimum needed to

contain the request (and, for requests where the length is used to determine

the number of fields in the request, the length is also not the minimum

length plus a multiple of the field size).

TOO_LONG

The request sent will have a length field which is greater than that

accepted by the X server under test.

BAD_IDCHOICE1

The request sent will have a resource ID that is already in use (it is the

responsibility of the function tester() to ensure the resource ID is in

use before calling Send_Req()).

BAD_IDCHOICE2

The request sent will have a resource ID that is out of range (it is the

responsibility of the function tester() to ensure the resource ID is out

of range before calling Send_Req()).

BAD_VALUE

The request sent will have an inv alid mask bit set (it is the responsibility of

the function tester() to ensure the mask field contains an invalid bit

before calling Send_Req()).

OPEN_DISPLAY

A special value used only in the test for OpenDisplay for testing the

connection setup protocol.

- 38 -

Programmers Guide for the X Test Suite

SETUP

The initial test type of a client, which will cause errors during test setup to

produce result code UNRESOLVED rather than FAIL.

6.2.2 Outputting test information and result code

Errors may be detected and reported both within the test function tester() and within

library functions. When an error is detected, the function Log_Err() should be called.

This increments an error count and uses report() to output a test information message

of type REPORT to the TET journal file.

If no error is detected, the function Log_Trace() may be called to record that the expected

response was received. This uses trace() to output a test information message of type

TRACE to the TET journal file.

You can also use the function Log_Debug() to output more detailed test information such

as the contents of request, reply and event structures. This uses debug() to output a test

information message of type DEBUG at level one to the TET journal file.

The function Exit() should be called at any point after an error has occurred, which

will assign a test result code FAIL and print the error count (or UNRESOLVED if the

error counter is zero). The exit status will be EXIT_FAIL in this case.

If tester() performs all checks and the results are correct, the function Exit_OK()

should be called. The exit status will be EXIT_SUCCESS in this case.

A result code of PASS is only assigned to a test purpose in the library function

testfunc() if all calls to tester() give exit status EXIT_SUCCESS. It should not

be assigned anywhere else.

6.2.3 Creating new test purposes

You can create new test purposes within an existing dot-m file using the guidelines in this

section.

It is expected that in doing this you will be primarily aiming to produce new test purposes

for a particular X Protocol request. You should add the new test purpose to the dot-m file

containing the test purposes for that X Protocol request.

6.2.3.1 Creating new sections in the dot-m file

You are advised to create an assertion section and strategy section at the end of the file,

using as a template one of the existing sections in the dot-m file.

You should then create a code section which passes a function my_test() you are

about to create to the library function testfunc().

For example:

>>CODE

test_type = GOOD;

/* Call a library function to exercise the test code */

testfunc(my_test);

- 39 -

Programmers Guide for the X Test Suite

6.2.3.2 Creating a new test function

You should create a function my_test() in an >>EXTERN section in the dot-m file

using the guidelines in this section.

A client is a connection to the X server under test. Each X Protocol request is sent from a

particular client. You can create a client numbered client using

Create_Client(client). Normally a single client is created, but it is possible to

create more than one client. This will be necessary when testing the effect on the server

of multiple clients.

The client data structure Xst_clients is used to store the information about each

client you have created. This includes resource ID’s and a display structure which is filled

in when the client is created. The client data structure is documented in more detail in the

header file in which it is defined ($TET_ROOT/xtest/include/Xstlib.h).

Next you will need to create a request structure. The function Make_Req(client,

req_type) should be called to create a request of a specified type req_type for a

specified client client and return a pointer to the request structure. The request

structure will be filled in with defaults which may be suitable for the test purpose you are

creating. The file MakeReq.c in the X Protocol library fills in the default values.

Should you want to change the defaults you can do this at any point between creating the

request structure and sending it to the X server. It may be modified by accessing the

structure members. The format of the request structures is exactly as defined in your X

Protocol header file (normally /usr/include/X11/Xproto.h). You can alter value

list items using the following functions:

Add_Masked_Value()

Del_Masked_Value()

Clear_Masked_Value()

Add_Counted_Value()

Clear_Counted_Value()

Add_Counted_Bytes()

When you have the request structure you wish to pass to the X server, call the function

Send_Req(client). This sends the request req from client client to the X

server, and handles byte swapping and request packing as necessary. If you wish the X

Protocol library to further modify the request structure to send an invalid protocol

request, set the test type of the client before calling Send_Req(client) using the

macro Set_Test_Type(client). The possible test types are listed in the earlier

section entitled "Structure of the code sections".

To check that the X server has reacted correctly to the request sent, you will need to call

the function Expect(). For convenience, a number of macros and functions have been

created to call Expect() depending on the outcome you are expecting. These are as

follows:

Expect_Event(client, event_type)

This expects an event of type event_type to be sent back from the X

server to client client.

- 40 -

Programmers Guide for the X Test Suite

Expect_Reply(client, req_type)

This expects a reply to the X Protocol request of type req_type to be

sent back from the X server to client client.

Expect_Error(client, error_type)

This expects an error of type error_type to be sent back from the X

server to client client.

Expect_BadLength(client)

This expects a BadLength error to be sent back from the X server to client

client.

Expect_BadIDChoice(client)

This expects a BadIDChoice error to be sent back from the X server to

client client.

Expect_Nothing(client)

This expects neither an error, event or reply to be sent back from the X

server to client client.

The Expect() function will check that the response from the X server is of the correct

type and has the correct length. It will be byte swapped and unpacked as necessary into

an event or reply structure, to which a pointer will be returned.

It is recommended that one of these functions be called immediately after sending an X

Protocol request to the X server. This causes any pending response from the X server to

be flushed out, and checked. This makes it easier to locate wrong responses from the X

server. This is effectively designing the test to run synchronously.

Once an error, event or reply has been returned, it can be examined directly.

Since the structures allocated for requests, replies and events are allocated dynamically, it

is wise to free the structure after use. this may be done using the functions

Free_Req(), Free_Reply() and Free_Event().

When the outcome of sending the X Protocol request has been assessed, you will want to

either report an error or output a trace message indicating that the expected response was

received. Refer to the earlier section entitled "Outputting test information and result

code".

You should end the test purpose if every part of the test purpose has succeeded by calling

Exit_OK(). This should only be done once, because it is the means of passing back to

the library function testfunc() the fact that the test purpose passed. If at an earlier

part of the test purpose an error occurs and it is desired to exit, call Exit().

6.2.3.3 Creating test purposes to test X Protocol extensions

The nature of the extension mechanism in X makes it difficult to just add support in the

switch statements throughout the X Protocol library to support protocol extensions.

The reason for this is that you do not know the value of the event types and reply types

until you have queried the X server.

For this reason, you are recommended to review the scope of the work that would be

required in modifying the supplied X Protocol library before attempting to test X

Protocol extensions. You can use the supplied X Protocol library as a framework, and

- 41 -

Programmers Guide for the X Test Suite

develop new versions of routines which handle events and replies.

- 42 -

Programmers Guide for the X Test Suite

7. Source file libraries

This sections lists the contents of the principal libraries of source files used by many tests

in the X Test Suite.

7.1 The X Test Suite library

A library of common subroutines for the X Test Suite has source in

$TET_ROOT/xtest/src/lib. This is built automatically when building tests in the

X Test Suite. Should it be required to build it separately for any reason run the command.

cd $TET_ROOT/xtest/src/lib

pmake install

The list of source files in this library, with a brief description of the contents of each file,

is as follows:

XTestExt.c

If XTESTEXTENSION is defined, this file contains routines to access the

XTEST extension in order to simulate device events and obtain information

on the cursor attributes of windows.

If XTESTEXTENSION is not defined, dummy routines are used instead.

If XTESTEXTENSION is not defined, client-side functions previously in

file XTestLib.c (now available in the XTEST extension library) are still

included. These are XTestDiscard() (to discard current request in request

buffer) and XTestSetGContextOfGC() and XTestSetVisualIDOfVisual()

(to set values in opaque Xlib data structures). These functions require

access to data structures now in the internal Xlib header file Xlibint.h.

badcmap.c

Create an invalid colourmap ID by creating a readonly colourmap of the

default visual type.

badfont.c

Return a bad font ID by loading a font and then unloading it.

badgc.c

Return a bad GC id on display disp by creating a GC and invalidating it

using the XTEST extension library function XTestSetGContextOfGC.

badpixm.c

Return a bad pixmap id on display disp by creating a pixmap and freeing

it.

badvis.c

Make a visual bad by using the XTEST extension library function

XTestSetVisualIDOfVisual.

badwin.c

Return a bad window id on display disp by creating a window and

destroying it.

bitcount.c

Handle bits in words.

- 43 -

Programmers Guide for the X Test Suite

block.c

Check whether process blocks when testing event handling functions.

buildtree.c

Build a tree of windows specified by a list which determines position, size

and parentage of each window.

checkarea.c

Check pixels inside and/or outside an area of a drawable are set to given

values.

checkev ent.c

Check two arbitrary events to see if they match, report an error if they

don’t.

checkfont.c

Check returned font characteristics, properties, text extents and widths

against those expected in the supplied test fonts.

checkgc.c

Check GC components against expected values.

checkimg.c

Check pixels inside and/or outside an area of an image are set to given

values.

checkpixel.c

Check specified pixels of a drawable are set to given values.

checktile.c

Check that an area of a drawable is filled with a specified tile.

config.c

Initialise the config structure by getting all the execution parameters.

crechild.c

Create a mapped child window for a parent window, and wait for the child

window to become viewable.

cursor.c

Routines for accessing cursor information. This includes convenience

functions for checking the cursor defined for a given window. These

routines call those in XTestExt.c to use the XTEST extension to access the

cursor information.

delete.c

Set the test result code for the current test purpose to UNRESOLVED.

devcntl.c

Routines for input device control. This includes convenience functions for

pressing keys and buttons and remembering those pressed. These routines

call those in XTestExt.c to use the XTEST extension to simulate the

required device events.

dset.c

Set every pixel in a drawable to a specified value.

- 44 -

Programmers Guide for the X Test Suite

dumpimage.c

Dump the contents of an image to a file.

environ.c

Contains a test suite specific version of putenv() (which may not be

available on POSIX.1 systems). This is required to set up the environment

before some calls to tet_exec().

err.c

Test error handler (installed when calling the function under test).

Unexpected error handler (installed at all other times). I/O error handler

(installed at all times). Obtain the error code and resource ID saved by the

test error handler.

ev ents.c

Handle the serial fields of incoming requests.

ex_startup.c

Generic startup routines required before executing the first test purpose

and after executing the last test purpose. The routines

exec_startup() and exec_cleanup() in this file should be called

at the start and end of the main() function of each program executed via

the TET function tet_exec().

exposechk.c

Check that either enough expose events were received to restore the

window, or that the window has been restored from backing store.

extenavail.c

If XTESTEXTENSION is defined, the function IsExtTestAvailable() returns

True if the server extension XTEST is available, otherwise it returns False.

If XTESTEXTENSION is not defined, the function IsExtTestAvailable()

always returns False.

gcflush.c

Flush the GC cache.

gcinclude.c

Functions which are called from the code included to test the correctness

of use of GC components by the drawing functions.

The only function included at present is setfuncpixel(), which finds

the first pixel set in a drawable (this will vary depending on the drawing

function).

getevent.c

Check if there are events on the queue and if so return the first one.

getsize.c

Get the size of a drawable. Just uses XGetGeometry but avoids all the

other information that you get with that.

gettime.c

Get the current server time. Use a property attached to the root window of

the display called XT_TIMESTAMP and replace it with 42 (32-bits). The

- 45 -

Programmers Guide for the X Test Suite

PropertyNotify event that is generated supplies the time stamp returned.

iponlywin.c

Create an input only window.

issuppvis.c

The function issuppvis() takes a visual class as argument and returns

true if such a class is supported by the server under test. This function

uses the XGetVisualInfo() function rather than the user-supplied

XT_VISUAL_CLASSES parameter.

The function visualsupported() takes a mask indicating a set of

visuals, and returns a mask indicating the subset that is supported. If the

mask is 0L then the mask shows all supported visuals.

The function resetsupvis() takes a mask indicating a set of visuals.

Subsequent calls to nextsupvis() will return the next supported visual

specified in the mask and increment a counter. The function nsupvis()

returns this counter.

linkstart.c

Define global variables used by the TET which are required when linking

test programs to produce a space-saving executable.

When the space-saving executable is executed, the TET initialisation code

in the library function linkstart.c determines which test set is

required. This is done by matching argv[0] with the name elements in

the array of linkinfo structures. The corresponding test functions

specified by the testlist element of the linkinfo structure are then

executed.

lookupname.c

Convert symbolic values from X Window System header files to

appropriate names.

makecolmap.c

Make a colourmap for the screen associated with the default root window.

makecur.c

Create a cursor that can be used within the test suite. The cursor is created

using XCreateFontCursor. The shape chosen can be controlled through

the configuration variable XT_FONTCURSOR_GOOD.

makegc.c

Make a GC suitable for use with the given drawable.

makeimg.c

Creates a general purpose image that can be used within the test suite. The

image is cleared to W_BG.

makepixm.c

Creates a general purpose pixmap that can be used within the test suite.

The pixmap is cleared to W_BG.

- 46 -

Programmers Guide for the X Test Suite

makeregion.c

Creates a general purpose region that can be used within the test suite.

makewin.c

Creates a general purpose windows that can be used within the test suite.

makewin2.c

Creates windows corresponding to a particular area.

maxsize.c

Obtain the number of cells in a colourmap.

nextvclass.c

Functions to cycle through all the visual classes that are supposed to

supported by the display/screen that is being tested. Note that these

functions are only used in the tests for XMatchVisualInfo and

XGetVisualInfo.

The function initvclass() initialises the visual class table. The

visual classes that are supported are supplied by the test suite user in the

variable XT_VISUAL_CLASSES, together with the depths at which they

are supported.

The function resetvclass() resets the visual class table. Subsequent

calls to nextvclass() obtain the next visual class and depth. The

function nvclass() returns the size of the visual class table.

nextvinf.c

Functions to cycle through all the visuals that are supported on the screen

under test. These functions use the XGetVisualInfo() function rather than

the user-supplied XT_VISUAL_CLASSES parameter. If the parameter

XT_DEBUG_VISUAL_IDS is set to a non-empty string, only the visuals

ID’s in the string are used.

The function resetvinf() obtains a list of all visuals supported for a

particular screen. Subsequent calls to nextvinf() obtain the next

visual. The function nvinf() returns the number of visuals.

nondpth1pix.c

Obtain a pixmap of depth other than 1 if such a pixmap is supported.

notmember.c

Returns a list of numbers that are not members of given list. (This is used

to test assertions of the form "When an argument is other than X or Y, then

a BadValue error occurs".

opendisp.c

Open a connection to the server under test.

openfonts.c

Open the xtest fonts, and place their ID’s in the fonts array.

pattern.c

Draw a pattern consisting of vertical bands on the specified drawable.

- 47 -

Programmers Guide for the X Test Suite

pfcount.c

Functions which may take arguments which are set to the pass and fail

counters in test set code created by mc. Calls to the pfcount functions

are inserted in order to use the counters at least once, and so prevent lint

reporting unwanted errors.

pointer.c

Routines to move the pointer, and determine if the pointer has been

moved.

regid.c

Routines are provided to register resources created during a test purpose.

Wherever possible, library functions register resources, and test purposes

may do so directly if desired. Registered resources are then destroyed at

the end of the test purpose.

report.c

Reporting functions, which output test information messages to the TET

journal file. These all use the TET reporting function

tet_infoline().

rpt.c

Reporting functions, which output test information messages to the TET

journal file, and additionally assign a test result code. These all use the

TET reporting function tet_infoline().

savimage.c

The function savimage() returns a pointer to a saved image on a

drawable using XGetImage.

The function compsavimage() checks that the image currently on the

drawable matches a saved image.

The function diffsavimage() checks that the image currently on the

drawable differs from a saved image.

These functions are used where the precise pixels drawn cannot be

determined in advance, but the test result may still be infered by image

comparisons.

setline.c

Convenience functions to set line width, cap style, line style and join style

in a GC, using XChangeGC().

settimeout.c

The function settimeout() sets a timeout which causes the process to

exit after a timeout. This should be done only in a child process of a test

purpose created by tet_fork().

The function cleartimeout() clears a previously set timeout.

stackorder.c

The function stackorder() uses XQueryTree() to determine the

position of a window in the stacking order.

- 48 -

Programmers Guide for the X Test Suite

startcall.c

The function startcall() checks for any outstanding unexpected X

protocol errors, which might have been generated, for example, during the

setup part of the test. A call to XSync() is made to achieve this.

The function startcall() installs a test error handler in place of the

unexpected X protocol error handler.

The function endcall() checks for any X protocol errors caused by the

function under test. A call to XSync() is made to achieve this.

The function endcall() installs the unexpected X protocol error

handler.

startup.c

Generic startup routines called by TET before executing the first test

purpose and after executing the last test purpose.

tpstartup.c

Generic startup routines called by TET before executing each test purpose

and after executing each test purpose.

verimage.c

The function verifyimage() uses XGetImage() to obtain the

contents of the specified drawable. This is then compared with the

contents of a "known good image file". If there is a discrepancy, the image

produced by the server is dumped to a file using dumpimage() together

with the known good image. The image produced by the server and the

known good image may be examined as described in the section in the

"User Guide" entitled "Examining image files".

If the execution configuration parameter XT_DEBUG_NO_PIXCHECK is

set to Yes, the image checking is skipped in verifyimage().

If the execution configuration parameter XT_SAVE_SERVER_IMAGE is set

to Yes, the image produced by the server is dumped to a file using

dumpimage() (regardless of whether it matches the "known good image

file").

For more background on pixmap verification see the earlier section

entitled "Creating test purposes which use pixmap verification".

winh.c

Build a tree of windows to test event generation, propogation and delivery.

xthost.c

Specifies operating system dependent data used by the access control list

functions. This includes arrays of XHostAddress structures. These

should be checked and if necessary edited refering to the section in the

"User Guide" entitled "System dependent source files".

xtestlib.h

This file contains definitions which are common to many of the source

files in the X Test Suite library, and it is included in those source files.

- 49 -

Programmers Guide for the X Test Suite

xtlibproto.h

This file contains declarations and (if required by an ANSI Standard-C

compiler) function prototypes for all the functions in the source files in the

X Test Suite library.

7.2 The X Protocol library

A library of common subroutines for the X Protocol tests in the X Test Suite has source

in $TET_ROOT/xtest/src/libproto. This is built automatically when building

tests in the X Test Suite. Should it be required to build it separately for any reason run

the command.

cd $TET_ROOT/xtest/src/libproto

pmake install

The list of source files in this library, with a brief description of the contents of each file,

is as follows:

ClientMng.c

Having established a client connection to the X server using the functions

in ConnectMng.c, allocate a client data structure and fill in its display

structure.

ConnectMng.c

Establish a client connection to the X server.

DataMove.c

Convert individual fields into format for sending to the X server.

DfltVals.c

Obtain reasonable default values for contents of request structures.

Expect.c

Check for the expected response (error, event, reply, or nothing) from the

X server.

JustALink.c

This file is a link to one of the files XlibXtst.c, XlibOpaque.c, or

XlibNoXtst.c. The link is created when the X Protocol library is built, and

the file used depends on the configuration parameter XP_OPEN_DIS.

Log.c

Log test results.

MakeReq.c

Construct a request structure using the functions in DfltVals.c, which has

reasonable default values so that it may be immediately sent to the X

server using the functions in SendReq.c.

RcvErr.c

RcvEvt.c

RcvRep.c

Unpack the response from the server into a structure (RcvErr.c for errors,

RcvEvt.c for events, RcvRep.c for replies; these all use DataMove.c to do

the unpacking).

- 50 -

Programmers Guide for the X Test Suite

ResMng.c

Create a resource (e.g. atom, window) and store its resource ID in the

client data structure.

SendEvt.c

Pack an event structure into a request structure (only used by SendEvent

protocol request).

SendReq.c

Pack a request structure in correct format using the functions in

DataMove.c and send to the X server.

SendSup.c

Support routines for packing request structure.

ShowErr.c

ShowEvt.c

ShowRep.c

ShowReq.c

ShowSup.c

Display contents of structures in nice human-readable form (ShowErr.c for

errors, ShowEvt.c for events, ShowRep.c for replies, and ShowReq.c for

requests, all of which call ShowSup.c support routines).

TestMng.c

Manage the setup and closedown of the tests. This file includes definitions

and initialisation of global variables (including TET configuration

variables) and assigning test result codes.

TestSup.c

Support routines for handling mapping state and event masks of windows.

Timer.c

Set up a timer that will execute a certain routine on completion.

Utils.c

Utilities for isolating operating system dependencies.

Validate.c

Routines to check whether the server under test supports the feature being

tested (eg. writable colour cells).

ValListMng.c

Modify the value lists at the ends of request structures.

XlibNoXtst.c

This file contains functions which emulate the post R5 enhanced

connection setup scheme. A connection can be established in client native

or byte-swapped orientations, and (when testing XOpenDisplay) both

valid and invalid byte orderings may be sent to the X server. The

connection is made using operating system specific procedures which

were developed in 4.2BSD environment, and may need modifications to

work on other systems.

- 51 -

Programmers Guide for the X Test Suite

XlibOpaque.c

This file contains portable functions to handle connection setup where the

Xlib implementation does not support the post R5 enhanced connection

setup scheme. The Xlib functions XOpenDisplay and ConnectionNumber

are called here to obtain a connection using the client native byte

orientation, and subsequent X Protocol requests are made using this

connection.

XlibXtst.c

This file contains portable functions to handle connection setup where the

Xlib implementation supports the post R5 enhanced connection setup

scheme. The enhancement involves using additional parameters to the

Xlib function _XConnectDisplay() which allow a byte swapped

connection to be established. Details of operating system specific

connection setup procedures including networking are thus not needed in

the X Protocol library.

XstIO.c

Routines to handle protocol packet transmission and reception including

fatal I/O errors.

delete.c

Set the test result code for the current test purpose to UNRESOLVED.

linkstart.c

Define global variables used by the TET which are required when linking

test programs to produce a space-saving executable.

When the space-saving executable is executed, the TET initialisation code

in the library function linkstart.c determines which test set is

required. This is done by matching argv[0] with the name elements in

the array of linkinfo structures. The corresponding test functions

specified by the testlist element of the linkinfo structure are then

executed.

startup.c

Generic startup routines called by TET before executing the first test

purpose.

tpstartup.c

Generic startup routines called by TET before executing each test purpose.

DataMove.h

This file contains the macros for byte swapping and word alignment.

XstlibInt.h

This file contains definitions which are common to many of the source

files in the X Protocol library, and it is included in those source files.

XstosInt.h

This file contains definitions related to operating system functions which

are common to many of the source files in the X Protocol library, and it is

included in those source files.

- 52 -

Programmers Guide for the X Test Suite

7.3 The X test fonts library

A library of common subroutines defining the characteristics of the test fonts for the

X Test Suite has source in $TET_ROOT/xtest/fonts. This is built automatically

when building tests in the X Test Suite. Should it be required to build it separately for

any reason run the command.

cd $TET_ROOT/xtest/fonts

pmake install

The source files xtfont0.c to xtfont6.c contain definitions of XFontStruct

structures named xtfont0 to xtfont6 which define the characteristics of the test

fonts used by many of the text drawing functions.

- 53 -

Programmers Guide for the X Test Suite

8. Appendix A - reason codes for extended assertions

The reason code is a number between 1 and 6 (currently) and is used if and only if the

category is B or D. This number corresponds to a reason from the following table which

is coded into mc.

The text of the reason will be printed with a result code UNTESTED if there is no

>>CODE.

1 - "There is no known portable test method for this assertion",

2 - "The statement in the X11 specification is not specific enough to write a test",

3 - "There is no known reliable test method for this assertion",

4 - "Testing the assertion would require setup procedures that involve an unreasonable

amount of effort by the user of the test suite.",

5 - "Testing the assertion would require an unreasonable amount of time or resources on

most systems",

6 - "Creating a test would require an unreasonable amount of test development time."

- 54 -

Programmers Guide for the X Test Suite

9. Appendix B - commands for fonts and symbols in assertions

In the text of assertions there should be no in-line nroff font changes. This is because the

font names may need to be changed on some systems.

As an alternative, a number of macros have been defined which are understood by the

utilities developed during stage two of the project. The definition of these macros uses

appropriate fonts to correspond closely with those used by the X Window System

documentation.

1. Arguments to a function should be written:

.A window

2. Function names should be written:

.F XAllocColorCells

(When the special symbol xname is used it can be left as it is, so the .F form only

needs using when refering to some other function. We hav e avoided cross

references to other functions where possible).

3. Structure members should be written:

.M override_redirect

4. Symbols should be written:

.S InputOutput

This is used for everything that is in the courier font in the X Window System

documentation and which is not a function name or structure member. This

includes the #define constants in the headers and typedef’ed names.

Eg.

BadColor

IsViewable

DirectColor

Visual

Display

MotionNotifyEvent

Punctuation separated by white space from the argument will be in the original font, as in

mm.

.A InputOutput ,

.A InputOnly .

— There is a .SM macro, as in mm. Any word that is uppercase only should use it to

obtain a reduced point size.

.SM DEBUG

.SM MIT

- 55 -

Programmers Guide for the X Test Suite

10. Appendix C - Included error assertions

The .ER keyword is described in the section entitled "Included errors - .ER".

This appendix gives the names the files which are included when this keyword is used

with the supported arguments, and shows the text of the assertions in those files.

All the files from which included tests are stored are located in the directory

$TET_ROOT/xtest/lib/error.

The names of the files which are included, and the text of the assertion contained in the

file, are specified in the following list:

Access grab

File included: EAcc1.mc

Assertion text:

When an attempt to grab a key/button combination already

grabbed by another client is made, then a BadAccess error

occurs.

Access colormap-free

File included: EAcc2.mc

Assertion text:

When an attempt to free a colormap entry not allocated by

the client is made, then a BadAccess error occurs.

Access colormap-store

File included: EAcc3.mc

Assertion text:

When an attempt to store into a read-only or an unallocated

colormap entry is made, then a BadAccess error occurs.

Access acl

File included: EAcc4.mc

Assertion text:

When an attempt is made to modify the access control list

from a client that is not authorised in a server-dependent

way to do so, then a BadAccess error occurs.

Access select

File included: EAcc5.mc

Assertion text:

When an attempt to select an event type is made, which at

most one client can select, and another client has already

selected it then a BadAccess error occurs.

Alloc

File included: EAll.mc

Assertion text:

When the server fails to allocate a required resource, then

a BadAlloc error occurs.

Atom [ARG1] [ARG2] ...

File included: EAto.mc

Assertion text:

- 56 -

Programmers Guide for the X Test Suite

When an atom argument does not name a valid Atom [, ARG1] [or

ARG2], then a BadAtom error occurs.

Color

File included: ECol.mc

Assertion text:

When a colourmap argument does not name a valid colourmap,

then a BadColor error occurs.

Cursor [ARG1] [ARG2] ...

File included: ECur.mc

Assertion text:

When a cursor argument does not name a valid Cursor [, ARG1] [or

ARG2], then a BadCursor error occurs.

Drawable [ARG1] [ARG2] ...

File included: EDra.mc

Assertion text:

When a drawable argument does not name a valid Drawable,

[ARG1] [or ARG2], then a BadDrawable error occurs.

Font bad-font

File included: EFon1.mc

Assertion text:

When a font argument does not name a valid font, then a

BadFont error occurs.

Font bad-fontable

File included: EFon2.mc

Assertion text:

When the font argument does not name a valid GContext or

font resource, then a BadFont error occurs.

GC

File included: EGC.mc

Assertion text:

When the GC argument does not name a defined GC, then a

BadGC error occurs.

Match inputonly

File included: EMat1.mc

Assertion text:

When a drawable argument is an InputOnly window then a

BadMatch error occurs.

Match gc-drawable-depth

File included: EMat2.mc

Assertion text:

When the graphics context and the drawable do not have the

same depth, then a BadMatch error occurs.

Match gc-drawable-screen

File included: EMat3.mc

Assertion text:

- 57 -

Programmers Guide for the X Test Suite

When the graphics context and the drawable were not created

for the same root, then a BadMatch error occurs.

Match wininputonly

File included: EMat4.mc

Assertion text:

When the window argument is an InputOnly window then a

BadMatch error occurs.

Name font

File included: ENam1.mc

Assertion text:

When the specified font does not exist, then a BadName error

occurs.

Name colour

File included: ENam2.mc

Assertion text:

When the specified colour does not exist, then a BadName

error occurs.

Pixmap [ARG1] [ARG2] ...

File included: EPix.mc

Assertion text:

When a pixmap argument does not name a valid Pixmap [, ARG1] [or

ARG2], then a BadPixmap error occurs.

Value ARG1 VAL1 [VAL2] ...

File included: EVal.mc †

Assertion text:

When the value of ARG1 is other than VAL1 [or VAL2], then a

BadValue error occurs.

† - the assertion text is not in the included file, but is inserted directly by mc.

Value ARG1 mask VAL1 [VAL2] ...

File included: EVal.mc †

Assertion text:

When the value of ARG1 is not a bitwise combination of VAL1

[or VAL2], then a BadValue error occurs.

† - the assertion text is not in the included file, but is inserted directly by mc.

Window [ARG1] [ARG2] ...

File included: EWin.mc

Assertion text:

When a window argument does not name a valid Window [, ARG1] [or

ARG2], then a BadWindow error occurs.

- 58 -

Programmers Guide for the X Test Suite

11. Appendix D - mc utility

Usage

mc [-a a_list] [-o <output-file>] [-l] [-m] [-s] [-p] [<input-file>]

The mc utility outputs a C source file containing tests specified in the input file <input-

file>, which must be a dot-m file which has the format specified in the section entitled

"Source file syntax".

If no <input-file> is specified, the input is taken from standard input. Multiple

input files can be processed by the utility, but the overall syntax must still conform to that

defined in the section entitled "Source file syntax". A consequence of this is that you

cannot specify another title section for a different function and expect to output tests for

more than one function simultaneously. Limited diagnostics are given if the file does not

have the required syntax. By default, the C source file is written to the standard output

stream.

More details of the formats of the C source files produced by mc are given in the section

entitled "Source file formats".

Options

-a a_list

This permits the specification of a list of assertions of the form

n1-m1,n2-m2,... to be output. Test code will only be output corresponding to

the tests in the specified ranges.

-o output-file

This sends the output to the file <output-file> instead of the standard output

stream.

-l

This option outputs a C source file containing tests with modified startup code

which allows the source code to be compiled and linked into a space-saving

executable file. The format of these files is described in the section entitled "C files

for linked executable - link.c".

-m

This option outputs a C source file containing tests for the macro version of the

function specified in the title section of the dot-m file. The format of these files is

described in the section entitled "C files for standalone executable in macro tests -

MTest.c".

The macro name is set to the <macroname> argument of the >>SET macro

option - if there is no >>SET macro option in the file, or no argument specified, the

default is the function argument in the >>TITLE keyword, with the leading

letter ‘X’ removed.

-s

This option outputs a test strategy from the dot-m file as a C source code comment

block between the assertion and the code. The test strategy is derived from the

corresponding strategy section in the dot-m file.

- 59 -

Programmers Guide for the X Test Suite

-p

This causes additional output including indicators of line number in the original

dot-m file (where possible). This means that any diagnostics produced by cc(1) or

lint(1) will refer to the line numbers in the original dot-m file rather than the C

source file.

- 60 -

Programmers Guide for the X Test Suite

12. Appendix E - mmkf utility

Usage

mmkf [-o <output-file>] [-s sections] [<input_file>]

The mmkf utility outputs a Makefile corresponding to the specified input file <input-

file>, which must be a dot-m file which has the format specified in the section entitled

"Source file syntax". The Makefile can build all the C source files that can be output by

mc from the input file <input-file>.

If no <input-file> is specified, the input is taken from standard input. Multiple

input files can be processed by the utility, but the overall syntax must still conform to that

defined in the section entitled "Source file syntax". A consequence of this is that you

cannot specify another title section for a different function and expect to output Makefiles

for more than one function simultaneously. Limited diagnostics are given if the file does

not have the required syntax. By default, the Makefile is written to the standard output

stream.

More details of the formats of the Makefiles produced by mmkf are given in the sub-

section entitled "Makefile" in the section entitled "Source file formats".

Options

-o output-file

This sends the output to the file <output-file> instead of the standard output

stream.

-s sections

This option enables output of certain optional sections of the Makefile. By default,

output of all these sections is enabled. There is no reason why you should need to

use this option with the current version of the X Test Suite.

The sections argument is a character string which may contain the key letters l,

L, m and p. If these characters are included, the specified sections of the Makefile

are then output.

Ke y Optional

letter section

l Targets for linked executable

L Targets for libraries

m Targets for linting and cleaning

p Targets for building known good image files

- 61 -

Programmers Guide for the X Test Suite

13. Appendix F - ma utility

Usage

ma [-a a_list] [-o <output-file>] [-h] [-s] [-p] [-m] [<input-file>]

The ma utility outputs a file containing a list of assertions in nroff(1) format (requiring no

macros other than those supplied in file maheader.mc). The assertions are specified in

the input file <input-file>, which must be a dot-m file which has the format

specified in the section entitled "Source file syntax".

If no <input-file> is specified, the input is taken from standard input. Multiple

input files can be processed by the utility, but the overall syntax must still conform to that

defined in the section entitled "Source file syntax". A consequence of this is that you

cannot specify another title section for a different function and expect to output assertions

for more than one function simultaneously. Limited diagnostics are given if the file does

not have the required syntax. By default, the assertion list is written to the standard output

stream.

More details of the format of the assertion list produced by ma are given in the sub-

section entitled "Formatting assertions" in the section entitled "Source file formats".

Options

-a a_list

This permits the specification of a list of assertions of the form

n1-m1,n2-m2,... to be output. Assertions will only be output corresponding

to the tests in the specified ranges.

-o output-file

This sends the output to the file <output-file> instead of the standard output

stream.

-h

The macros required for formatting the assertions are included at the start of the

output stream. These are copied from the file maheader.mc.

By default, the macros are not copied to the output stream.

-s

If this option is specified, and the -h option is specified, the line

.so head.t

will be output at the start of the output stream.

This option is not intended for general use - it was used when distributing

assertions in compact form for external review.

-p

The macros .NS and .NE will be output before and after each line in the dot-m file

which is a comment (commencing with >>#). By default, dot-m file comments are

not output. The macros .NS and .NE are defined in maheader.mc; they cause

the dot-m file comment lines to be printed in italic font by nroff(1).

This option is not intended for general use - it was used when reviewing assertions

before delivery.

- 62 -

Programmers Guide for the X Test Suite

-m

This option outputs assertions for the macro version of the function specified in the

title section of the dot-m file.

The macro name is set to the <macroname> argument of the >>SET macro

option - if there is no >>SET macro option in the file, or no argument specified, the

default is the function argument in the >>TITLE keyword, with the leading

letter ‘X’ removed.

CONTENTS

1. Introduction ... 1

2. Purpose of this guide ... 1

3. Contents of this guide ... 1

3.1 Typographical conventions used in this document 2

4. Source file syntax .. 3

4.1 Title section - >>TITLE ... 4

4.2 Make section - >>MAKE .. 5

4.3 Additional source files - >>CFILES .. 5

4.4 Extern section - >>EXTERN ... 6

4.5 Assertion section - >>ASSERTION .. 6

4.6 Strategy section - >>STRATEGY .. 8

4.7 Code section - >>CODE .. 9

4.8 Included section - >>INCLUDE .. 9

4.9 Included errors - .ER .. 11

4.10 Set options - >>SET ... 12

4.11 Comment lines - >># ... 13

5. Source file formats .. 14

5.1 C files for standalone executable - Test.c .. 14

5.2 C files for standalone executable in macro tests - MTest.c 20

5.3 C files for linked executable - link.c ... 20

5.4 C files for linked executable in macro tests - mlink.c 22

5.5 Makefile ... 22

5.6 Formatting assertions ... 28

6. Source file structure .. 30

6.1 Structure of the Xlib tests .. 30

6.2 Structure of the X Protocol tests .. 37

7. Source file libraries ... 43

7.1 The X Test Suite library ... 43

7.2 The X Protocol library ... 50

7.3 The X test fonts library .. 53

8. Appendix A - reason codes for extended assertions ... 54

9. Appendix B - commands for fonts and symbols in assertions 55

10. Appendix C - Included error assertions .. 56

11. Appendix D - mc utility .. 59

12. Appendix E - mmkf utility .. 61

13. Appendix F - ma utility ... 62

i

