Virtualization in Linux

Kirill Kolyshkin <kir@openvz.org>
September 1, 2006

Abstract

Three main virtualization approaches — emulation, paravirtualiza-
tion, and operating system-level virtualization — are covered, followed
by the implementation examples, comparison of the technologies and
their applications. OS-level virtualization is described in detail, with
examples from OpenVZ. The main kernel components (isolation and
virtualization, resource management, checkpointing and live migra-
tion) and user-level tools are also explained. Typical usage scenarios
of virtualization solutions are presented.

1 Virtualization. Types of virtualization.

In the context of this report, virtualization is a system or a method of dividing
computer resources into multiple isolated environments. It is possible to
distinguish four types of such virtualization: emulation, paravirtualization,
operating system-level virtualization, and multiserver (cluster) virtualization.
The last approach is out of scope of this report.

Each virtualization type has its pros and cons that condition its appro-
priate applications.

Emulation makes it possible to run any non-modified operating system
which supports the platform being emulated. Implementations in this cat-
egory range from pure emulators (like Bochs) to solutions which let some
code to be executed on the CPU natively, in order to increase performance.
The main disadvantages of emulation are low performance and low density.
Examples: VMware products, QFEmu, Bochs, Parallels.

Paravirtualization is a technique to run multiple modified OSs on top
of a thin layer called a hypervisor, or virtual machine monitor. Paravirtual-
ization has better performance compared to emulation, but the disadvantage
is that the “guest” OS needs to be modified. Examples: Xen, UML.



Operating system-level virtualization enables multiple isolated ex-
ecution environments within a single operating system kernel. It has the
best possible (i. e. close to native) performance and density, and features
dynamic resource management. On the other hand, this technology does not
allow to run different kernels from different OSs at the same time. Exam-
ples: FreeBSD Jail, Solaris Zones/Containers, Linuz-VServer, OpenVZ and
Virtuozzo.

2 Concept of a VE

Virtual Environment (VE, also known as VPS, container, partition etc.) is
an isolated program execution environment, which (from the point of view
of its owner) looks and feels like a separate physical server.

A VE has its own set of processes starting from init, file system, users
(including root), network interfaces with IP addresses, routing tables, fire-
wall rules (netfilter/iptables), etc.

Multiple VEs co-exist within a single physical server. Different VEs can
run different Linux distributions, but all VEs operate under the same kernel.

3 OpenVZ kernel

The OpenVZ kernel is a modified Linux kernel which adds the following
functionality: virtualization and isolation of various subsystems, resource
management, and checkpointing.

Virtualization and isolation enables many virtual environments within
a single kernel.

Resource management subsystem limits (and in some cases guaran-
tees) resources such as CPU, RAM, and disk space on a per-VE basis.

Checkpointing — a process of “freezing” a VE, saving its complete state
to a disk file, with the ability to “unfreeze” that state later.

These components are described below.

3.1 Virtualization and isolation

Each VE has its own set of resources provided by the operating system kernel.
Inside the kernel, those resources are either virtualized or isolated. Each VE
has its own set of objects, such as the ones described below.

Files — System libraries, applications, virtualized /proc and /sys, virtu-
alized locks, etc.



Users and groups — Each VE has its own root user, as well as other users
and groups.

Process tree — A VE sees only its own set of processes, starting from init.
PIDs are virtualized, so that the init PID is 1 as it should be.

Network — Virtual network device, which allows the VE to have its own
IP addresses, as well as a set of netfilter (iptables) and routing rules.

Devices — Some devices are virtualized. In addition, if there is a need,
any VE can be granted (an exclusive) access to real devices like network
interfaces, serial ports, disk partitions, etc.

IPC objects — Shared memory, semaphores, and messages.

3.2 Resource management

Resource management is of paramount importance for operating system-
level virtualization solutions, because there is a finite set of resources within
a single kernel that are shared among multiple Virtual Environments. All
those resources need to be controlled in a way that lets many VEs co-exist
on a single system, and not influence each other.

The OpenVZ resource management subsystem consists of three compo-
nents:

1. Two-level disk quota — The OpenVZ server administrator can set
up per-VE disk quotas in terms of disk space and number of inodes.
This is the first level of disk quota.

The second level of disk quota lets the VE administrator (VE root)
use standard UNIX quota tools to set up per-user and per-group disk
quotas.

2. “Fair” CPU scheduler — The OpenVZ CPU scheduler is also two-
level. On the first level it decides which VE to give the time slice to,
taking into account the VE’s CPU priority and limit settings. On the
second level, the standard Linux scheduler decides which process in the
VE to give the time slice to, using standard process priorities.

3. User Beancounters — This is a set of per-VE counters, limits, and
guarantees. There is a set of about 20 parameters which are carefully
chosen to cover all the aspects of VE operation, so no single VE can
abuse any resource which is limited for the whole computer and thus
cause harm to other VEs.

The resources accounted and controlled are mainly memory and various
in-kernel objects such as IPC shared memory segments, network buffers
etc.



3.3 Checkpointing and live migration

Checkpointing allows the “live” migration of a VE to another physical server.
The VE is “frozen” and its complete state is saved to a disk file. This file
can then be transferred to another machine and the VE can be “unfrozen”
(restored) there. The whole process takes a few seconds, and from the client’s
point of view it looks not like a downtime, but rather a delay in processing,
since the established network connections are also migrated.

4 OpenVZ utilities

4.1 wvzctl

OpenVZ comes with a vzctl utility, which implements a high-level command-
line interface to manage Virtual Environments. For example, to create and
start a new VE it takes just two commands — vzctl create and vzctl
start.

vzctl set command is used to change various VE parameters. Note that
all the resources (for example, VE virtual memory size) can be changed dur-
ing runtime. This is usually impossible with other virtualization technologies,
like emulation or paravirtualization.

4.2 Templates and vzpkg

Templates are existing images used to create a new VE. A template is a
set of packages, and a template cache is an archive (tarball) of a chrooted
environment with those packages installed. During the vzctl create stage,
this tarball is unpacked. Using a template cache technique, a new VE can
be created in seconds, thus enabling fast deployment scenarios.

Vzpkg tools is a set of tools to facilitate template cache creation. It
currently supports rpm and yum-based repositories. For example, to create a
template of Fedora Core 5 distribution, one needs to specify a set of (yum)
repositories which have FC5 packages, and a set of packages to be installed.
In addition, pre- and post-install scripts can be employed to further op-
timize/modify a template cache. All the above data (repositories, lists of
packages, scripts, GPG keys, etc.) form template metadata.

With template metadata, a template cache can be created automatically
by the vzpkgcache utility. It will download and install the listed packages
into a temporary VE, and pack the result as a template cache. Template
caches for non-RPM distributions can be created as well, although this is
more of a manual process.



5 Usage scenarios

The following usage scenarios are common for all virtualization technologies.
However, a unique feature of OS-level virtualization like OpenVZ is that
one does not have to pay a big virtualization overhead, which makes those
scenarios more appealing.

Server consolidation allows an organization to decrease the number of
physical servers, by moving their applications into virtual environments; the
number of operating system environments remains the same. This leads to
savings in hardware costs, rack space, electricity, and management efforts.

Security can be improved drastically by putting each network service
(like web server, mail server, etc.) into a separate isolated virtual environ-
ment. In the case of a security hole in one of the applications, all the others
are not affected. The ability to dynamically manage resources and perform
a live migration of applications is an added bonus.

Hosting — Apparently, OS-level virtualization is the only type of virtual-
ization which service providers can afford and use to sell cheap VEs to their
customers. Note that each VE has full root access, meaning the VE owner
can re-install anything, and even use such things as IP tables (firewall rules).

Software development and testing — Usually developers and testers
need access to a handful of Linux distributions, and they need to re-install
those from scratch very often. Using virtualization, developers can operate
multiple distributions using a single server, without any need to re-boot, with
native performance, and a new virtual environment can be created in just a
minute. Cloning a VE is also very simple.

Education — Each student can have a VE and can play with different
Linux distributions. A new VE can be (re)created in a minute.



	Virtualization. Types of virtualization.
	Concept of a VE
	OpenVZ kernel
	Virtualization and isolation
	Resource management
	Checkpointing and live migration

	OpenVZ utilities
	vzctl
	Templates and vzpkg

	Usage scenarios

