
DWARF Debugging Information Format

UNIX International
Programming Languages SIG
Revision: 1.1.0 (October 6, 1992)



Published by:

UNIX International
Waterview Corporate Center

20 Waterview Boulevard
Parsippany, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1 201-263-8400
Fax: +1 201-263-8401

International Offices:

UNIX International UNIX International UNIX International UNIX International
Asian/Pacific Office Australian Office European Office Pacific Basin Office
Shinei Bldg. 1F 22/74 - 76 Monarch St. 25, Avenue de Beaulieu Cintech II
Kameido Cremorne, NSW 2090 1160 Brussels 75 Science Park Drive
Koto-ku, Tokyo 136 Australia Belgium Singapore Science Park
Japan Singapore 0511

Singapore

Phone:(81) 3-3636-1122 Phone:(61) 2-953-7838 Phone:(32) 2-672-3700 Phone:(65) 776-0313
Fax: (81) 3-3636-1121 Fax: (61) 2 953-3542 Fax: (32) 2-672-4415 Fax: (65) 776-0421

Copyright 1992 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name UNIX

International not be used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. UNIX International makes no representations about the suitability of this
documentation for any purpose. It is provided "as is" without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS DOCUMENTATION.

NOTICE:

UNIX International is making this documentation available as a reference point for the industry. While
UNIX International believes that this specification is well defined in this second release of the document,
minor changes may be made prior to products meeting this specification being made available from UNIX

System Laboratories or UNIX International members.

Trademarks:

UNIX is a registered trademark of UNIX System Laboratories in the United States and other countries.



Programming Languages SIG

1.  INTRODUCTION

This document defines the format for the information generated by compilers, assemblers and
linkage editors that is necessary for symbolic, source-level debugging. The debugging
information format does not favor the design of any compiler or debugger. Instead, the goal is to
create a method of communicating an accurate picture of the source program to any debugger in
a form that is economically extensible to different languages while retaining backward
compatibility.

The design of the debugging information format is open-ended, allowing for the addition of new
debugging information to accommodate new languages or debugger capabilities while remaining
compatible with other languages or different debuggers.

1.1  Purpose and Scope

The debugging information format described in this document is designed to meet the symbolic,
source-level debugging needs of different languages in a unified fashion by requiring language
independent debugging information whenever possible. Individual needs, such as C++ virtual
functions or Fortran common blocks are accommodated by creating attributes that are used only
for those languages. We believe that this document sufficiently covers the debugging
information needs of C, C++ and FORTRAN 77.

This document describes DWARF Version 1, which is designed to be binary compatible with the
debugging information that is described in the documentDWARF Debugging Information
Requirements - Issue 2, dated April 4, 1990, and made available by AT&T to its source licensees.
The April 4, 1990, document describes the debugging information that is generated by the UNIX

System V Release 4 C compiler and consumed by the System V Release 4 debugger,sdb .

By ‘‘binary compatibility’’ we mean that

1. All features intended to support C and Fortran described in the April 4, 1990, document are
included in this document, and

2. DWARF produced according to this (DWARF Version 1) specification should be
considered well formed by a System V Release 4 compatible DWARF consumer, but may
contain information that such a consumer is unable to interpret. Consumers are expected
to ignore such information.

The intended audience for this document are the developers of both producers and consumers of
debugging information, typically language compilers, debuggers and other tools that need to
interpret a binary program in terms of its original source.

1.2  Overview

There are two major pieces to the description of the DWARF format in this document. The first
piece is the debugging information, itself. Section two describes the overall structure of that
information. Section three describes the specific debugging information entries and how they
communicate the necessary information about the source program to a debugger.

The second piece of the DWARF description is the way the debugging information is encoded
and represented in an object file. The DWARF encoding is presented in section four.

Section five describes the future directions of the DWARF specification.

In the following sections, text in normal font describes required aspects of the DWARF format.
Text in italics is explanatory or supplementary material, and not part of the format definition

Revision: 1.1.0 Page 1 October 6, 1992



DWARF Debugging Information Format

itself.

1.3  Vendor Extensibility

This document describes only the features of DWARF that have been implemented and tested by
at least one vendor (with a very few exceptions). It does not attempt to cover all languages or
even to cover all of the interesting debugging information needs for its primary target languages
(C, C++, Fortran). Therefore the document provides vendors a way to define their own
debugging information tags, attributes, fundamental types, type modifiers, location atoms and
language names, by reserving a portion of the name space and valid values for these constructs
for vendor specific additions. Future versions of this document will not use names or values
reserved for vendor specific additions. All names and values not reserved for vendor additions,
however, are reserved for future versions of this document. See section 4 for details.

Revision: 1.1.0 Page 2 October 6, 1992



Programming Languages SIG

2.  GENERAL DESCRIPTION

2.1  The Debugging Information Entry

DWARF uses a series of debugging information entries to define a low-level representation of a
source program. Each debugging information entry consists of an identifying tag followed by a
series of attributes. The tag specifies the class to which an entry belongs, and the attributes define
the specific characteristics of the entry.

The set of required tag names is listed in Figure 1. The debugging information entries they
identify are described in section 3.

The debugging information entries in DWARF Version 1 are intended to exist in the.debug
section of an object file.

TAG_array_type TAG_class_type
TAG_common_block TAG_common_inclusion
TAG_compile_unit TAG_entry_point
TAG_enumeration_type TAG_formal_parameter
TAG_global_subroutine TAG_global_variable
TAG_inheritance TAG_inlined_subroutine
TAG_label TAG_lexical_block
TAG_local_variable TAG_member
TAG_module TAG_padding
TAG_pointer_type TAG_ptr_to_member_type
TAG_reference_type TAG_set_type
TAG_source_file TAG_string_type
TAG_structure_type TAG_subrange_type
TAG_subroutine TAG_subroutine_type
TAG_typedef TAG_union_type
TAG_unspecified_parameters TAG_variant
TAG_with_stmt

Figure 1. Tag names

2.2  Attribute Types

Each attribute consists of a name/value pair. The set of attribute names is listed in Figure 2.

An attribute value can have any one of the following forms:

address Refers to some location in the address space of the described program.

reference Refers to some member of the set of debugging information entries that
describe the program.

constant Two, four or eight bytes of uninterpreted data.

block An arbitrary number of uninterpreted bytes of data.

string A null-terminated sequence of zero or more (non-null) bytes. Data in this
form are generally printable strings.

There are no limitations on the ordering of attributes within a debugging information entry, but to
prevent ambiguity, no more than one attribute with a given name may appear in any debugging
information entry.

Revision: 1.1.0 Page 3 October 6, 1992



DWARF Debugging Information Format

AT_bit_offset AT_bit_size
AT_byte_size AT_common_reference
AT_comp_dir AT_const_value
AT_containing_type AT_default_value
AT_discr AT_discr_value
AT_element_list AT_friends
AT_fund_type AT_high_pc
AT_inline AT_is_optional
AT_language AT_location
AT_low_pc AT_lower_bound
AT_member AT_mod_fund_type
AT_mod_u_d_type AT_name
AT_ordering AT_private
AT_producer AT_program
AT_protected AT_prototyped
AT_public AT_pure_virtual
AT_return_addr AT_sibling
AT_specification AT_start_scope
AT_stride_size AT_string_length
AT_stmt_list AT_subscr_data
AT_upper_bound AT_user_def_type
AT_virtual

Figure 2. Attribute names

2.3  Relationship of Debugging Information Entries

A variety of needs can be met by permitting a single debugging information entry to ‘‘own’’ an
arbitrary number of other debugging entries and by permitting the same debugging information
entry to be one of many owned by another debugging information entry. This makes it possible
to describe, for example, the static block structure within a source file, show the members of a
structure, union, or class, and associate declarations with source files or source files with shared
objects.

The ownership of debugging information entries is represented by the physical ordering of the
debugging information entries and the use of anAT_sibling attribute. The value of the
sibling attribute of a debugging information entry is a reference to another debugging
information entry. The referenced entry may be a null entry, which indicates the end of the
sibling chain. All debugging information entries, except the special entry whose tag is
TAG_padding, are required to have a sibling attribute. A debugging information entry is
owned by its physical predecessor unless the same debugging information entry is referred to by
the sibling attribute of that physical predecessor. If a debugging information entry is owned by
its physical predecessor, it may be thought of as the ‘‘first child’’ of its predecessor. The owner
of a debugging information entry is called its ‘‘parent.’’ Subsequent ‘‘children’’ of a debugging
information entry derive from the first child as a chain of siblings.

Conceptually, the debugging information entries form a graph whose nodes are declarations and
whose arcs either point to the next declaration owned by the same parent (sibling) or the first
declaration owned by that declaration (first child). The ordering of the entries is like a traversal
of the graph that always traverses the first child arc of each node before the sibling arc.

Revision: 1.1.0 Page 4 October 6, 1992



Programming Languages SIG

2.4  Location Information

The debugging information is required to provide a description of how to find the value of
program variables and how to determine other run-time values, such as the bounds of dynamic
arrays and strings.

Information on the location of program objects can be provided in a language independent
fashion by creating descriptions of arbitrary complexity from a few basic building blocks, or
atoms. Such descriptions are called ‘‘location descriptions’’ and form the values of
AT_location attributes. This section describes the location atoms currently defined, how
they fit together to make location descriptions, and how those descriptions are stored in the
debugging information entries.

2.4.1  Location Atoms

Some of the location atoms described in this subsection can act as complete location descriptions
or as parts of larger location descriptions. The remaining location atoms are operators on
intermediate values and can only be used as part of a larger location description. Together, they
describe a simple stack machine with postfix operations. The value on the top of the stack after
‘‘executing’’ the location description is taken to be the result (the address of the object, or the
value of the array bound).

There are seven forms of location atoms:

1. A ‘‘reg(number)’’ atom indicates that the object is in the register specified by the
(number).

2. A ‘‘basereg(number)’’ atom indicates that the value in the register specified by the
(number) is an address to be pushed onto the stack.

3. An ‘‘addr(address)’’ atom indicates that the (address) is a relocated or relocatable address
to be pushed.

4. A ‘‘const(number)’’ atom indicates that the (number) is a signed constant (unaffected by
linkage editing) to be pushed.

5. A ‘‘deref2’’ atom acts as a directive to pop the stack, treat the value as an address, and
push the (sign-extended, 4-byte) result of fetching two bytes from that address.

6. A ‘‘deref’’ atom acts as a directive to pop the stack, treat the value as an address, and push
the data retrieved from that address. The size of the data retrieved is equivalent to the size
of an address on the target machine.

7. An ‘‘add’’ atom acts as a directive to pop the top two values from the stack and push their
sum.

The full list of required location atom names is given in Figure 31.

________________

1. The atom nameOP_DEREF4is reserved and is recognized as a synonym forOP_DEREF.

Revision: 1.1.0 Page 5 October 6, 1992



DWARF Debugging Information Format

OP_ADD
OP_ADDR
OP_BASEREG
OP_CONST
OP_DEREF
OP_DEREF2
OP_DEREF4
OP_REG

Figure 3. Location atoms

2.4.2  Descriptions

A location description is one location atom or an ordered list of atoms. The complexity of the
description is determined by the number of atoms in the ordered list. If location descriptions are
formed from more than one location atom, those atoms are ordered as if the atoms were operators
in a postfix expression. A location description containing no atoms indicates an object existing
in the source code that does not exist in the executable program (possibly because of
optimization).

The expression represented by a location description, if evaluated, generates the runtime
address of the value of a symbol except where the reg(number) atom is used. Expressions
referring to members of structures or unions expect the base address of the structure-typed
object to be on the stack before beingexecuted.

Here are some examples of how location atoms are used to form location descriptions:

OP_REG(3)
The value is in register 3.

OP_ADDR(0x80d0045c)
The value of a static variable is
at machine address 0x80d0045c.

OP_BASEREG(FP) OP_CONST(44) OP_ADD
Add 44 to the value in the FP
register to get the address of an
automatic variable instance.

OP_BASEREG(AP) OP_CONST(32) OP_ADDOP_DEREF
A call-by-reference parameter
whose address is in the
word 32 bytes from where the AP
register points.

OP_CONST(4) OP_ADD
A structure member is four bytes
from the start of the structure
instance. The base address is
assumed to be already on the stack.

The use of ‘‘FP’’ and ‘‘AP’’ in the preceding examples is meant to indicate the frame pointer

Revision: 1.1.0 Page 6 October 6, 1992



Programming Languages SIG

and argument pointer registers.

2.5  Type Attributes

Program variables and other debugging information entries have attributes that describe the type
of the entry (as defined by the source language). There are four type attributes: fundamental
types, user-defined types, modified fundamental types and modified user-defined types.

2.5.1  Fundamental Types

A fundamental type is a data type that is not defined in terms of other data types. Each
programming language has a set of fundamental types that are considered to be built into that
language.

A fundamental type is represented in the debugging information as anAT_fund_type attribute
whose value is a constant. The value corresponds to one member of the set of fundamental types
whose names are enumerated in Figure 4.

FT_boolean FT_char
FT_complex FT_dbl_prec_complex
FT_dbl_prec_float FT_ext_prec_complex
FT_ext_prec_float FT_float
FT_integer FT_label
FT_long FT_pointer
FT_short FT_signed_char
FT_signed_integer FT_signed_long
FT_signed_short FT_unsigned_char
FT_unsigned_integer FT_unsigned_long
FT_unsigned_short FT_void

Figure 4. Fundamental types

The typeFT_pointer may be used to describe the C type ‘‘void *’’. It is a more compact
representation than a modified fundamental type (see below).

The typeFT_label is used to describe Fortran ‘‘alternate return’’ parameters.

2.5.2  User-Defined Type Attributes

In addition to the types that are built into a language, the user may define new data types. Some
of the user-defined data types are described in their own debugging information entries. These
types include structures, unions, arrays, classes and enumeration types.

There is anAT_user_def_type attribute whose value is a reference to the debugging
information entry for a user-defined type.

2.5.3  Modified Types

There are user defined types that can be described by applying a small set of modifiers to other
types. One or more modifiers may be applied to either fundamental types or user-defined types in
the same fashion. There are modifiers that have the meanings ‘‘pointer to,’’ ‘‘reference to,’’
‘‘const’’ and ‘‘volatile.’’

The ‘‘pointer to’’ modifier means that the value is the address of the data of the type modified.
The ‘‘reference to’’ modifier means that the value is a C++ reference to data of the type
modified. The ‘‘const’’ modifier means that the variable has been qualified by the ANSI C or

Revision: 1.1.0 Page 7 October 6, 1992



DWARF Debugging Information Format

C++ qualifier const . The ‘‘volatile’’ modifier means that the variable has been qualified by
the ANSI C qualifiervolatile .

The full set of type modifier names are listed in figure 5.

MOD_const
MOD_pointer_to
MOD_reference_to
MOD_volatile

Figure 5. Type modifiers

Modifiers are applied by prefixing a fundamental type value or a user-defined type reference with
one or more modifiers. The modifiers appear as if part of a right-associative expression involving
the fundamental or user-defined type. When one or more modifiers are applied to a fundamental
type, the modifiers and the fundamental type value are stored in a block of contiguous bytes that
are the value of theAT_mod_fund_type attribute. When one or more modifiers are applied
to a user-defined type, the modifiers and the user-defined type reference are stored in a block of
contiguous bytes that are the value of theAT_mod_u_d_type attribute.

As examples of how type modifiers are ordered, take the following C declarations:

const char * volatile p;
which represents a volatile pointer to a constant character.
This is encoded in DWARF as:
MOD_volatile MOD_pointer_to MOD_const FT_char

volatile char * const p;
on the other hand, represents a constant pointer
to a volatile character.
This is encoded as:
MOD_const MOD_pointer_to MOD_volatile FT_char

2.5.4  Accessibility Attributes

Some languages, notably C++ and Ada, have the concept of the accessibility of an object or of
some other program entity. The accessibility specifies which classes of other program objects
are permitted access to the object in question.

There are threeaccessibilityattributes currently defined:AT_private , AT_protected and
AT_public . The value of each of these attributes is a string containing only the terminating
null byte. The presence alone of the attribute indicates theaccessibility of the containing
debugging entry.

Revision: 1.1.0 Page 8 October 6, 1992



Programming Languages SIG

3.  DEBUGGING INFORMATION ENTRIES

This section describes the debugging information entries currently defined and the attributes they
contain.

3.1  Compilation Unit Entries

An object file may be derived from one or more compilation units. Each such compilation unit
will be described by a debugging information entry with the tagTAG_compile_unit .2

A compilation unit typically represents the text and data contributed to an executable by a single
relocatable object file. It may be derived from several source files, including pre-processed
‘‘include files.’’

The compilation unit entry may have the following attributes:

1. A sibling attribute whose value is a reference to the debugging information entry loaded
immediately after the last debugging information entry for that compilation unit.

There may not actually be a debugging information entry at the indicated offset. If that
offset is greater than or equal to the size of the.debug section, then that offset is beyond
the last valid debugging information entry.

As mentioned in section 2.3, all debugging information entries except entries with the
special tag TAG_padding have sibling attributes. The descriptions of other debugging
information entries will not mention this attribute explicitly.

2. An AT_low_pc attribute whose value is the relocated address of the first machine
instruction generated for that compilation unit.

3. An AT_high_pc attribute whose value is the relocated address of the first location past
the last machine instruction generated for that compilation unit.

The address may be beyond the last valid instruction in the executable, of course, for this
and other similar attributes.

4. An AT_name attribute whose value is a null-terminated string containing the full or
relative path name of the primary source file from which the compilation unit was derived.

5. An AT_language attribute whose constant value is a code indicating the source
language of the compilation unit. The set of language names and their meanings are given
in Figure 6.

6. An AT_stmt_list attribute whose value is a reference to a table of line number
information.

This table currently exists in a separate object file section from the debugging information
entries themselves. The value of the statement list attribute is the offset in the.line
section of the first byte of the table for that compilation unit. See section 3.11.

7. An AT_comp_dir attribute whose value is a null-terminated string containing the current
working directory of the compilation command that produced this compilation unit in

________________

2. The tag nameTAG_source_file is reserved and is recognized as a synonym forTAG_compile_unit .

Revision: 1.1.0 Page 9 October 6, 1992



DWARF Debugging Information Format

LANG_ADA83 ADA
LANG_C Non-ANSI C, such as K&R
LANG_C89 ISO/ANSI C
LANG_C_PLUS_PLUS C++
LANG_COBOL74 ANSI COBOL-74
LANG_COBOL85 ANSI COBOL-85
LANG_FORTRAN77 FORTRAN77
LANG_FORTRAN90 Fortran90
LANG_MODULA2 Modula2
LANG_PASCAL83 ISO/ANSI Pascal

Figure 6. Language names

whatever form makes sense for the host system.

The suggested form for the value of theAT_comp_dir attribute on UNIX systems is
‘‘hostname: pathname’’. If no hostname is available, the suggested form is ‘‘: pathname’’.

8. An AT_producer attribute whose value is a null-terminated string containing
information about the compiler that produced the compilation unit. The actual contents of
the string will be specific to each producer, but should begin with the name of the compiler
vendor or some other identifying character sequence that should avoid confusion with
other producer values.

A compilation unit entry owns debugging information entries that represent the declarations
made in the corresponding compilation unit.

3.2  Modules

Several languages have the concept of a ‘‘module.’’ A module is represented by a debugging
information entry with the tagTAG_module . Module entries may own other debugging
information entries describing program entities whose declaration scopes end at the end of the
module itself.

If the module has a name, the module entry has a name attribute whose value is a null-terminated
string containing the module name as it appears in the source program.

If the module contains initialization code, the module entry has a low pc attribute whose value is
the relocated address of the first machine instruction generated for that initialization code. It also
has a high pc attribute whose value is the relocated address of the first location past the last
machine instruction generated for the initialization code.

3.3  Subroutine and Entry Point Entries

The following tags exist to describe debugging information entries for subroutines and entry
points:

TAG_global_subroutine A global subroutine or function.

TAG_subroutine A file static subroutine or function.

TAG_inlined_subroutine A particular inlined instance of a subroutine or function.

TAG_entry_point A Fortran entry point.

Revision: 1.1.0 Page 10 October 6, 1992



Programming Languages SIG

3.3.1  General Subroutine and Entry Point Information

The subroutine or entry point entry has a name attribute whose value is a null-terminated string
containing the subroutine or entry point name as it appears in the source program.

Note that since the names of subroutines (and other program objects described by DWARF) are
the names as they appear in the source program, implementations of language translators that
use some form of mangled name (as do many implementations of C++) should use the
unmangled form of the name in the DWARFAT_name attribute, including thekeyword
operator , if present. Sequences of multiple whitespace characters may be compressed.

The subroutine entry for a member function definition for a member function defined outside of a
class, structure or union body has anAT_member attribute whose value is a reference to a type
definition of the class or structure.

Additional attributes for member functions are described in section 3.8.4.3.

The presence of the member attribute implies that the subroutine is a member of the type
specified by the member attribute. The member attribute makes C++ identifier resolution
through member functions possible.

If the semantics of the language of the compilation unit containing the subroutine entry
distinguishes between ordinary subroutines and subroutines that can serve as the ‘‘main
program,’’ that is, subroutines that cannot be called directly following the ordinary calling
conventions, then the debugging information entry for such a subroutine may have an
AT_program attribute, whose value is a string consisting of only the terminating null byte. The
presence alone of this attribute marks the subroutine entry as a main program.

The program attribute is intended to support Fortran main programs. It is not intended as a way
of finding the entry address for the program.

3.3.2  Subroutine and Entry Point Return Types

If the subroutine or entry point is a function that returns a value, then its debugging information
entry has one of the four type attributes (fundamental type, modified fundamental type, user-
defined type or modified user-defined type) described in section 2.5, to denote the type returned
by that function.

Debugging information entries for Cvoid functions should not have an attribute for the return
type.

In ANSI-C there is a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have an
AT_prototyped attribute, whose value is a string consisting of only the terminating null byte.
The presence alone of this attribute marks the subroutine entry as prototyped.

3.3.3  Subroutine and Entry Point Locations

A subroutine entry has a low pc attribute whose value is the relocated address of the first
machine instruction generated for the subroutine. It also has a high pc attribute whose value is
the relocated address of the first location past the last machine instruction generated for the
subroutine.

Revision: 1.1.0 Page 11 October 6, 1992



DWARF Debugging Information Format

Note that for the low and high pc attributes to have meaning, DWARF makes the assumption that
the code for a single subroutine is allocated in a single contiguous block of memory.

An entry point has a low pc attribute whose value is the relocated address of the first machine
instruction generated for the entry point.

3.3.4  Declarations Owned by Subroutines and Entry Points

The declarations enclosed by a subroutine or entry point are represented by debugging
information entries that are owned by the subroutine or entry point entry. Entries representing
the formal parameters of the subroutine or entry point appear in the same order as the
corresponding declarations in the source program.

There is no ordering requirement on entries for declarations that are children of subroutine or
entry point entries but that do not represent formal parameters. The formal parameter entries
may be interspersed with other entries used by formal parameter entries, such as type entries.

The unspecified parameters of a variable parameter list are represented by a debugging
information entry with the tagTAG_unspecified_parameters .

The entry for a subroutine or entry point that includes a Fortran common block has a child entry
with the tag TAG_common_inclusion . The common inclusion entry has an
AT_common_reference attribute whose value is a reference to the debugging entry for the
common block being included (see section 3.7).

3.3.5  Low-Level Information

A subroutine or entry point entry may have anAT_return_addr attribute, whose value is a
location description. The location calculated is the place where the return address for the
subroutine or entry point is stored.

3.3.6  Inlined Subroutines

The representation of inlined subroutines has two pieces, the original declaration of the
subroutine and each inlined instance. The declaration or ‘‘out of line’’ instance of the
subroutine, if one has been generated, is represented by a subroutine or global subroutine
debugging information entry. It does not describe any one particular call site for that subroutine.
Such entries have anAT_inline attribute, whose value is a string consisting of only the
terminating null byte. The presence alone of this attribute marks the subroutine entry as inlined.
If no out of line instance has been generated for the subroutine, then the subroutine entry will
have no low or high pc attributes.

Note that if such a subroutine entry describing only the abstract declaration of an inlined
subroutine has children describing the parameters to the subroutine, those children will not have
location descriptions.

Each inlined instance of such a subroutine will have a debugging entry with the tag
TAG_inlined_subroutine . This entry has anAT_specification attribute whose
value is a reference to the debugging entry representing the declaration or out of line instance of
the subroutine. Each inlined subroutine entry owns its own copies of entries describing the
parameters to that subroutine, its local variables and declarations for named types.

3.4  Lexical Block Entries

A lexical block is a bracketed sequence of source statements that may contain any number of
declarations. In some languages (C and C++) blocks can be nested within other blocks to any

Revision: 1.1.0 Page 12 October 6, 1992



Programming Languages SIG

depth.

A lexical block is represented by a debugging information entry with the tag
TAG_lexical_block .

The lexical block entry has a low pc attribute whose value is the relocated address of the first
machine instruction generated for the lexical block. The lexical block entry also has a high pc
attribute whose value is the relocated address of the first location past the last machine
instruction generated for the lexical block.

If a name has been given to the lexical block in the source program, then the corresponding
lexical block entry has a name attribute whose value is a null-terminated string containing the
name of the lexical block as it appears in the source program.

This is not the same as a C or C++ label (see below).

The lexical block entry owns debugging information entries that describe the declarations within
that lexical block. There is one such debugging information entry for each local declaration of
an identifier or inner lexical block.

3.5  Label Entries

A label is a way of identifying a source statement. A labeled statement is usually the target of
one or more ‘‘go to’’ statements.

A label is represented by a debugging information entry with the tagTAG_label . The entry for
a label should be owned by the debugging information entry representing the scope within which
the name of the label could be legally referenced within the source program.

The label entry has a low pc attribute whose value is the relocated address of the first machine
instruction generated for the first executable statement immediately following the label in the
source program. The label entry also has a name attribute whose value is a null-terminated string
containing the name of the label as it appears in the source program.

3.6  Program Variable Entries

Global variables, formal parameters and local variables are represented by debugging
information entries with the tagsTAG_global_variable , TAG_formal_parameter
andTAG_local_variable , respectively.

The local variable tag is also used for file static variables in C and C++.

The debugging information entry for a program variable may have the following attributes:

1. A name attribute whose value is a null-terminated string containing the variable name as it
appears in the source program.

2. An AT_location attribute, whose value describes the location of the variable.

If no location attribute is present, or if the location attribute is present but describes a null
entry (as described in section 2.4), the variable is assumed to exist in the source code but
not in the executable program (but see number 7, below).

3. One of the four type attributes (fundamental type, modified fundamental type, user-defined
type or modified user defined type).

4. If the variable entry represents the defining declaration for a C++ static data member of a
structure class or union, the entry has anAT_member attribute, whose value is a reference

Revision: 1.1.0 Page 13 October 6, 1992



DWARF Debugging Information Format

to the structure, class or union type of which this object is a member.

5. If the variable represents a Fortran optional parameter, it has anAT_is_optional
attribute, whose value is a string consisting of only the terminating null byte. The presence
alone of this attribute marks the parameter as optional.

6. A formal parameter entry describing a formal parameter that has a default value may have
an AT_default_value attribute. The value of this attribute may be the address of a
function within the program which, when called with no actual arguments, yields a value
representing the default value of the parameter and whose type is the same as that of the
parameter. Alternatively, the value of this attribute may be a string or any of the constant
data or data block forms, in which case the value represents the actual constant default
value of the parameter as represented on the target architecture.

7. A variable entry describing a variable whose value is constant and not represented by an
object in the address space of the program does not have a location attribute. Such an
entry has anAT_const_value attribute, whose value may be a string or any of the
constant data or data block forms, as appropriate for the representation of the variable’s
value. The value of this attribute is the actual constant value of the variable, represented
as it would be on the target architecture.

8. If the scope of the variable begins sometime after the low pc value for the scope most
closely enclosing the variable, the variable may have anAT_start_scope attribute.
The value of this attribute is the offset of the beginning of the scope for the variable from
the low pc value of the debugging information entry that defines its scope.

The scope of a variable may begin somewhere in the middle of a lexical block in a
language that allows executable code in a block before a variable declaration, or where
one declaration containing initialization code may change the scope of a subsequent
declaration. For example, in the following C code:

float x = 99.99;

int myfunc()
{

float f = x;
float x = 88.99;

return 0;
}

ANSI-C scoping rules require that the value of the variablex assigned to the variablef
in the initialization sequence is the value of the global variablex , rather than the local
x , because the scope of the local variablex only starts after the full declarator for the
local x .

3.7  Common Block Entries

A Fortran common block may be described by a debugging information entry with the tag
TAG_common_block . The common block entry has a name attribute whose value is a null-
terminated string containing the common block name as it appears in the source program. It also
has anAT_location attribute whose value describes the location of the beginning of the
common block. The common block entry owns debugging information entries describing the

Revision: 1.1.0 Page 14 October 6, 1992



Programming Languages SIG

variables contained within the common block.

3.8  User-Defined Type Entries

There are several debugging information entry types that describe user-defined data types,
including typedefs, pointers, references, arrays, structures, unions, classes, enumerations,
subroutines, strings, sets and subranges.

If the scope of the declaration of a named type begins sometime after the low pc value for the
scope most closely enclosing the declaration, the declaration may have anAT_start_scope
attribute. The value of this attribute is the offset of the beginning of the scope for the declaration
from the low pc value of the debugging information entry that defines its scope.

3.8.1  Typedef Entries

Any arbitrary type named via a typedef is represented by a debugging information entry with the
tag TAG_typedef . The typedef entry has a name attribute whose value is a null-terminated
string containing the name of the typedef as it appears in the source program. The typedef entry
also contains one of the four type attributes (fundamental type, user defined type, modified
fundamental type, or modified user defined type).

3.8.2  Pointer and Reference Type Entries

Several languages share the concept of a ‘‘pointer,’’ which is an object whose value is the
address of another object. A pointer can also be ‘‘null,’’ which means that it does not refer to
any entity. In addition to the pointer, C++ supports the concept of a ‘‘reference.’’ A reference
is a fixed pointer to another object. It may be thought of as an alternate name for the object with
which it has been initialized or as a pointer that is automatically de-referenced.

A pointer type may be represented by a debugging information entry with the tag
TAG_pointer_type . A reference type may be represented by a debugging information entry
with the tagTAG_reference_type .

If a name has been given to the pointer or reference type in the source program, then the
corresponding pointer type entry or reference type entry has a name attribute whose value is a
null-terminated string containing the pointer type name or reference type name as it appears in
the source program.

The pointer type entry or reference type entry has a fundamental type attribute, a modified
fundamental type attribute, a user-defined type attribute, or a modified user defined type attribute
to denote the type pointed to or referenced.

3.8.3  Array Type Entries

Many languages share the concept of an ‘‘array,’’ which is a table of components of identical
type.

An array type is represented by a debugging information entry with the tagTAG_array_type .

If a name has been given to the array type in the source program, then the corresponding array
type entry has a name attribute whose value is a null-terminated string containing the array type
name as it appears in the source program.

The array type entry describing a multidimensional array may have anAT_ordering attribute
whose constant value is interpreted to mean either row-major or column-major ordering of array
elements. The required attribute names are listed in Figure 7. If no ordering attribute is present,

Revision: 1.1.0 Page 15 October 6, 1992



DWARF Debugging Information Format

the default ordering for the source language (which is indicated by theAT_language attribute
of the enclosing compilation unit entry) is assumed.

ORD_col_major
ORD_row_major

Figure 7. Array ordering

The ordering attribute may optionally appear on one-dimensional arrays; it will be ignored.

The array subscripts and the data type of the elements of the array are described by a subscript
data attribute (AT_subscr_data ) whose value is stored in a block of contiguous bytes. The
subscript data attribute consists of a list of data items. There is a data item describing each array
dimension and an item describing the element type. The data items describing the array
dimensions are ordered to reflect the appearance of the dimensions in the source program (i.e.
leftmost dimension first, next to leftmost dimension second, and so on). The last data item in the
subscript data attribute is the description of the element type.

Each data item describing an array dimension consists of four parts, ordered as follows:

1. A format specifier describing the information that follows.

2. The type of the subscript index. This may be either a fundamental type value or a user-
defined type reference. In either case, there is no attribute tag, but the value has the same
form as a fundamental type or user-defined type reference when used as an attribute value.

3. Information describing the low bound of the array dimension. This may be either a signed
constant or a location description. The location description is contained in a block of
contiguous bytes; its generated value is the address of the lowest numbered element of this
array dimension calculated during the execution of a program using that array. An
unspecified lower bound is represented by a block of contiguous bytes with a length of
zero. As with the subscript types, neither the constant nor the location description has a
preceding attribute tag, but each follows the form for constant or location description
attribute values.

4. Information describing the high bound of the array dimension. Again, this may either be a
signed constant or a location description. An unspecified upper bound is represented by a
block of contiguous bytes with a length of zero.

The data item for the element type is constructed from a format specifier followed by either a
fundamental type attribute, a modified fundamental type attribute, a user-defined type attribute or
a modified user defined type attribute.

The format specifier determines how the pieces of the data items should be interpreted and
replaces the need for specific attribute tags to describe subscript index types and upper and lower
dimension bounds. The nine possible values of the format specifier byte have the following

Revision: 1.1.0 Page 16 October 6, 1992



Programming Languages SIG

names and meanings:

FMT_FT_C_C A fundamental type followed by a constant followed by a constant.

FMT_FT_C_X A fundamental type followed by a constant followed by a location
description.

FMT_FT_X_C A fundamental type followed by a location description followed by a
constant.

FMT_FT_X_X A fundamental type followed by a location description followed by a
location description.

FMT_UT_C_C A user-defined type reference followed by a constant followed by a constant.

FMT_UT_C_X A user-defined type reference followed by a constant followed by a location
description.

FMT_UT_X_C A user-defined type reference followed by a location description followed by
a constant.

FMT_UT_X_X A user-defined type reference followed by a location description followed by
a location description.

FMT_ET A type attribute for the element type.

Note that the order of components of a subscript data item is fixed and independent of the value
of its format specifier.

If the amount of storage allocated to hold each element of an object of the given array type is
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the array type entry has anAT_stride_size attribute, whose
constant value represents the size in bits of each element of the array.

If the size of the entire array can be determined statically at compile time, the array type entry
may have anAT_byte_size attribute, whose constant value represents the total size in bytes
of an instance of the array type.

Note that if the size of the array can be determined statically at compile time, this value can
usually be computed by multiplying the number of array elements by the size of each element.

In languages, such as ANSI-C, in which there is no concept of a ‘‘multidimensional array,’’ an
array of arrays may be represented by a debugging information entry for a multidimensional
array.

3.8.4  Structure, Union, and Class Type Entries

The languages C, C++, and Pascal, among others, allow the programmer to define types that are
collections of related components. In C and C++, these collections are called ‘‘structures.’’ In
Pascal, they are called ‘‘records.’’ The components may be of different types. The components
are called ‘‘members’’ in C and C++, and ‘‘fields’’ in Pascal.

The components of these collections each exist in their own space in computer memory. The
components of a C or C++ ‘‘union’’ all coexist in the same memory.

Pascal and other languages have a ‘‘discriminated union,’’ also called a ‘‘variant record.’’
Here, selection of a number of alternative substructures (‘‘variants’’) is based on the value of a
component that is not part of any of those substructures (the ‘‘discriminant’’).

Revision: 1.1.0 Page 17 October 6, 1992



DWARF Debugging Information Format

Among the languages discussed in this document, the ‘‘class’’ concept is unique to C++. A class
is similar to a structure. A C++ class or structure may have ‘‘member functions’’ which are
subroutines that are within the scope of a class or structure.

3.8.4.1  General Structure Description

Structure, union, and class types are represented by debugging information entries with the tags
TAG_structure_type , TAG_union_type and TAG_class_type , respectively. If a
name has been given to the structure, union, or class in the source program, then the
corresponding structure type, union type, or class type entry has a name attribute whose value is
a null-terminated string containing the type name as it appears in the source program.

If the size of an instance of the structure type, union type, or class type entry can be determined
statically at compile time, the entry has a byte size attribute whose constant value is the number
of bytes required to hold an instance of the structure, union, or class, and any padding bytes.

For C and C++, a structure, union or class entry that does not have a byte size attribute
represents the declaration of an incomplete structure, union or class type.

The members of a structure, union, or class are represented by debugging information entries that
are owned by the corresponding structure type, union type, or class type entry and appear in the
same order as the corresponding declarations in the source program.

Data member declarations occurring within the declaration of a structure, union or class type
are considered to be ‘‘definitions’’ of those members, with the exception of C++ ‘‘static’’ data
members, whose definitions appear outside of the declaration of the enclosing structure, union or
class type. Function member declarations appearing within a structure, union or class type
declaration are definitions only if the body of the function also appears within the type
declaration.

If the definition for a given member of the structure, union or class does not appear within the
body of the declaration, that member also has a debugging information entry describing its
definition. That entry will have anAT_member attribute referencing the structure, union or
class declaration containing the given member. The debugging entry owned by the body of the
structure, union or class debugging entry and representing a non-defining declaration of the data
or function member will not have information about the location of that member (low and high pc
attributes for function members, location descriptions for data members).

3.8.4.1.1  Derived Classes and Structures

The class type or structure type entry that describes a derived class or structure owns debugging
information entries describing each of the classes or structures it is derived from, ordered as they
were in the source program. Each such entry has the tagTAG_inheritance .

An inheritance entry has a user-defined type attribute whose value is a reference to the
debugging information entry describing the structure or class from which the parent structure or
class of the inheritance entry is derived. It also has a location attribute describing the location of
the beginning of the data members contributed to the entire class by this subobject relative to the
beginning address of the data members of the entire class.

An inheritance entry may have one of the threeaccessibility attributes (AT_public ,
AT_private or AT_protected ). If no accessibilityattribute is present,AT_private is
assumed. If the structure or class referenced by the inheritance entry serves as a virtual base
class, the inheritance entry has anAT_virtual attribute, whose value is a string consisting

Revision: 1.1.0 Page 18 October 6, 1992



Programming Languages SIG

only of the terminating null byte. The presence alone of this attribute marks the base structure or
class as virtual.

3.8.4.1.2  Friends

If the declaration of a structure, union or class type specifies ‘‘friends’’ to that structure, union or
class, then the debugging entry for the type may have anAT_friends attribute. The value of
this attribute is a list of references to the debugging information entries for the structures, unions,
classes or functions declared to be friends to the structure, union or class containing the friends
attribute.

3.8.4.2  Structure Data Member Entries

A data member (as opposed to a member function) is represented by a debugging information
entry with the tagTAG_member. The member entry for a named member has a name attribute
whose value is a null-terminated string containing the member name as it appears in the source
program.

The structure data member entry has a fundamental type attribute, a modified fundamental type
attribute, a user-defined type attribute, or a modified user defined type attribute to denote the type
of that member.

If the member entry is defined in the structure or class body, it has anAT_location attribute
whose value is a location description that describes the location of that member relative to the
base address of the structure, union, or class that most closely encloses the corresponding
member declaration.

The addressing expression represented by the location description for a structure data member
expects the base address of the structure data member to be on the expression stack before being
evaluated.

If the member entry describes a bit field, then that entry has the following attributes:

1. An AT_byte_size attribute whose constant value is the number of bytes that contain an
instance of the bit field and any padding bits.

2. An AT_bit_offset attribute whose constant value is the number of bits to the left of
the leftmost (most significant) bit of the bit field value.

3. An AT_bit_size attribute whose constant value is the number of bits occupied by the
bit field value.

The location description for a bit field calculates the address of an anonymous object containing
the bit field. The address is relative to the structure, union, or class that most closely encloses the
bit field declaration. The number of bytes in this anonymous object is the value of the byte size
attribute of the bit field. The offset (in bits) from the most significant bit of the anonymous object
to the most significant bit of the bit field is the value of the bit offset attribute.

For example, take one possible representation of the following structure definition in both big
and little endian byte orders:

Revision: 1.1.0 Page 19 October 6, 1992



DWARF Debugging Information Format

struct S {
int j:5;
int k:6;
int m:5;
int n:8;

};

In both cases, the location descriptions for the debugging information entries forj , k , mand
n describe the address of the same 32-bit word that contains all three members. (In the big-
endian case, the location description addresses the most significant byte, in the little-endian
case, the least significant). The following diagram shows the structure layout and lists the bit
offsets for each case. The offsets are from the most significant bit of the object addressed by the
location description.

Bit Offsets:
j:0
k:5
m:11
n:16

Big-Endian

j
0

31
k

26
m

20
n

15
pad

7 0

Bit Offsets:
j:27
k:21
m:16
n:8

Little-Endian

pad
31

n
23

m
15

k
10

j
0

4 0

3.8.4.3  Structure Member Function Entries

A member function is represented in the debugging information by a debugging information
entry with the tagTAG_global_subroutine . The member function entry may contain the
same attributes and follows the same rules as non-member global subroutine entries (see section
3.3).

If the member function entry describes a virtual function, then that entry has either an
AT_virtual attribute, or anAT_pure_virtual attribute, either of whose values is a string
consisting only of the terminating null byte. The presence alone of these attributes marks the
member function as virtual or pure virtual.

An entry for a virtual function also has a location attribute whose value contains a location
description yielding the address of the slot for the function within the virtual function table for
the enclosing class or structure.

3.8.4.4  Variant Entries

The variants of a discriminated union are represented by debugging information entries that are
owned by the corresponding structure type entry. These entries appear in the same order as the
corresponding declarations in the same program. A variant is represented by a debugging
information entry with the tagTAG_variant .

Revision: 1.1.0 Page 20 October 6, 1992



Programming Languages SIG

The variant entry has anAT_discr attribute whose value is a reference to the member
declaration whose value determines the variant. The variant entry also has an
AT_discr_value attribute whose value is the value of the discriminant that applies to the
variant.

The components based on a variant are represented by debugging information entries owned by
the corresponding variant entry and appear in the same order as the corresponding declarations in
the source program.

3.8.5  Enumeration Type Entries

An ‘‘enumeration type’’ is a scalar that can assume one of a fixed number of symbolic values.

An enumeration type is represented by a debugging information entry with the tag
TAG_enumeration_type .

If a name has been given to the enumeration type in the source program, then the corresponding
enumeration type entry has a name attribute whose value is a null-terminated string containing
the enumeration type name as it appears in the source program. These entries also have a byte
size attribute whose constant value is the number of bytes required to hold an instance of the
enumeration.

Information about the enumeration literals is stored in anAT_element_list attribute whose
value is a list of data elements stored in a block of contiguous bytes. Each data item consists of a
constant followed by a null-terminated block of contiguous bytes. The constant will contain the
internal value of the enumeration element. The null-terminated block of bytes holds the
enumeration literal string as it appears in the source program. The data elements in an element
list should be generated in the reverse order to the order in which they appear in the source
program.

For consistency, DWARF specifies an ordering for enumeration entries. Reverse order was
chosen for compatibility with existing implementations.

Examples of structure and enumeration descriptions appear in Appendix 2.

3.8.6  Subroutine Type Entries

It is possible in C to declare pointers to subroutines that return a value of a specific type. In both
ANSI C and C++, it is possible to declare pointers to subroutines that not only return a value of
a specific type, but accept only arguments of specific types. The type of such pointers would be
described with a ‘‘pointer to’’ modifier applied to a user-defined type.

A subroutine type is represented by a debugging information entry with the tag
TAG_subroutine_type . If a name has been given to the subroutine type in the source
program, then the corresponding subroutine type entry has a name attribute whose value is a
null-terminated string containing the subroutine type name as it appears in the source program.

If the subroutine type describes a function that returns a value, then the subroutine type entry has
a fundamental type attribute, a modified fundamental type attribute, a user-defined type attribute,
or a modified user-defined type attribute to denote the type returned by the subroutine. If the
types of the arguments are necessary to describe the subroutine type, then the corresponding
subroutine type entry owns debugging information entries that describe the arguments. These
debugging information entries appear in the order that the corresponding argument types appear
in the source program.

Revision: 1.1.0 Page 21 October 6, 1992



DWARF Debugging Information Format

In ANSI-C there is a difference between the types of functions declared using function prototype
style declarations and those declared using non-prototype declarations.

A subroutine entry declared with a function prototype style declaration may have an
AT_prototyped attribute, whose value is a string consisting of only the terminating null byte.
The presence alone of this attribute marks the subroutine entry as prototyped.

Each debugging information entry owned by a subroutine type entry has a tag whose value has
one of two possible interpretations.

1. Each debugging information entry that is owned by a subroutine type entry and that defines
a single argument of a specific type has the tagTAG_formal_parameter .

The formal parameter entry has a fundamental type attribute, a modified fundamental type
attribute, a user-defined type attribute, or a modified user defined type attribute to denote
the type of the corresponding formal parameter.

2. The unspecified parameters of a variable parameter list are represented by a debugging
information entry owned by the subroutine type entry with the tag
TAG_unspecified_parameters .

3.8.7  String Type Entries

A ‘‘string’’ is a sequence of characters that have specific semantics and operations that separate
them from arrays of characters. Fortran is one of the languages that has a string type.

A string type is represented by a debugging information entry with the tag
TAG_string_type . If a name has been given to the string type in the source program, then
the corresponding string type entry has a name attribute whose value is a null-terminated string
containing the string type name as it appears in the source program.

The string type entry may have anAT_string_length attribute whose value is stored in a
block of contiguous bytes. The value of the string length attribute is a location description
yielding the location where the length of the string is stored in the program. The string type entry
may also have a byte size attribute, whose constant value is the size in bytes of the data to be
retrieved from the location referenced by the string length attribute. If no byte size attribute is
present, the size of the the data to be retrieved is the same as the size of the fundamental type
FT_long on the target machine.

If no string length attribute is present, the string type entry may have a byte size attribute, whose
constant value is the length in bytes of the string.

3.8.8  Set Entries

Pascal provides the concept of a ‘‘set,’’ which represents a group of values of ordinal type.

A set is represented by a debugging information entry with the tagTAG_set_type . If a name
has been given to the set type, then the set type entry has a name attribute whose value is a null-
terminated string containing the set type name as it appears in the source program.

The set type entry has a fundamental type attribute, a modified fundamental type attribute, a
user-defined type attribute, or a modified user defined type attribute to denote the type of an
element of the set.

If the amount of storage allocated to hold each element of an object of the given set type is
different from the amount of storage that is normally allocated to hold an individual object of the

Revision: 1.1.0 Page 22 October 6, 1992



Programming Languages SIG

indicated element type, then the set type entry has a byte-size attribute, whose constant value
represents the size in bytes of an instance of the set type.

3.8.9  Subrange Types

Several languages support the concept of a ‘‘subrange’’ type object. These objects can
represent a subset of the values that an object of the basis type for the subrange can represent.

A subrange type is represented by a debugging information entry with the tag
TAG_subrange_type . If a name has been given to the subrange type, then the subrange type
entry has a name attribute whose value is a null-terminated string containing the subrange type
name as it appears in the source program.

The subrange entry may have one of the four type attributes (fundamental type, modified
fundamental type, user-defined type, modified user-defined type) to describe the type of object of
whose values this subrange is a subset.

If the amount of storage allocated to hold each element of an object of the given subrange type is
different from the amount of storage that is normally allocated to hold an individual object of the
indicated element type, then the subrange type entry has a byte-size attribute, whose constant
value represents the size in bytes of each element of the subrange type.

The subrange entry may have the attributesAT_lower_bound and AT_upper_bound to
describe, respectively, the lower and upper bound values of the subrange. If a bound value is
described by a constant not represented in the program’s address space that can be represented by
one of the constant attribute forms, then the value of the lower or upper bound attribute may be
one of the constant types. Otherwise, the value of the lower or upper bound attribute is a
reference to a debugging information describing an object containing the bound value or itself
describing a constant value.

If either the lower or upper bound values are missing, the bound value is assumed to be a
language-dependent default constant.

The default lower bound value for C or C++ is 0. For Fortran, it is 1. No other default values
are currently defined by DWARF.

If the subrange entry has no type attribute describing the basis type, the basis type is assumed to
be the same as the object described by the lower bound attribute (if it references an object). If
there is no lower bound attribute, or it does not reference an object, the basis type is the type of
the upper bound attribute (if it references an object). If there is no upper bound attribute or it
does not reference an object, the type is assumed to be the same type object represented by the
fundamental typeFT_long .

3.8.10  Pointer to Member Types

In C++, a pointer to a data or function member of a class or structure is a unique type.

A debugging information entry representing the type of an object that is a pointer to a structure or
class member has the tagTAG_ptr_to_member_type .

If the pointer to member type has a name, the pointer to member entry has a name attribute,
whose value is a null-terminated string containing the type name as it appears in the source
program.

The pointer to member entry has one of the four type attributes (fundamental type, modified
fundamental type, user-defined type, modified user-defined type) to describe the type of the class

Revision: 1.1.0 Page 23 October 6, 1992



DWARF Debugging Information Format

or structure member to which objects of this type may point.

The pointer to member entry also has anAT_containing_type attribute, whose value is a
reference to a debugging information entry for the class or structure to whose members objects of
this type may point.

3.9  With Statement Entries

Both Pascal and Modula support the concept of a ‘‘with’’ statement. The with statement specifies
a sequence of executable statements within which the fields of a record variable may be
referenced, unqualified by the name of the record variable.

A with statement is represented by a debugging information entry with the tag
TAG_with_stmt . A with statement entry has a low pc attribute whose value is the relocated
address of the first machine instruction generated for the body of the with statement. A with
statement entry also has a high pc attribute whose value is the relocated address of the first
location after the last machine instruction generated for the body of the statement.

The with statement entry has a user-defined type attribute, denoting the type of record whose
fields may be referenced without full qualification within the body of the statement. It also has a
location description attribute, describing how to find the base address of the record object
referenced within the body of the with statement.

3.10  Accelerated Access

A debugger frequently needs to find the debugging information for a program object defined
outside of the compilation unit where the debugged program is currently stopped. Sometimes it
will know only the name of the object; sometimes only the address. To find the debugging
information associated with a global object by name, using the DWARF debugging information
entries alone, a debugger would need to run through all entries at the highest scope within each
compilation unit. For lookup by address, for a subroutine, a debugger can use the low and high
pc attributes of the compilation unit entries to quickly narrow down the search, but these
attributes only cover the range of addresses for the text associated with a compilation unit entry.
To find the debugging information associated with a data object, an exhaustive search would be
needed. Furthermore, any search through debugging information entries for different
compilation units within a large program would potentially require the access of many memory
pages, probably hurting debugger performance.

To make lookups of program objects by name or by address faster, a producer of DWARF
information may provide two different types of tables containing information about the
debugging information entries owned by a particular compilation unit entry in a more condensed
format.

3.10.1  Lookup by Name

For lookup by name, a table is maintained in a separate object file section called
.debug_pubnames . The table consists of sets of variable length entries, each set describing
the names of global objects whose definitions or declarations are represented by debugging
information entries owned by a single compilation unit. Each set begins with a header containing
four values: the total length of the entries for that set, not including the length field itself, a
version number, the offset from the beginning of the.debug section of the compilation unit
entry referenced by the set and the size in bytes of the contents of the.debug section generated
to represent that compilation unit. This header is followed by a variable number of offset/name
pairs. Each pair consists of the offset from the beginning of the compilation unit entry

Revision: 1.1.0 Page 24 October 6, 1992



Programming Languages SIG

corresponding to the current set of the debugging information entry for the given object, followed
by a null-terminated character string representing the name of the object as given by the
AT_name attribute of the referenced debugging entry. Each set of names is terminated by zero.

3.10.2  Lookup by Address

For lookup by address, a table is maintained in a separate object file section called
.debug_aranges . The table consists of sets of variable length entries, each set describing
the portion of the program’s address space that is covered by a single compilation unit. Each set
begins with a header containing three values: the total length of the entries for that set, not
including the length field itself, a version number and the offset from the beginning of the
.debug section of the compilation unit entry referenced by the set. This header is followed by a
variable number of pairs of address range descriptors. Each pair consists of the beginning
address of a range of text or data covered by some entry owned by the corresponding compilation
unit entry, followed by the length of that range. A particular set is terminated by a pair consisting
of two zeroes. By scanning the table, a debugger can quickly decide which compilation unit to
look in to find the debugging information for an object that has a given address.

3.11  Line Number Table

A source-level debugger will need to know how to associate statements in the source files with
the corresponding machine instruction addresses in the executable object or the shared objects
used by that executable object. Such an association would make it possible for the debugger
user to specify machine instruction addresses in terms of source statements. This would be done
by specifying the line number in the source file containing the statement. The debugger can also
use this information to display locations in terms of the source files and to single step from
statement to statement.

As mentioned in section 3.1, above, the table of source statement information generated for a
compilation unit currently exists in the.line section of an object file and is referenced by a
corresponding compilation unit debugging information entry in the.debug section. The first
entry in a source statement table contains the length of the table followed by the address of the
first machine instruction generated for the compilation unit. The remainder of the table contains
a list of source statement entries. A source statement entry contains a source line number, a
statement position within the source line and an address delta. The line numbers in the source
statement entries are numbered from the beginning of the compilation unit, starting with 1.

At the discretion of the compiler implementer, the value of the statement position in the source
statement entry is either the number of characters from the beginning of the line to the beginning
of the statement or a reserved, special value,SOURCE_NO_POS, to represent source information
in terms of source lines alone.

The address delta in each source statement entry in a table of source statement entries is the
address of the first machine instruction generated for that source statement minus the address of
the first machine instruction generated for the compilation unit.

A single source statement extending over more than one source line has a source line information
entry that refers to the line containing the start of that statement.

It is not necessary to have a source line information entry for every source line in a compilation
unit, and there is no restriction on the order in which they appear.

The list of source line information entries is terminated by an entry whose line number is zero
and whose delta represents the address of the first machine instruction beyond the last statement

Revision: 1.1.0 Page 25 October 6, 1992



DWARF Debugging Information Format

in the compilation unit.

This last entry allows a debugger to determine which instructions are associated with the last
statement in the compilation unit.

Revision: 1.1.0 Page 26 October 6, 1992



Programming Languages SIG

4.  DATA REPRESENTATION

This section describes the binary representation of the debugging information entry itself, of the
attribute types and of other fundamental elements described above.

4.1  Vendor Extensibility

To reserve a portion of the DWARF name space and ranges of enumeration values for use for
vendor specific extensions, special labels are reserved for tag names, attribute names,
fundamental types, location atoms, type modifiers and language names. The labels denoting the
beginning and end of the reserved value range for vendor specific extensions consist of the
appropriate prefix (TAG, AT, FT, OP, MODor LANG, respectively) followed by_lo_user or
_hi_user . For example, for entry tags, the special labels areTAG_lo_user and
TAG_hi_user . Values in the range betweenprefix_lo_user and prefix_hi_user
inclusive, are reserved for vendor specific extensions. Vendors may use values in this range
without conflicting with current or future system-defined values. All other values are reserved
for use by the system.

Vendor defined tag, attribute, fundamental type, location atom, type modifier and language names
conventionally use the formprefix_vendor_id_name, where vendor_id is some identifying
character sequence chosen so as to avoid conflicts with other vendors.

To ensure that extensions added by one vendor may be safely ignored by consumers that do not
understand those extensions, the following rules should be followed:

1. New attributes should be added in such a way that a debugger may recognize the format of
a new attribute value without knowing the content of that attribute value.

2. The semantics of any new attributes should not alter the semantics of previously existing
attributes.

3. The semantics of any new tags should not conflict with the semantics of previously
existing tags.

4.2  Reserved Error Values

As a convenience for consumers of DWARF information, the value 0 is reserved in the encodings
for attribute names, attribute forms, location atoms, fundamental types, type modifiers and
languages to represent an error condition or unknown value. DWARF does not specify names for
these reserved values, since they do not represent valid encodings for the given type and should
not appear in DWARF debugging information.

4.3  Debugging Information Entry

Each debugging information entry consists of a 4-byte (inclusive) length followed by a 2-byte tag
followed by a list of attributes. The tag encodings are given in Figure 8.

The 4-byte length is an unsigned integer whose value is the total number of bytes used by the
debugging information entry. The value of the tag determines the classification of the debugging
information entry.

On some architectures, there are alignment constraints on section boundaries. To make it easier
to pad debugging information sections to satisfy such constraints, a debugging information entry
with a length of less than eight (8) bytes is considered a null entry.

Revision: 1.1.0 Page 27 October 6, 1992



DWARF Debugging Information Format

Tag name Value
TAG_padding 0x0000
TAG_array_type 0x0001
TAG_class_type 0x0002
TAG_entry_point 0x0003
TAG_enumeration_type 0x0004
TAG_formal_parameter 0x0005
TAG_global_subroutine 0x0006
TAG_global_variable 0x0007
TAG_label 0x000a
TAG_lexical_block 0x000b
TAG_local_variable 0x000c
TAG_member 0x000d
TAG_pointer_type 0x000f
TAG_reference_type 0x0010
TAG_compile_unit 0x0011
TAG_source_file 0x0011
TAG_string_type 0x0012
TAG_structure_type 0x0013
TAG_subroutine 0x0014
TAG_subroutine_type 0x0015
TAG_typedef 0x0016
TAG_union_type 0x0017
TAG_unspecified_parameters 0x0018
TAG_variant 0x0019
TAG_common_block 0x001a
TAG_common_inclusion 0x001b
TAG_inheritance 0x001c
TAG_inlined_subroutine 0x001d
TAG_module 0x001e
TAG_ptr_to_member_type 0x001f
TAG_set_type 0x0020
TAG_subrange_type 0x0021
TAG_with_stmt 0x0022
TAG_lo_user 0x4080
TAG_hi_user 0xffff

Figure 8. Tag encodings

Null entries are different from entries with the special tagTAG_padding in that padding entries
have a 4-byte size (whose value is greater than or equal to 8) and a 2-byte tag, followed by an
appropriate number of unspecified padding bytes. Null entries consist of between 1 and 7 zero
bytes.

4.4  Attribute Types

Attributes are represented by a 2-byte name field followed by an appropriate value. The form of
the value is encoded into the attribute name. The possible forms (with their symbolic names) are:

address Represented as an object of appropriate size to hold an address on the
target machine (FORM_ADDR). This address is relocatable in a relocatable

Revision: 1.1.0 Page 28 October 6, 1992



Programming Languages SIG

object file and is relocated in an executable file or shared object.

reference Represented as a 4-byte value (FORM_REF). The value is a byte offset
relative to the beginning of the.debug section. It is relocated by the
linkage editor.

constant There are three forms of constants: A 2-byte data halfword
(FORM_DATA2), a 4-byte data word (FORM_DATA4) and an 8-byte data
doubleword (FORM_DATA8). These values may or may not be affected by
linkage editing.

block Blocks come in two forms. The first consists of a 2-byte length followed
by 0 to 65,535 contiguous information bytes (FORM_BLOCK2). The
second consists of a 4-byte length followed by 0 to 4,294,967,295
contiguous information bytes (FORM_BLOCK4). In both forms, the length
is the number of information bytes that follow. The information bytes may
contain any mixture of relocated (or relocatable) addresses, references to
other debugging information entries or data bytes.

string A block of contiguous non-null bytes followed by one null byte
(FORM_STRING).

The form encodings are listed in Figure 9.

Form name Value
FORM_ADDR 0x1
FORM_REF 0x2
FORM_BLOCK2 0x3
FORM_BLOCK4 0x4
FORM_DATA2 0x5
FORM_DATA4 0x6
FORM_DATA8 0x7
FORM_STRING 0x8

Figure 9. Attribute form encodings

The attribute encodings use the attribute form encodings just described. They are given in
Figures 10 and 11.

4.5  Executable Objects and Shared Objects

The relocated addresses in the debugging information for an executable object are virtual
addresses and the relocated addresses in the debugging information for a shared object are offsets
relative to the start of the lowest segment used by that shared object.

This requirement makes the debugging information for shared objects position independent.
Virtual addresses in a shared object may be calculated by adding the offset to the base address
at which the object was attached. This offset is available in the run-time linker’s data structures.

4.6  File Constraints

All debugging information entries in a relocatable object file, executable object or shared object
are required to be physically contiguous.

Revision: 1.1.0 Page 29 October 6, 1992



DWARF Debugging Information Format

Attribute name Form Value
AT_sibling reference (0x0010|FORM_REF)
AT_location block2 (0x0020|FORM_BLOCK2)
AT_name string (0x0030|FORM_STRING)
AT_fund_type halfword (0x0050|FORM_DATA2)
AT_mod_fund_type block2 (0x0060|FORM_BLOCK2)
AT_user_def_type reference (0x0070|FORM_REF)
AT_mod_u_d_type block2 (0x0080|FORM_BLOCK2)
AT_ordering halfword (0x0090|FORM_DATA2)
AT_subscr_data block2 (0x00a0|FORM_BLOCK2)
AT_byte_size word (0x00b0|FORM_DATA4)
AT_bit_offset halfword (0x00c0|FORM_DATA2)
AT_bit_size word (0x00d0|FORM_DATA4)
AT_element_list block4 (0x00f0|FORM_BLOCK4)
AT_stmt_list word (0x0100|FORM_DATA4)
AT_low_pc address (0x0110|FORM_ADDR)
AT_high_pc address (0x0120|FORM_ADDR)
AT_language word (0x0130|FORM_DATA4)
AT_member reference (0x0140|FORM_REF)
AT_discr reference (0x0150|FORM_REF)
AT_discr_value block2 (0x0160|FORM_BLOCK2)
AT_string_length block2 (0x0190|FORM_BLOCK2)
AT_common_reference reference (0x01a0|FORM_REF)
AT_comp_dir string (0x01b0|FORM_STRING)
AT_const_value string (0x01c0|FORM_STRING)
AT_const_value halfword (0x01c0|FORM_DATA2)
AT_const_value word (0x01c0|FORM_DATA4)
AT_const_value double word (0x01c0|FORM_DATA8)
AT_const_value block2 (0x01c0|FORM_BLOCK2)
AT_const_value block4 (0x01c0|FORM_BLOCK4)
AT_containing_type reference (0x01d0|FORM_REF)
AT_default_value address (0x01e0|FORM_ADDR)
AT_default_value halfword (0x01e0|FORM_DATA2)
AT_default_value double word (0x01e0|FORM_DATA8)
AT_default_value string (0x01e0|FORM_STRING)
AT_friends block2 (0x01f0|FORM_BLOCK2)

Figure 10. Attribute encodings (part 1)

4.7  Location Atoms

Each atom in a location description has a one byte code that identifies that atom. The value of
the identifying byte is interpreted to mean ‘‘reg(number),’’ ‘‘basereg(number),’’
‘‘addr(address),’’ ‘‘const(number),’’ ‘‘deref2,’’ ‘‘deref,’’ or ‘‘add.’’ For all location atoms that
require a (number), the identifying byte is followed by a value whose size is the same as the size
of the fundamental typeFT_long for the target machine. The (address) following an ‘‘addr’’
atom is of a size appropriate to represent an address on the target machine. All atoms in a
location description are concatenated from left to right. The encoding of the atoms in a location
description is described in Figure 12.

Revision: 1.1.0 Page 30 October 6, 1992



Programming Languages SIG

Attribute name Form Value
AT_inline string (0x0200|FORM_STRING)
AT_is_optional string (0x0210|FORM_STRING)
AT_lower_bound reference (0x0220|FORM_REF)
AT_lower_bound halfword (0x0220|FORM_DATA2)
AT_lower_bound word (0x0220|FORM_DATA4)
AT_lower_bound double word (0x0220|FORM_DATA8)
AT_program string (0x0230|FORM_STRING)
AT_private string (0x0240|FORM_STRING)
AT_producer string (0x0250|FORM_STRING)
AT_protected string (0x0260|FORM_STRING)
AT_prototyped string (0x0270|FORM_STRING)
AT_public string (0x0280|FORM_STRING)
AT_pure_virtual string (0x0290|FORM_STRING)
AT_return_addr block2 (0x02a0|FORM_BLOCK2)
AT_specification reference (0x02b0|FORM_REF)
AT_start_scope word (0x02c0|FORM_DATA4)
AT_stride_size word (0x02e0|FORM_DATA4)
AT_upper_bound reference (0x02f0|FORM_REF)
AT_upper_bound halfword (0x02f0|FORM_DATA2)
AT_upper_bound word (0x02f0|FORM_DATA4)
AT_upper_bound double word (0x02f0|FORM_DATA8)
AT_virtual string (0x0300|FORM_STRING)
AT_lo_user — 0x2000
AT_hi_user — 0x3ff0

Figure 11. Attribute encodings (part 2)

Atom name Value
OP_REG 0x01
OP_BASEREG 0x02
OP_ADDR 0x03
OP_CONST 0x04
OP_DEREF2 0x05
OP_DEREF 0x06
OP_DEREF4 0x06
OP_ADD 0x07
OP_lo_user 0xe0
OP_hi_user 0xff

Figure 12. Location atom encodings

A location description is the value of a location attribute and is stored in a block of contiguous
bytes with a 2-byte length.

4.8  Fundamental Types

The encodings for the required fundamental type values are listed in Figure 13. For values in the
range from FT_lo_user through FT_hi_user , inclusive, the low order byte of the
fundamental type code contains the size in bytes of objects having the specified type, if the size
is constant, otherwise the low order byte contains 0.

Revision: 1.1.0 Page 31 October 6, 1992



DWARF Debugging Information Format

Type name Value
FT_char 0x0001
FT_signed_char 0x0002
FT_unsigned_char 0x0003
FT_short 0x0004
FT_signed_short 0x0005
FT_unsigned_short 0x0006
FT_integer 0x0007
FT_signed_integer 0x0008
FT_unsigned_integer 0x0009
FT_long 0x000a
FT_signed_long 0x000b
FT_unsigned_long 0x000c
FT_pointer 0x000d
FT_float 0x000e
FT_dbl_prec_float 0x000f
FT_ext_prec_float 0x0010
FT_complex 0x0011
FT_dbl_prec_complex 0x0012
FT_void 0x0014
FT_boolean 0x0015
FT_ext_prec_complex 0x0016
FT_label 0x0017
FT_lo_user 0x8000
FT_hi_user 0xffff

Figure 13. Type encodings

4.9  Type Modifiers

Modifier types are represented by a single byte value. The encodings for the required values are
given in Figure 14.

Modifier name Value
MOD_pointer_to 0x01
MOD_reference_to 0x02
MOD_const 0x03
MOD_volatile 0x04
MOD_lo_user 0x80
MOD_hi_user 0xff

Figure 14. Type modifier encodings

4.10  Source Languages

Source languages are represented by a 4-byte constant. The encodings for the required values
are given in Figure 15.

4.11  Friend Lists

The list of friends to a structure, union or class type that is the value of anAT_friends
attribute is contained in a block of contiguous bytes with a 2-byte length. Each entry in the list is
a 4-byte reference to another debugging information entry.

Revision: 1.1.0 Page 32 October 6, 1992



Programming Languages SIG

Language name Value
LANG_C89 0x00000001
LANG_C 0x00000002
LANG_ADA83 0x00000003
LANG_C_PLUS_PLUS 0x00000004
LANG_COBOL74 0x00000005
LANG_COBOL85 0x00000006
LANG_FORTRAN77 0x00000007
LANG_FORTRAN90 0x00000008
LANG_PASCAL83 0x00000009
LANG_MODULA2 0x0000000a
LANG_lo_user 0x00008000
LANG_hi_user 0x0000ffff

Figure 15. Language encodings

4.12  Array Type Entries

4.12.1  Array Ordering

The encodings for the values of the order attributes of arrays is given in Figure 16.

Ordering name Value
ORD_row_major 0
ORD_col_major 1

Figure 16. Ordering encodings

4.12.2  Array Subscripts

The components of a subscript data value are represented as follows:

Format specifier: 1-byte constant. The encodings are given in figure 17.

Fundamental type: 2-byte constant.

User-defined type: 4-byte reference.

Subscript bound index: Constant whose size is the same as the size of the fundamental
typeFT_long on the target machine.

Subscript bound location: Data block with a 2-byte length.

Element type: Fundamental type, user-defined type, modified fundamental
type, or modified user-defined type, preceded by the
corresponding 2-byte tag.

Note that the size of the complete subscript entry must be less than 65,536 bytes. A typical C
array will require 11 bytes per dimension, plus the element type description (at least five bytes),
allowing only 5,957 dimensions in an array type. Languages with dynamic array bounds will be
restricted to even fewer than this number.

4.13  Enumeration Type Entries

Information about the enumeration literals is stored in an element list attribute whose value is a
list of data elements stored in a block of contiguous bytes with a 4-byte length.

Revision: 1.1.0 Page 33 October 6, 1992



DWARF Debugging Information Format

Format name Value
FMT_FT_C_C 0x0
FMT_FT_C_X 0x1
FMT_FT_X_C 0x2
FMT_FT_X_X 0x3
FMT_UT_C_C 0x4
FMT_UT_C_X 0x5
FMT_UT_X_C 0x6
FMT_UT_X_X 0x7
FMT_ET 0x8

Figure 17. Format encodings

Each data item in an element list consists of a signed constant whose size is the same as the size
of the fundamental typeFT_long on the target machine, followed by a null-terminated block of
contiguous bytes.

4.14  Name Lookup Table

Each set of entries in the table of global names contained in the.debug_pubnames section
begins with a header consisting of: a 4-byte length containing the length of the set of entries for
this compilation unit, not including the length field itself; a 1-byte version identifier containing
the value 1 for DWARF Version 1; a 4-byte offset into the.debug section; and a 4-byte length
containing the size in bytes of the contents of the.debug section generated to represent this
compilation unit. This header is followed by a series of tuples. Each tuple consists of a 4-byte
offset followed by a string of non-null bytes terminated by one null byte. Each set is terminated
by a 4-byte word containing the value 0.

4.15  Address Range Table

Each set of entries in the table of address ranges contained in the.debug_aranges section
begins with a header consisting of: a 4-byte length containing the length of the set of entries for
this compilation unit, not including the length field itself; a 1-byte version identifier containing
the value 1 for DWARF Version 1; and a 4-byte offset into the.debug section. This header is
followed by a series of tuples. Each tuple consists of an address (in the size appropriate for the
given architecture) and of a 4-byte constant length. Each set of tuples is terminated by a 0 for the
address and 0 for the length.

4.16  Line Number Table

The table of source statement information generated for a compilation unit consists of a 4-byte
length followed by a relocated address followed by a list of source statement entries. The 4-byte
length is the total number of bytes occupied by the source statement information for the
compilation unit, including the four bytes for the length. The relocated address is the address of
the first machine instruction generated for that compilation unit.

A source statement entry contains a source line number (as an unsigned 4-byte integer), a
statement position within the source line (as an unsigned 2-byte integer) and an address delta (as
an unsigned 4-byte integer). The special statement positionSOURCE_NO_POShas the value
0xffff , and indicates that the statement entry refers to the entire source line.

Revision: 1.1.0 Page 34 October 6, 1992



Programming Languages SIG

4.17  Dependencies

The debugging information in this format is intended to exist in the.debug ,
.debug_aranges , .debug_pubnames , and .line sections of an object file. The
information is not word-aligned, so the assembler must provide a way for the compiler to produce
2-byte and 4-byte quantities without alignment restrictions, and the linker must be able to
relocate a 4-byte reference at an arbitrary alignment. In target architectures with 64-bit
addresses, the assembler and linker must similarly handle 8-byte references at arbitrary
alignments.

Revision: 1.1.0 Page 35 October 6, 1992



DWARF Debugging Information Format

Revision: 1.1.0 Page 36 October 6, 1992



Programming Languages SIG

5.  FUTURE DIRECTIONS

The UNIX International Programming Languages Special Interest Group is currently working to
define Version 2 of the DWARF Debugging Information Format. This version will use a much
denser encoding than does Version 1. It will also provide enhancements to the representation of
statement information and locations, support for other features of the languages supported in
DWARF Version 1 (such as macro information) and possibly support for other languages, as
well. Information on Version 2 of DWARF can be obtained by contacting UNIX International.

Revision: 1.1.0 Page 37 October 6, 1992



DWARF Debugging Information Format

Revision: 1.1.0 Page 38 October 6, 1992



Programming Languages SIG

Appendix 1 -- Current Attributes by Tag Value

The list below enumerates the attributes that are most applicable to each type of debugging
information entry. DWARF does not in general require that a given debugging information entry
contain a particular attribute or set of attributes. Instead, a DWARF producer is free to generate
any, all, or none of the attributes described in the text as being applicable to a given entry. Other
attributes (both those defined within this document but not explicitly associated with the entry in
question, and new, vendor-defined ones) may also appear in a given debugging entry. Therefore,
the list may be taken as instructive, but cannot be considered definitive.

For example, the list below states that an entry with a tag ofTAG_inheritance may contain
a type attribute, a location, a sibling, and the four ‘‘flag’’ attributesAT_private ,
AT_protected , AT_public , and AT_virtual . Obviously, not every
TAG_inheritance entry will contain all of the above attributes; indeed, the first three of
these ‘‘flag’’ attributes are mutually exclusive. Furthermore, in C++ the only ‘‘type’’ attribute
which may appear is a user-defined type, since inheritance is not defined for fundamental or
modified types. However, other languages with similar concepts may find a use for inheritance
from fundamental types, or even modified fundamental or modified user-defined types. Thus we
list all four possible ‘‘type’’ attributes as ‘‘applicable’’ toTAG_inheritance . A consumer
need not be able to process aTAG_inheritance entry with anAT_fund_type attribute, if
that combination is nonsensical in the language it understands, but it should gracefully ignore
such a combination.

Revision: 1.1.0 Page 39 October 6, 1992



DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
TAG_array_type AT_byte_size

AT_name
AT_ordering
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope
AT_stride_size
AT_subscr_data

TAG_class_type AT_byte_size
AT_friends
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope

TAG_common_block AT_location
AT_name
AT_sibling

TAG_common_inclusion AT_common_reference
AT_sibling

TAG_compile_unit AT_comp_dir
AT_high_pc
AT_language
AT_low_pc
AT_name
AT_producer
AT_sibling
AT_stmt_list

TAG_entry_point FT/MFT/UDT/MUDT†
AT_low_pc
AT_name
AT_return_addr
AT_sibling

† AT_fund_type , AT_mod_fund_type , AT_user_def_type or
AT_mod_u_d_type .

Revision: 1.1.0 Page 40 October 6, 1992



Programming Languages SIG

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
TAG_enumeration_type AT_byte_size

AT_element_list
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope

TAG_formal_parameter FT/MFT/UDT/MUDT
AT_default_value
AT_is_optional
AT_location
AT_name
AT_sibling

TAG_global_subroutine FT/MFT/UDT/MUDT
AT_high_pc
AT_inline
AT_location
AT_low_pc
AT_member
AT_name
AT_private
AT_program
AT_protected
AT_prototyped
AT_public
AT_pure_virtual
AT_return_addr
AT_start_scope
AT_virtual
AT_sibling

TAG_global_variable FT/MFT/UDT/MUDT
AT_constant_value
AT_location
AT_member
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope

Revision: 1.1.0 Page 41 October 6, 1992



DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
TAG_inheritance AT_location

AT_private
AT_protected
AT_public
AT_sibling
AT_user_def_type
AT_virtual

TAG_inlined_subroutine AT_high_pc
AT_low_pc
AT_sibling
AT_specification

TAG_label AT_low_pc
AT_name
AT_start_scope
AT_sibling

TAG_lexical_block AT_high_pc
AT_low_pc
AT_name
AT_sibling

TAG_local_variable FT/MFT/UDT/MUDT
AT_constant_value
AT_location
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope

TAG_member FT/MFT/UDT/MUDT
AT_byte_size
AT_bit_offset
AT_bit_size
AT_location
AT_name
AT_private
AT_protected
AT_public
AT_sibling

Revision: 1.1.0 Page 42 October 6, 1992



Programming Languages SIG

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
TAG_module AT_high_pc

AT_low_pc
AT_name
AT_private
AT_protected
AT_public
AT_sibling

TAG_padding

TAG_pointer_type FT/MFT/UDT/MUDT
AT_name
AT_private
AT_protected
AT_public
AT_start_scope
AT_sibling

TAG_ptr_to_member_type FT/MFT/UDT/MUDT
AT_containing_type
AT_name
AT_sibling

TAG_reference_type FT/MFT/UDT/MUDT
AT_name
AT_private
AT_protected
AT_public
AT_start_scope
AT_sibling

TAG_set_type FT/MFT/UDT/MUDT
AT_byte_size
AT_name
AT_private
AT_protected
AT_public
AT_start_scope
AT_sibling

Revision: 1.1.0 Page 43 October 6, 1992



DWARF Debugging Information Format

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
TAG_string_type AT_byte_size

AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope
AT_string_length

TAG_structure_type AT_byte_size
AT_friends
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope

TAG_subrange_type FT/MFT/UDT/MUDT
AT_byte_size
AT_lower_bound
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_upper_bound

TAG_subroutine FT/MFT/UDT/MUDT
AT_high_pc
AT_inline
AT_low_pc
AT_member
AT_name
AT_private
AT_protected
AT_prototyped
AT_public
AT_return_addr
AT_start_scope
AT_sibling

Revision: 1.1.0 Page 44 October 6, 1992



Programming Languages SIG

Appendix 1 (cont’d) -- Current Attributes by Tag Value

TAG NAME APPLICABLE ATTRIBUTES
TAG_subroutine_type FT/MFT/UDT/MUDT

AT_name
AT_private
AT_protected
AT_prototyped
AT_public
AT_sibling
AT_start_scope

TAG_typedef FT/MFT/UDT/MUDT
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope

TAG_union_type AT_byte_size
AT_friends
AT_name
AT_private
AT_protected
AT_public
AT_sibling
AT_start_scope

TAG_unspecified_parameters AT_sibling

TAG_variant AT_discr
AT_discr_value
AT_location
AT_name
AT_private
AT_protected
AT_public
AT_sibling

TAG_with_statement AT_high_pc
AT_location
AT_low_pc
AT_private
AT_protected
AT_public
AT_sibling
AT_user_def_type

Revision: 1.1.0 Page 45 October 6, 1992



DWARF Debugging Information Format

Revision: 1.1.0 Page 46 October 6, 1992



Programming Languages SIG

Appendix 2 -- Example

The following is an example of a C program and a sample generation of DWARF information. It
is provided for clarification and should not be construed as the ‘‘correct’’ or only way that a
compiler may generate DWARF for the same program.

typedef.c:

1 typedef long LONG;
2 typedef char *POINTER;

4 POINTER p;
5 LONG l;

7 enum e { A, B, C };

9 struct a {
10 int b;
11 struct a *next;
12 };

14 typedef struct c {
15 int d;
16 } cstruct;

18 typedef char BLOCK[1024];
19 typedef POINTER PAGE[66][80];

21 static BLOCK b;

23 int
24 myfunc(int i)
25 {
26 BLOCK b;
27 static struct a a1;
28 struct a *aptr;
29 cstruct c1;

31 aptr = &a1;
32 aptr->b = i;
33 aptr->next = 0;
34 return 1;
35 }

37 void foo()
38 {
39 }

41 static float bar()
42 {
43 return 1.0;
44 }

Revision: 1.1.0 Page 47 October 6, 1992



DWARF Debugging Information Format

Annotated contents of the.debug section fortypedef.o , compiled with-g :

Each record is displayed in the following format:

hex_offset: <decimal_length> TAG_tagname
AT_attrname(value)
AT_attrname(value)

0000: <121> TAG_compile_unit
AT_sibling(0x3a8) next compilation unit record
AT_name(‘‘typedef.c’’)
AT_producer(‘‘Best Compiler Corp: C Compiler Version 1.3’’)
AT_comp_dir(‘‘mymachine:/home/mydir/src’’)
AT_language(LANG_C89)
AT_low_pc(0x0) will be relocated
AT_high_pc(0x55) will be relocated
AT_stmt_list(0x0) offset in.line section

0079: <23> TAG_typedef owned by compilation unit record
AT_sibling(0x90) next record owned by my parent
AT_name(‘‘LONG’’)
AT_fund_type(FT_long)

0090: <29> TAG_typedef owned by compilation unit record
AT_sibling(0xad) next record owned by my parent
AT_name(‘‘POINTER’’)
AT_mod_fund_type(<3>MOD_pointer_to FT_char)

00ad: <46> TAG_enumeration_type owned by compilation unit record
AT_sibling(0xdb) next record owned by my parent
AT_name(‘‘e’’)
AT_byte_size(0x4)
AT_element_list(<18>(2=‘‘C’’) (1=‘‘B’’) (0=‘‘A’’) )

00db: <22> TAG_structure_type owned by compilation unit record
AT_sibling(0x139) next record owned by my parent
AT_name(‘‘a’’)
AT_byte_size(0x8)

00f1: <30> TAG_member owned by struct ‘‘a’’
AT_sibling(0x10f) next record owned by my parent
AT_name(‘‘b’’)
AT_fund_type(FT_integer)
AT_location(<6>OP_CONST(0x0) OP_ADD )

010f: <38> TAG_member owned by struct ‘‘a’’
AT_sibling(0x135) next record owned by my parent
AT_name(‘‘next’’)
AT_mod_user_def_type

(<5>MOD_pointer_to 0xdb) reference to record at offset 0xdb
AT_location(<6>OP_CONST(0x4) OP_ADD)

0135: <4> a null entry, end of sibling chain for struct ‘‘a’’

Revision: 1.1.0 Page 48 October 6, 1992



Programming Languages SIG

0139: <22> TAG_structure_type owned by compilation unit record
AT_sibling(0x171) next record owned by my parent
AT_name(‘‘c’’)
AT_byte_size(0x4)

014f: <30> TAG_member owned by struct ‘‘c’’
AT_sibling(0x16d) next record owned by my parent
AT_name(‘‘d’’)
AT_fund_type(FT_integer)
AT_location(<6>OP_CONST(0x0) OP_ADD )

016d: <4> a null entry, end of sibling chain for struct ‘‘c’’

0171: <28> TAG_typedef owned by compilation unit record
AT_sibling(0x18d) next record owned by my parent
AT_name(‘‘cstruct’’)
AT_user_def_type(0x139) reference to record at offset 0139

018d: <36> TAG_array_type owned by compilation unit record
AT_sibling(0x1b1) next record owned by my parent
AT_ordering(0x0)
AT_subscr_data(<16>FT_signed_integer[0:1023],

FMT_ET: AT_fund_type(FT_char))

01b1: <26> TAG_typedef owned by compilation unit record
AT_sibling(0x1cb) next record owned by my parent
AT_name(‘‘BLOCK’’)
AT_user_def_type(0x18d) reference to record at offset 018d

01cb: <50> TAG_array_type owned by compilation unit record
AT_sibling(0x1fd) next record owned by my parent
AT_ordering(0x0)
AT_subscr_data(<30>FT_signed_integer[0:65], FT_signed_integer[0:79],

FMT_ET: AT_mod_fund_type(<3>MOD_pointer_to FT_char))

01fd: <25> TAG_typedef owned by compilation unit record
AT_sibling(0x216) next record owned by my parent
AT_name(‘‘PAGE’’)
AT_user_def_type(0x1cb) reference to record at offset 01cb

Revision: 1.1.0 Page 49 October 6, 1992



DWARF Debugging Information Format

0216: <37> TAG_global_subroutine owned by compilation unit record
AT_sibling(0x2f8) next record owned by my parent
AT_name(‘‘myfunc’’)
AT_fund_type(FT_integer)
AT_low_pc(0x0) will be relocated
AT_high_pc(0x38) will be relocated

023b: <35> TAG_formal_parameter owned by subroutine ‘‘myfunc’’
AT_sibling(0x25e) next record owned by my parent
AT_name(‘‘i’’)
AT_fund_type(FT_integer)
AT_location(<11>OP_BASEREG(0x5) OP_CONST(0x8) OP_ADD)

025e: <37> TAG_local_variable owned by subroutine ‘‘myfunc’’
AT_sibling(0x283) next record owned by my parent
AT_name(‘‘b’’)
AT_user_def_type(0x1b1) reference to record at offset 01b1
AT_location(<11>OP_BASEREG(0x5) OP_CONST(0xfffffc00) OP_ADD )

0283: <32> TAG_local_variable owned by subroutine ‘‘myfunc’’
AT_sibling(0x2a3) next record owned by my parent
AT_name(‘‘a1’’)
AT_user_def_type(0xdb) reference to record at offset 00db
AT_location(<5>OP_ADDR(0x0) ) will be relocated

02a3: <43> TAG_local_variable owned by subroutine ‘‘myfunc’’
AT_sibling(0x2ce) next record owned by my parent
AT_name(‘‘aptr’’)
AT_mod_user_def_type

(<5>MOD_pointer_to 0xdb) reference to record at offset 0xdb
AT_location(<11>OP_BASEREG(0x5) OP_CONST(0xfffffbfc) OP_ADD)

02ce: <38> TAG_local_variable owned by subroutine ‘‘myfunc’’
AT_sibling(0x2f4) next record owned by my parent
AT_name(‘‘c1’’)
AT_user_def_type(0x139) reference to record at offset 0139
AT_location(<11>OP_BASEREG(0x9) OP_CONST(0x400) OP_ADD )

02f4: <4> a null entry, end of sibling chain for ‘‘myfunc’’

Revision: 1.1.0 Page 50 October 6, 1992



Programming Languages SIG

02f8: <30> TAG_global_subroutine owned by compilation unit record
AT_sibling(0x31a) next record owned by my parent
AT_name(‘‘foo’’)
AT_low_pc(0x0) will be relocated
AT_high_pc(0x41) will be relocated

0316: <4> a null entry, end of sibling chain for ‘‘foo’’

031a: <34> TAG_subroutine owned by compilation unit record
AT_sibling(0x340) next record owned by my parent
AT_name(‘‘bar’’)
AT_fund_type(FT_float)
AT_low_pc(0x0) will be relocated
AT_high_pc(0x55) will be relocated

033c: <4> a null entry, end of sibling chain for ‘‘bar’’

0340: <31> TAG_local_variable owned by compilation unit record
AT_sibling(0x35f) next record owned by my parent
AT_name(‘‘b’’)
AT_user_def_type(0x18d) reference to record at offset 018d
AT_location(<5>OP_ADDR(0x0) ) will be relocated

035f: <29> TAG_global_variable owned by compilation unit record
AT_sibling(0x37c) next record owned by my parent
AT_name(‘‘l’’)
AT_fund_type(FT_long)
AT_location(<5>OP_ADDR(0x0) ) will be relocated

037c: <32> TAG_global_variable owned by compilation unit record
AT_sibling(0x39c) next record owned by my parent
AT_name(‘‘p’’)
AT_mod_fund_type(<3>MOD_pointer_to FT_char)
AT_location(<5>OP_ADDR(0x0) ) will be relocated

039c: <4> a null entry, end of sibling chain for ‘‘typedef.c’’

Revision: 1.1.0 Page 51 October 6, 1992



DWARF Debugging Information Format

Contents of the.line section:

128 0 length base address(will be relocated)
25 -1 0 line# char offset hex address offset(not relocated)
31 -1 2
32 -1 c
33 -1 17
34 -1 24
35 -1 2b
38 -1 38
39 -1 3a
42 -1 44
43 -1 46
44 -1 4e

0 -1 55 line# == 0 is end of list

Revision: 1.1.0 Page 52 October 6, 1992



Table of Contents

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1
1.1 Purpose and Scope . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Vendor Extensibility . . . . . . . . . . . . . . . . . . . 2

2. GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . 3
2.1 The Debugging Information Entry. . . . . . . . . . . . . . . 3
2.2 Attribute Types . . . . . . . . . . . . . . . . . . . . 3
2.3 Relationship of Debugging Information Entries. . . . . . . . . . . 4
2.4 Location Information . . . . . . . . . . . . . . . . . . 5
2.5 Type Attributes . . . . . . . . . . . . . . . . . . . . 7

3. DEBUGGING INFORMATION ENTRIES. . . . . . . . . . . . . . 9
3.1 Compilation Unit Entries . . . . . . . . . . . . . . . . . 9
3.2 Modules . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Subroutine and Entry Point Entries . . . . . . . . . . . . . . 10
3.4 Lexical Block Entries . . . . . . . . . . . . . . . . . . 12
3.5 Label Entries . . . . . . . . . . . . . . . . . . . . . 13
3.6 Program Variable Entries . . . . . . . . . . . . . . . . . 13
3.7 Common Block Entries . . . . . . . . . . . . . . . . . . 14
3.8 User-Defined Type Entries. . . . . . . . . . . . . . . . . 15
3.9 With Statement Entries. . . . . . . . . . . . . . . . . . 24
3.10 Accelerated Access. . . . . . . . . . . . . . . . . . . 24
3.11 Line Number Table . . . . . . . . . . . . . . . . . . . 25

4. DATA REPRESENTATION . . . . . . . . . . . . . . . . . . 27
4.1 Vendor Extensibility . . . . . . . . . . . . . . . . . . . 27
4.2 Reserved Error Values . . . . . . . . . . . . . . . . . . 27
4.3 Debugging Information Entry . . . . . . . . . . . . . . . . 27
4.4 Attribute Types . . . . . . . . . . . . . . . . . . . . 28
4.5 Executable Objects and Shared Objects. . . . . . . . . . . . . 29
4.6 File Constraints . . . . . . . . . . . . . . . . . . . . 29
4.7 Location Atoms . . . . . . . . . . . . . . . . . . . . 30
4.8 Fundamental Types . . . . . . . . . . . . . . . . . . . 31
4.9 Type Modifiers . . . . . . . . . . . . . . . . . . . . 32
4.10 Source Languages . . . . . . . . . . . . . . . . . . . 32
4.11 Friend Lists . . . . . . . . . . . . . . . . . . . . . 32
4.12 Array Type Entries . . . . . . . . . . . . . . . . . . . 33
4.13 Enumeration Type Entries. . . . . . . . . . . . . . . . . 33
4.14 Name Lookup Table. . . . . . . . . . . . . . . . . . . 34
4.15 Address Range Table . . . . . . . . . . . . . . . . . . 34
4.16 Line Number Table . . . . . . . . . . . . . . . . . . . 34
4.17 Dependencies. . . . . . . . . . . . . . . . . . . . . 35

5. FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . 37

Appendix 1 -- Current Attributes by Tag Value . . . . . . . . . . . . . 39

Appendix 2 -- Example . . . . . . . . . . . . . . . . . . . . 47

- i -



List of Figures

Figure 1. Tag names. . . . . . . . . . . . . . . . . . . . . 3

Figure 2. Attribute names . . . . . . . . . . . . . . . . . . . 4

Figure 3. Location atoms . . . . . . . . . . . . . . . . . . . 6

Figure 4. Fundamental types . . . . . . . . . . . . . . . . . . 7

Figure 5. Type modifiers. . . . . . . . . . . . . . . . . . . . 8

Figure 6. Language names. . . . . . . . . . . . . . . . . . . 10

Figure 7. Array ordering. . . . . . . . . . . . . . . . . . . . 16

Figure 8. Tag encodings. . . . . . . . . . . . . . . . . . . . 28

Figure 9. Attribute form encodings . . . . . . . . . . . . . . . . 29

Figure 10. Attribute encodings (part 1). . . . . . . . . . . . . . . . 30

Figure 11. Attribute encodings (part 2). . . . . . . . . . . . . . . . 31

Figure 12. Location atom encodings . . . . . . . . . . . . . . . . 31

Figure 13. Type encodings . . . . . . . . . . . . . . . . . . . 32

Figure 14. Type modifier encodings. . . . . . . . . . . . . . . . . 32

Figure 15. Language encodings. . . . . . . . . . . . . . . . . . 33

Figure 16. Ordering encodings . . . . . . . . . . . . . . . . . . 33

Figure 17. Format encodings. . . . . . . . . . . . . . . . . . . 34

- ii -


