
PowerPC EABI, Version 1.0

PowerPC Embedded
Application Binary Interface

32-Bit Implementation

for information contact:

Version Description Date

1.0 Initial Release 01/10/95

Stephen Sobek
 Microcontroller Technologies Group

Motorola
6501 William Cannon Drive West

Mail Stop OE45
Austin, TX 78735

steve@avar.sps.mot.com

Kevin Burke
Technology Products

International Business Machines Corporation
3039 Cornwallis Road

Mail Stop H83/061
Research Triangle Park, NC 27709

kevin_burke@vnet.ibm.com

ii PowerPC EABI, Version 1.0

© 1995 Motorola, Inc. All rights reserved.

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this document, Mo-
torola assumes no liability to any party for any loss or damage caused by errors or omissions or by
statements of any kind in this document, its updates, supplements, or special editions, whether
such errors are omissions or statements resulting from negligence, accident, or any other cause.
Motorola further assumes no liability arising out of the application or use of any information,
product, or system described herein; nor any liability for incidental or consequential damages
arising from the use of this document. Motorola disclaims all warranties regarding the informa-
tion contained herein, whether expressed, implied or statutory,including implied warranties of
merchantability or fitness for a particular purpose. Motorola makes no representation that the in-
terconnection of products in the manner described herein will not infringe on existing or future
patent rights, nor do the descriptions contained herein imply the granting or license to make, use
or sell equipment constructed in accordance with this description.

Trademarks

The following trademarks apply to this document:

PowerPC and IBM are trademarks of International Business Machines Corporation.

Motorola is a trademark of Motorola, Inc.

UNIX is a registered trademark of Novell, Inc. in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.

iii PowerPC EABI, Version 1.0

Foreword

The PowerPC Embedded Application Binary Interface, or EABI, was created to meet the unique
needs of PowerPC embedded applications, specifically minimizing memory usage while main-
taining high performance. The EABI was developed by an industry-wide working group consist-
ing of PowerPC chip manufacturers, software tool vendors, and end users.

The EABI defines a set of conventions intended to afford interoperability between conforming
software components (e.g., compilers, debuggers, assembly language code). These conventions
are optimized for embedded applications, which typically differ from desktop applications in at
least one of the following ways:

• ROM based

• real-time oriented

• memory constrained

• single purpose application

The EABI was created with the explicit goal of being as close as possible to an existing desktop
ABI. While several alternatives were considered (e.g., PowerOpen ABI), the one chosen was the
Unix System V Release 4 (SVR4) ABI for PowerPC. This choice makes it possible to use SVR4
functions in an EABI environment without recompilation. The two ABI’s are sufficiently close
that software tool vendors can support both ABI’s with a single set of tools.

Embedded programs that conform to the EABI gain efficiency in space and time by using the fol-
lowing features:

• minimized stack usage

• relaxed alignment restrictions, optimizing memory usage

• small data areas for RAM data, read-only data, and data around address zero. These reduce code
size and improve data access time.

Acknowledgements

Members of the PowerPC Embedded Application Binary Interface Working Group who devoted
substantial time and effort to create this standard included:

Tom Barrett Mark Edwards Ken Greenberg Steve Sobek
Kevin Burke Tomas Evensen David Layman Budi Sutardja
Felix Burton Chris Ford Steve Mihalik Fred Viles
Thomas Collopy Craig Franklin Rebecca Moeller Alex Wu
Bill DeStein Tony Goelz Jack Patteeuw Steven Zucker

The working group is grateful for the efforts made by all participants.

iv PowerPC EABI, Version 1.0

References

ANSI X3.159-1989, American National Standard for Information Systems - Programming
Language - C, American National Standards Institute, 1989.

DWARF Debugging Information Format, Revision: Version 1.1.0, UNIX International, Program-
ming Languages SIG, October 6, 1992.

DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review Draft, UNIX
International, Programming Languages SIG, July 27, 1993.

PowerPC Microprocessor Family: The Programming Environments, Motorola, Motorola docu-
ment MPCFPE/AD, IBM Microelectronics document MPRPPCFPE-01, 1994.

System V Application Binary Interface, Third Edition, UNIX System Laboratories, 1994 (ISBN
0-13-100439-5).

System V Application Binary Interface, PowerPC Processor Supplement, Sun Microsystems and
IBM, 1995.

v PowerPC EABI, Version 1.0

Table of Contents

CHAPTER 1 PowerPC Embedded Application Binary Interface 1

Introduction and Overview 1

Terminology 1

Relationship to UNIX System V Release 4 2

Base and Extended Conformance 2

Definitions and Notation 2

Future Directions 2

CHAPTER 2 Software Installation 3

CHAPTER 3 Low-Level System Information 4

SVR4 ABI Execution Support 4

Machine Interface 5
Processor Architecture 5

Data Representation 5
Fundamental Types 5
Aggregates and Unions 5

Function Calling Sequence 5
Registers 5
The Stack Frame 6

Operating System Interface 6

Exception Interface 6

Process Initialization 6

Coding Examples 6
Data Objects 6
Dynamic Stack Space Allocation 9

DWARF Definition 9
DWARF Register Number Mapping 9
Address Class Codes 9

vi PowerPC EABI, Version 1.0

CHAPTER 4 Object Files 10

Object File Processing 10

ELF Header 10
Machine Information 10

Sections 11
Special Sections 11

Relocation 15
Relocation Types 15

CHAPTER 5 Program Loading and Dynamic Linking 19

Program Loading 19

Program Interpreter 19

CHAPTER 6 Libraries 20

SVR4 Library Routines 20

Software Floating Point Emulation Support Routines 21

APPENDIX A EABI Summary 28

PowerPC Embedded Application Binary Interface

1 PowerPC EABI, Version 1.0

CHAPTER 1 PowerPC Embedded
Application Binary
Interface

Introduction and Overview

The PowerPC Embedded Application Binary Interface (EABI) defines a system interface for
compiled and assembled embedded application programs that will run on embedded 32-bit imple-
mentations of the PowerPC architecture.

Terminology

The word “shall” in this document denotes a characteristic or behavior that is mandatory for an
EABI-conforming entity, such as an application program or compiler. The word “may” denotes a
characteristic or behavior that is explicitly permitted for an EABI-conforming entity.

PowerPC Embedded Application Binary Interface

2 PowerPC EABI, Version 1.0

Relationship to UNIX System V Release 4

Except as noted in this document, the EABI adopts the specifications found in those editions of
theSystem V Application Binary Interface and theSystem V Application Binary Interface, Power-
PC Processor Supplement that are listed in the references.

Base and Extended Conformance

This document defines two levels of conformance -base EABI conformance andextended
EABI conformance.

Base EABI conformance shall consist of conforming to all requirements that are not labeled
EXTENDED.

Extended EABI conformance shall consist of conforming to all requirements, including those la-
beledEXTENDED, with a requirement labeledEXTENDED superseding any conflicting base
conformance requirements. E.g., the extended EABI conformance requirement that a static linker
support all SVR4 ABI relocation types supersedes the base EABI conformance requirement that
the relocation types in Table 4-1 are not supported.

Definitions and Notation

The following definitions and notation are used throughout this document:

• SVR4 is the UNIX System V Release 4 operating system.

• SVR4 ABI is the UNIX System V Release 4 Application Binary Interface, including the
PowerPC processor supplement.

• Numbers are decimal unless specified in the following way:

- 0xnnnn, wherennnn is a non-empty sequence of hexadecimal digits, denotes a hexadecimal
number whose value, expressed in hexadecimal, isnnnn.

• A byte is 8 bits.

• A word is 32 bits (4 bytes).

• GPRn, wheren is a number, denotes PowerPC General Purpose Registern.

Future Directions

Characteristics and behaviors mandated by this version of the EABI shall continue to be mandat-
ed indefinitely except where this document explicitly states otherwise. All mandates that might be
withdrawn or altered in the next edition of the EABI are preceded byWARNING: and appear in
bold face type.

Software Installation

3 PowerPC EABI, Version 1.0

CHAPTER 2 Software Installation

Unlike the SVR4 ABI, the EABI shall not have required physical media for distribution of EABI-
conforming application software, a required software format (such as a continuous data stream)
on the physical media, a required layout of files on the physical media, or a required format or in-
terpretation of installation data files.

Low-Level System Information

4 PowerPC EABI, Version 1.0

CHAPTER 3 Low-Level System
Information

SVR4 ABI Execution Support

A conforming entity, such as an application or a static linker, shall not have requirements pertain-
ing to:

• dynamic linking

• global offset tables

• procedure linkage tables

• shared objects

EXTENDED A conforming static linker, dynamic linker, or high-level language processor (such
as a compiler) shall implement all of the following in a way that conforms to the
SVR4 ABI, and a conforming application that uses any of the following shall do so
in a way that conforms to the SVR4 ABI:

• dynamic linking

• global offset tables

Low-Level System Information

5 PowerPC EABI, Version 1.0

• procedure linkage tables

• shared objects

Machine Interface

Processor Architecture

Unlike the SVR4 ABI, which only allows non-privileged PowerPC instructions, an EABI-con-
forming application program shall be allowed to use any privileged or optional instruction defined
by the PowerPC architecture, with the following exceptions. As in the SVR4 ABI, Fixed-Point
Load and Store Multiple instructions and the Fixed Point Move Assist instructions shall not be al-
lowed in EABI-conforming Little Endian applications.

Data Representation

Fundamental Types

Unlike the SVR4 ABI, the alignment of a long double shall be 8 bytes (doubleword), although the
size of long double shall be 16 bytes.

Aggregates and Unions

Unlike the SVR4 ABI, an array, structure or union containing a long double shall start aligned on
an 8 byte boundary. However, as in the SVR4 ABI, a long double member within a structure or
union shall start at the lowest available offset aligned on a 16 byte boundary, and the size of a
structure or union with a long double member shall be a multiple of 16 bytes.

Function Calling Sequence

Registers

Unlike the SVR4 ABI, GPR2 shall not be reserved for system use, but shall instead be dedicated
to contain thebase of the ELF sections named.sdata2 and.sbss2, if either section exists in an ob-
ject file. The base is an address such that every byte in the section is within a signed 16-bit offset
of that address. This is analogous to the SVR4 ABI’s use of GPR13 to contain_SDA_BASE_,
which is the base of sections.sdata and.sbss. A routine in an ELF shared object file shall not use
GPR2.

Low-Level System Information

6 PowerPC EABI, Version 1.0

The Stack Frame

Unlike the SVR4 ABI, the stack pointer (GPR1) shall maintain 8-byte alignment, from initializa-
tion through all routine calls and dynamic stack space allocation.

Operating System Interface

Unlike the SVR4 ABI, an EABI-conforming entity shall not have operating system interface re-
quirements.

Exception Interface

Unlike the SVR4 ABI, an EABI-conforming entity shall not have exception interface require-
ments.

Process Initialization

Unlike the SVR4 ABI, an EABI-conforming entity shall not have process initialization require-
ments.

Coding Examples

Data Objects

Analogous to the symbol_SDA_BASE_ described in the SVR4 ABI, the symbol_SDA2_BASE_
shall have a value such that the address of any byte in the ELF sections.sdata2 and.sbss2 is with-
in a signed 16-bit offset of_SDA2_BASE_’s value (see “Special Sections” on page 11).

The following discussion of putting data in sections.sdata, .sbss, .sdata2, .sbss2, .PPC.EMB.sdata0,
and.PPC.EMB.sbss0 makes a distinction between defined and external variables. In a source file, a
variable that is not stored on the stack is either adefined variable whose definition is in the file
(e.g., “int Var;” in C) or an external variable that is accessed by code in the file but is not defined
in the file (e.g., “extern int ExVar;”).

A high-level language processor, such as a compiler, shall have a means (e.g., an option) of gener-
ating an ELF object file that conforms to the following rules:

1. Sections.sdata, .sbss, and.sdata2 shall contain at least the following:

• Entries for those defined variables that are globally visible scalars of size 8 or fewer bytes and
whose values will not be changed outside of the program (which excludes C variables that are
volatile).

Low-Level System Information

7 PowerPC EABI, Version 1.0

- Every such defined variable whose initial value is explicitly non-zero and might be changed
by the program shall have a.sdata entry that represents the variable.

- Every such defined variable whose value is initially 0 and might be changed shall have a
.sbss entry or a.sdata entry that represents the variable.

- If the ELF object file generated is not intended to be part of a shared object file, every such
variable whose value cannot be changed by the program (such as a C variable that is const
but not volatile) shall have a.sdata2 entry that represents the variable; otherwise, such con-
stant variables shall have.sdata or .sbss entries, as appropriate.

• Entries produced by the static linker’s resolution of relocation types (see “Relocation Types”
on page 15).

2. The only external variables accessed by the generated code as.sdata, .sbss, .sdata2, .sbss2,
.PPC.EMB.sdata0, or .PPC.EMB.sbss0 entries shall be as follows:

- External variables that are scalars of 8 or fewer bytes, whose values might be changed by
the program, and whose values will not be changed outside of the program, shall be access-
ed as.sdata or .sbss entries. So the address of such a variable will be within a 16-bit signed
offset of_SDA_BASE_, which in a shared object file is the same value as
_GLOBAL_OFFSET_TABLE_, and otherwise is loaded in GPR13 by a conforming application.

- When the object file is not to be part of a shared object file, external variables that are scalars
of 8 or fewer bytes, whose values cannot be changed by the program, and whose values will
not be changed outside of the program, shall be accessed as.sdata2 or .sbss2 entries. In a
shared object file, those constant external variables shall be accessed as.sdata or .sbss en-
tries. So the address of such a variable, when not in a shared object file, will be within a 16-
bit signed offset of_SDA2_BASE_, which is loaded into GPR2 by a conforming application.

Low-Level System Information

8 PowerPC EABI, Version 1.0

For example, consider generating an object file that will not be part of a shared object file from the
following C code fragment:

If the code fragment defines all globally visible variables, a C compiler when conforming to the
rules above would placei_sdata in .sdata, i_sdata2 in .sdata2, andi_sbss_or_sdata and
s_sbss_or_sdata in either .sbss or .sdata, while at the same time generating code that accesses ex-
ternal variabled_sdata_or_sbss using an offset relative to the value of_SDA_BASE_ (which is in
GPR13), accessesd_sdata2 using an offset relative to_SDA2_BASE_ (which is in GPR2), and does
not access any other external variables as.sdata, .sbss, .sdata2, .sbss2, .PPC.EMB.sdata0, or
.PPC.EMB.sbss0 entries.

Except when conforming to the rules above, a conforming C compiler could generate code ac-
cessing external variablesd_any_sdata_or_sbss, f_any_sdata_or_sbss, u_any_sdata_or_sbss, and
cvf_any_sdata_or_sbss relative to the value of_SDA_BASE_, relative to_SDA2_BASE_, or relative
to address 0. (Although section.sdata2 generally is used to hold only constant data.)

Even when conforming to the rules above, as long as section size restrictions are met, any vari-
ables or unnamed data can be in.sdata, .sdata2 or .PPC.EMB.sdata0, and any variables or unnamed
data that are initially 0 can be in.sbss, .sbss2, or .PPC.EMB.sbss0. So a conforming compiler
might placei_any_sdata, s_any_sdata, and vcf_any_sdata in .sdata, .sdata2, or .PPC.EMB.sdata0. A
compiler might be able to puti_any_sbss_or_sdata, s_any_sbss_or_sdata, or vcf_any_sbss_or_sdata
in .sbss, .sbss2, or .PPC.EMB.sbss0, or even explicitly initialize those variables with zeroes and
place them in.sdata, .sdata2, or .PPC.EMB.sdata0. Finally, when not conforming to the rule above
that restricts their placement,i_sdata, i_sdata2, i_sbss_or_sdata ands_sbss_or_sdata could be
placed in other appropriate sections (such as puttingi_sdata in .PPC.EMB.sdata0).

int i_sdata = 1;
const int i_sdata2 = 2;
int i_sbss_or_sdata;
short s_sbss_or_sdata = 0;

extern double d_sdata_or_sbss;
extern const double d_sdata2;

extern double d_any_sdata_or_sbss[50];
extern const float f_any_sdata_or_sbss[200];
extern union my_union u_any_sdata_or_sbss;
extern const volatile float cvf_any_sdata_or_sbss;

int i_any_sdata[100] = { 3 };
static struct my_struct s_any_sdata = { 4, 6 };

volatile const float vcf_any_sdata[5] = { 5 };

int i_any_sbss_or_sdata[100];
static struct my_struct s_any_sbss_or_sdata;

volatile const float vcf_any_sbss_or_sdata[25];

Low-Level System Information

9 PowerPC EABI, Version 1.0

Dynamic Stack Space Allocation

Unlike the SVR4 ABI, the stack pointer (GPR1) shall maintain 8-byte alignment.

DWARF Definition

Unlike the SVR4 ABI, which does not define a debug format, the EABI adopts DWARF as the de-
bugging information format for EABI-conforming applications. An EABI-conforming applica-
tion that uses a debug format shall use either DWARF Version 1.1.0 or DWARF Version 2.0.0.

WARNING: At some future time, use of DWARF Version 1.1.0 by EABI-conforming appli-
cations might be disallowed.

DWARF Register Number Mapping

An EABI-conforming application shall use for both DWARF Version 1.1.0 and DWARF Version
2.0.0 the DWARF register numbering specified in the SVR4 ABI.

Address Class Codes

An EABI-conforming application shall use for both DWARF Version 1.1.0 and DWARF Version
2.0.0 the address class codes specified in the SVR4 ABI.

Object Files

10 PowerPC EABI, Version 1.0

CHAPTER 4 Object Files

Object File Processing

An EABI-conforming static linker shall accept as input EABI-conforming and SVR4-conforming
relocatable object files, and it shall produce EABI-conforming object files.

ELF Header

Machine Information

The ELF header’se_flags member of an EABI-conforming object file shall have bit 0x80000000
set, defined as the nameEF_PPC_EMB.

Object Files

11 PowerPC EABI, Version 1.0

Sections

Special Sections

In addition to the special sections in the SVR4 ABI, an EABI-conforming object file shall be al-
lowed to contain the special sections described below. The SVR4 ABI has reserved for this docu-
ment the section names.sdata2, .sbss2, and those beginning with the string “.PPC.EMB.”.

The special section.sdata2 is intended to hold initialized read-only small data that contribute to
the program memory image. The section can, however, be used to hold writable data. The special
section.sbss2 is intended to hold writable small data that contribute to the program memory im-
age and whose initial values are 0.

The sum of the sizes of sections.sdata2 and.sbss2 in an object file shall not exceed 64K bytes. A
file shall contain at most one section named.sdata2 and at most one section named.sbss2. In an
executable file, data items with local or global scope can be placed into.sdata2 or .sbss2. Sections
.sdata2 and.sbss2 shall not appear in a shared object file.

If an executable file contains a.sdata2 section or a.sbss2 section, then a static linker shall set the
symbol_SDA2_BASE_ to be an address such that the address of any byte in.sdata2 or .sbss2 is
within a 16-bit signed offset of_SDA2_BASE_. If an executable file does not contain.sdata2 or
.sbss2, then a static linker shall set_SDA2_BASE_ to 0.

In the section header for.sdata2:

• sh_type shall beSHT_PROGBITS

• sh_flags shall be eitherSHF_ALLOC or SHF_ALLOC + SHF_WRITE

• sh_link shall beSHN_UNDEF

• sh_addralign shall be the maximum alignment required by any data item in.sdata2

• sh_info andsh_entsize shall be 0

If a static linker creates a.sdata2 section that combines a.sdata2 section whosesh_flags is
SHF_ALLOC with a.sdata2 section whosesh_flags is SHF_ALLOC + SHF_WRITE, then the resulting
.sdata2 section’ssh_flags value shall beSHF_ALLOC + SHF_WRITE.

In the section header for.sbss2:

• sh_type shall beSHT_NOBITS

• sh_flags shall beSHF_ALLOC + SHF_WRITE

• sh_link shall beSHN_UNDEF

• sh_addralign shall be the maximum alignment required by any data item in.sbss2

• sh_info andsh_entsize shall be 0

Object Files

12 PowerPC EABI, Version 1.0

The special section.PPC.EMB.sdata0 is intended to hold initialized small data that contribute to
the program memory image and whose addresses are all within a 16-bit signed offset of address 0.
The special section.PPC.EMB.sbss0 is intended to hold small data that contribute to the program
memory image, whose addresses are all within a 16-bit signed offset of address 0, and whose ini-
tial values are 0.

The sum of the sizes of sections.PPC.EMB.sdata0 and.PPC.EMB.sbss0 in an object file shall not
exceed 64K bytes. A file shall contain at most one section named.PPC.EMB.sdata0 and at most
one section named.PPC.EMB.sbss0. Data items with local or global scope can be placed into
.PPC.EMB.sdata0 or .PPC.EMB.sbss0.

Object Files

13 PowerPC EABI, Version 1.0

In the section header for.PPC.EMB.sdata0:

• sh_type shall beSHT_PROGBITS

• sh_flags shall beSHF_ALLOC + SHF_WRITE

• sh_link shall beSHN_UNDEF

• sh_addralign shall be the maximum alignment required by any data item in.PPC.EMB.sdata0

• sh_info andsh_entsize shall be 0

In the section header for.PPC.EMB.sbss0:

• sh_type shall beSHT_NOBITS

• sh_flags shall beSHF_ALLOC + SHF_WRITE

• sh_link shall beSHN_UNDEF

• sh_addralign shall be the maximum alignment required by any data item in.PPC.EMB.sbss0

• sh_info andsh_entsize shall be 0

The special section.PPC.EMB.seginfo provides a means of naming and providing additional infor-
mation about ELF segments (which are described by ELF program header table entries). A file
shall contain at most one section named.PPC.EMB.seginfo.

Often embedded applications copy the initial values for variables from ROM to RAM at the start
of execution. To facilitate this, a static linker resolves references to the application variables at
their RAM locations, but relocates the variable’s initial values to their ROM locations. An ELF
segment whose raw data (addressed by the program header entry’sp_offset field) consists of initial
values to be copied to the locations of application variables is aROM copy segment. One pur-
pose of.PPC.EMB.seginfo is to define that one segment is a ROM copy of, and thus has the initial
values for, a second segment.

In the section header for.PPC.EMB.seginfo:
• sh_type shall beSHT_PROGBITS

• sh_link shall be eitherSHN_UNDEF or the section header table index of a section of type
SHT_STRTAB whose string table contains the null terminated names to which entries in
.PPC.EMB.seginfo refer

• sh_entsize shall be 12

• sh_flags, sh_addr, sh_info, andsh_addralign shall be 0
The raw data for section.PPC.EMB.seginfo shall contain only 12-byte entries whose C structure is:

typedef struct {
Elf32_Half sg_indx;
Elf32_Half sg_flags;
Elf32_Word sg_name;
Elf32_Word sg_info;

} Elf32_PPC_EMB_seginfo;

Object Files

14 PowerPC EABI, Version 1.0

where:
• sg_indx shall be the index number of a segment in the program header table. Program header ta-

ble entries are considered to be numbered from 0 ton-1, wheren is the number of table entries.

• sg_flags shall be a bit mask of flags. The only allowed flag shall be the following:

• sg_name shall be the offset into the string table where the null terminated name for the segment
indexed bysg_indx is found. The section index of the string table to be used is in thesh_link field
of .PPC.EMB.seginfo’s section header. Ifsh_link is SHN_UNDEF, thensg_name shall be 0 for all
.PPC.EMB.seginfo entries. Ansg_name value of 0 shall mean that the segment indexed by
sg_indx has no name.

• sg_info shall contain information that depends on the value ofsg_flags. If the flag
PPC_EMB_SG_ROMCOPY is set insg_flags, thensg_info shall be the index number of the seg-
ment for which the segment indexed bysg_indx is a ROM copy; otherwise, the value ofsg_info
shall be 0.

If one segment is a ROM copy of a second segment (based on information in section
.PPC.EMB.seginfo), then:

• The first segment’sp_type value shall bePT_LOAD.

• The second segment’sp_type value shall bePT_NULL.

• EXTENDED None of the relocation entries that a dynamic linker might resolve shall refer to a
location in the segment that is the ROM copy of another segment.

If the section exists,.PPC.EMB.seginfo shall contain at least one entry but need not contain an en-
try for every segment. Entries shall be in the same order as their corresponding segments in the
ELF program header table (increasing values ofsg_indx). Only one.PPC.EMB.seginfo entry shall
be allowed per segment.

A static linker may support creation of section.PPC.EMB.seginfo, and, if it supports creation, it
may support only segment naming, only ROM copy segments, or both.

Flag Name Value Meaning
PPC_EMB_SG_ROMCOPY 0x0001 segment indexed bysg_indx is a ROM

copy of the segment indexed bysg_info

Object Files

15 PowerPC EABI, Version 1.0

Relocation

Relocation Types

A static linker shall support all SVR4 ABI relocation types except for those listed in Table 4-1.

EXTENDED A static linker shall support all SVR4 ABI relocation types, including those in
Table 4-1, and a dynamic linker shall support all SVR4 ABI relocation types ap-
propriate to dynamic linking.

Table 4-2 lists the new relocation types defined by the EABI. The headingCheck denotes wheth-
er the link shall fail if the value computed does not fit in the allocated bits.

A static linker shall support all relocation types in Table 4-2 and shall not accept a relocation entry
whose relocation type is not defined in either Table 4-2 or the SVR4 ABI.

EXTENDED A dynamic linker shall not process a relocation entry whose relocation type is not
defined in either Table 4-2 or the SVR4 ABI.

TABLE 4-1. SVR4 ABI Relocation Types for
Extended Conformance

R_PPC_GOT16

R_PPC_GOT16_LO

R_PPC_GOT16_HI

R_PPC_GOT16_HA

R_PPC_PLT24

R_PPC_COPY

R_PPC_GLOB_DAT

R_PPC_JMP_SLOT

R_PPC_LOCAL24PC

R_PPC_PLT32

R_PPC_PLTREL32

R_PPC_PLT16_LO

R_PPC_PLT16_HI

R_PPC_PLT16_HA

Object Files

16 PowerPC EABI, Version 1.0

The relocatable fields of EABI relocation types shall have no alignment restrictions. Fields in
Table 4-2 shall have the following meanings (since fields can be unaligned, names start with ‘u’):

• uword32 32-bit field occupying 4 bytes

• ulow21 21-bit field occupying the least significant bits of the 24-bit field pointed to by the
relocation entry

• uhalf16 16-bit field occupying 2 bytes (e.g., Add Immediate instruction’s immediate field)

Calculations in Table 4-2 use the following symbols:

• A relocation entry’sr_addend field value

• S address (value) of the symbol whose index is in the relocation entry’sr_info field

• T offset from_SDA_BASE_ to where in.sdata the static linker placed the address of the sym-
bol whose index is inr_info. SeeR_PPC_EMB_SDAI16 description below.

• U offset from_SDA2_BASE_ to where in.sdata2 the static linker placed the address of the
symbol whose index is inr_info. SeeR_PPC_EMB_SDA2I16 description below.

• V offset to the symbol whose index is inr_info from the start of that symbol’s containing sec-
tion

• W address of the start of the section containing the symbol whose index is inr_info

Calculations in Table 4-2 use the following notation:

• “+” and “-” denote 32-bit modulus addition and subtraction, respectively. “>>” denotes arith-
metic right shifting (shifting with sign copying) of the value of the left operand by the number
of bits given by the right operand.

• For relocation types whose names contain the string “14” or the string “16”, the upper 17 bits of
the value computed before shifting must all be the same.

• #hi(value) and #lo(value) denote the most and least significant 16 bits, respectively, of the val-
ue. That is, #lo(x) = (x & 0xFFFF) and #hi(x) = ((x >> 16) & 0xFFFF). #ha(value) compensates
for treating #lo() as a signed number. #ha(x) = (((x >> 16) + ((x >> 15) & 0x1)) & 0xFFFF).

Object Files

17 PowerPC EABI, Version 1.0

R_PPC_EMB_SDAI16 This instructs a static linker to create a 4-byte, word aligned, entry in
the .sdata section containing the address of the symbol whose index is
in the relocation entry’sr_info field. At most one such implicit.sdata en-
try shall be created per symbol per link, and only in an executable or
shared object file. In addition, the value used in the relocation calcula-
tion shall be the offset from_SDA_BASE_ to the symbol’s implicit en-
try. The relocation entry’sr_addend field value shall be 0.

R_PPC_EMB_SDA2I16 This instructs a static linker to create a 4-byte, word aligned, entry in
the.sdata2 section containing the address of the symbol whose index is
in r_info. At most one such implicit.sdata2 entry shall be created per
symbol per link, and only in an executable file. In addition, the value
used in the relocation calculation shall be the offset from
_SDA2_BASE_ to the symbol’s implicit entry. The relocation entry’s
r_addend field value shall be 0.

R_PPC_EMB_SDA21 The most significant 3 bits at the address pointed to by the relocation
entry shall be left unchanged. If the symbol whose index is inr_info is

TABLE 4-2. EABI Relocation Types

Relocation Type Value Field Check Calculation

R_PPC_EMB_NADDR32 101 uword32 N (A - S)

R_PPC_EMB_NADDR16 102 uhalf16 Y (A - S)

R_PPC_EMB_NADDR16_LO 103 uhalf16 N #lo(A - S)

R_PPC_EMB_NADDR16_HI 104 uhalf16 N #hi(A - S)

R_PPC_EMB_NADDR16_HA 105 uhalf16 N #ha(A - S)

R_PPC_EMB_SDAI16 106 uhalf16 Y T

R_PPC_EMB_SDA2I16 107 uhalf16 Y U

R_PPC_EMB_SDA2REL 108 uhalf16 Y S + A - _SDA2_BASE_

R_PPC_EMB_SDA21 109 ulow21 N See below

R_PPC_EMB_MRKREF 110 none N See below

R_PPC_EMB_RELSEC16 111 uhalf16 Y V + A

R_PPC_EMB_RELST_LO 112 uhalf16 N #lo(W + A)

R_PPC_EMB_RELST_HI 113 uhalf16 N #hi(W + A)

R_PPC_EMB_RELST_HA 114 uhalf16 N #ha(W + A)

R_PPC_EMB_BIT_FLD 115 uword32 Y See below

R_PPC_EMB_RELSDA 116 uhalf16 Y See below

Object Files

18 PowerPC EABI, Version 1.0

contained in.sdata or .sbss, then a static linker shall place in the next
most significant 5 bits the value 13 (for GPR13); if the symbol is in
.sdata2 or .sbss2, then the linker shall place in those 5 bits the value 2
(for GPR2); if the symbol is in.PPC.EMB.sdata0 or .PPC.EMB.sbss0,
then the linker shall place in those 5 bits the value 0 (for GPR0); other-
wise, the link shall fail. The least significant 16 bits of this field shall be
set to the address of the symbol plus the relocation entry’sr_addend val-
ue minus the appropriate base for the symbol’s section:_SDA_BASE_
for a symbol in.sdata or .sbss, _SDA2_BASE_ for a symbol in.sdata2 or
.sbss2, or 0 for a symbol in.PPC.EMB.sdata0 or .PPC.EMB.sbss0.

R_PPC_EMB_MRKREF The symbol whose index is inr_info shall be in a different section from
the section associated with the relocation entry itself. The relocation
entry’sr_offset andr_addend fields shall be ignored. Unlike other relo-
cation types, a static linker shall not apply a relocation action to a loca-
tion because of this type. This relocation type is used to prevent a static
linker that does section garbage collecting from deleting an important
but otherwise unreferenced section.

R_PPC_EMB_BIT_FLD The most significant 16 bits of the relocation entry’sr_addend field
shall be a value between 0 and 31, representing a Big Endian bit posi-
tion within the entry’s 32-bit location (e.g., 6 means the sixth most sig-
nificant bit). The least significant 16 bits ofr_addend shall be a value
between 1 and 32, representing a length in bits. The sum of the bit posi-
tion plus the length shall not exceed 32. A static linker shall replace bits
starting at the bit position for the specified length with the value of the
symbol, treated as a signed entity.

R_PPC_EMB_RELSDA The static linker shall set the 16-bits at the address pointed to by the re-
location entry to the address of the symbol whose index is inr_info plus
the value ofr_addend minus the appropriate base for the section con-
taining the symbol:_SDA_BASE_ for a symbol in.sdata or .sbss,
_SDA2_BASE_ for a symbol in.sdata2 or .sbss2, or 0 for a symbol in
.PPC.EMB.sdata0 or .PPC.EMB.sbss0. If the symbol is not in one of
those sections, the link shall fail.

Program Loading and Dynamic Linking

19 PowerPC EABI, Version 1.0

CHAPTER 5 Program Loading and
Dynamic Linking

Program Loading

Unlike the SVR4 ABI, an EABI-conforming entity shall not have program loading requirements.

Program Interpreter

Unlike the SVR4 ABI, an EABI-conforming entity shall not have program interpreter require-
ments.

Libraries

20 PowerPC EABI, Version 1.0

CHAPTER 6 Libraries

SVR4 Library Routines

The chapter “LIBRARIES” in theSystem V Application Binary Interface, PowerPC Processor
Supplement describes optional and required routines for the SVR4 libsys and libc libraries. An
EABI-conforming library routine whose name matches the name of a routine described in chapter
“LIBRARIES” (__va_arg, __dtou, and the routines in Tables 6-1 through 6-5) shall have the inter-
face and semantics described in the SVR4 ABI. If any routine in Table 6-1, 6-2, 6-3,
6-4, or 6-5 is supported, then all other routines in the same table shall be supported.

TABLE 6-1. SVR4 ABI libsys 16-Byte Float Routines

_q_add _q_cmp _q_cmpe _q_div

_q_dtoq _q_feq _q_fge _q_fgt

_q_fle _q_flt _q_fne _q_itoq

_q_mul _q_neg _q_qtod _q_qtoi

_q_qtos _q_qtou _q_sqrt _q_stoq

_q_sub _q_utoq

Libraries

21 PowerPC EABI, Version 1.0

Software Floating Point Emulation Support Routines

A high-level language processor, such as a compiler, may have a means of achieving floating
point arithmetic, comparisons, loads, and stores by generating software floating point emulation
(sfpe) code, rather than using PowerPC floating point instructions. A language processor that sup-
ports sfpe code may support conversions between floating point and 64-bit integer (e.g., C’s long
long) data types. In sfpe code:

• Floating point registers, the FPSCR, and any PowerPC register bits that could cause a floating
point exception shall not be accessed.

• Floating point single precision scalars shall be passed the same as, be returned the same as, and
have the same alignment as long int scalars. Single precision members of aggregates shall have
the size and alignment of long int members.

• Floating point double precision scalars shall be passed the same as, be returned the same as, and
have the same alignment as long long scalars. Double precision members of aggregates shall
have the size and alignment of long long members.

• A caller of a function that takes a variable argument list shall not set condition register bit 6 to 1,
since no arguments are passed in the floating-point registers.

TABLE 6-2. SVR4 ABI libsys 8-Byte Integer Arithmetic
Routines

__div64 __dtoll __dtoull __rem64

__udiv64 __urem64

TABLE 6-3. SVR4 ABI libsys 8-Byte Integer to/from
16-Byte Float Routines

_q_lltoq _q_qtoll _q_qtoull _q_ulltoq

TABLE 6-4. SVR4 ABI libc 8-Byte Integer to/from
String Routines

atoll lltostr strtoll strtoull

ulltostr wstoll

TABLE 6-5. SVR4 ABI libc 8-Byte Integer Arithmetic
Routines

llabs lldiv

Libraries

22 PowerPC EABI, Version 1.0

The following restrictions shall apply to each of the sfpe support routines below, which are in-
tended to be called by application sfpe code:

• The routines shall be sfpe code. E.g., float and double in the descriptions mean sfpe single preci-
sion and double precision scalars, respectively, and no floating point registers will be accessed.

• Floating point arithmetic and comparisons by the routines shall be IEEE 754 conformant.

• Floating point arithmetic and comparisons by the routines shall be performed as if all PowerPC
floating point exceptions have been disabled and shall not raise floating point exceptions.

Conformant library support of sfpe code shall include all of routines in Table 6-6 (routine inter-
faces are shown as C function prototypes).

int _fp_round(int rounding_mode)

This function shall set the rounding mode for sfpe library routines. Ifrounding_mode is 0,
then round to nearest shall be requested;rounding_mode of 1 shall request round toward 0;
rounding_mode of 2 shall request round toward positive infinity;rounding_mode of 3
shall request round toward negative infinity. This function shall return the resulting rounding
mode (0 for round to nearest, etc.) - which shall berounding_mode if that rounding mode is
supported by the sfpe library routines. Only round to nearest (this function returns 0) shall be
required for conformance.

TABLE 6-6. SFPE Library Routines

_fp_round

_d_add _d_cmp _d_cmpe _d_div

_d_dtof _d_dtoi _d_dtoq _d_dtou

_d_feq _d_fge _d_fgt _d_fle

_d_flt _d_fne _d_itod _d_mul

_d_neg _d_qtod _d_sub _d_utod

_f_add _f_cmp _f_cmpe _f_div

_f_feq _f_fge _f_fgt _f_fle

_f_flt _f_fne _f_ftod _f_ftoi

_f_ftoq _f_ftou _f_itof _f_mul

_f_neg _f_qtof _f_sub _f_utof

Libraries

23 PowerPC EABI, Version 1.0

double _d_add(double a, double b)

This function shall returna + b computed to double precision.
int _d_cmp(double a, double b)

This function shall perform an unordered comparison of the double precision values ofa and
b and shall return an integer value that indicates their relative ordering:

int _d_cmpe(double a, double b)

This function shall perform an ordered comparison of the double precision values ofa andb
and shall return an integer value that indicates their relative ordering:

double _d_div(double a, double b)

This function shall returna / b computed to double precision.
float _d_dtof(double a)

This function shall convert the double precision value ofa to single precision and shall return
the single precision value.
int _d_dtoi(double a)

This function shall convert the double precision value ofa to a signed integer by truncating
any fractional part and shall return the signed integer value.
long double _d_dtoq(double a)

This function shall convert the double precision value ofa to extended precision and shall re-
turn the extended precision value.
unsigned int _d_dtou(double a)

This function shall convert the double precision value ofa to an unsigned integer by truncat-
ing any fractional part and shall return the unsigned integer value.
int _d_feq(double a, double b)

This function shall perform an unordered comparison of the double precision values ofa and
b and shall return 1 if they are equal, and 0 otherwise.

Relation Value

a equal tob 0

a less thanb 1

a greater thanb 2

a unordered with respect tob 3

Relation Value

a equal tob 0

a less thanb 1

a greater thanb 2

Libraries

24 PowerPC EABI, Version 1.0

int _d_fge(double a, double b)

This function shall perform an ordered comparison of the double precision values ofa andb
and shall return 1 ifa is greater than or equal tob, and 0 otherwise.
int _d_fgt(double a, double b)

This function shall perform an ordered comparison of the double precision values ofa andb
and shall return 1 ifa is greater thanb, and 0 otherwise.
int _d_fle(double a, double b)

This function shall perform an ordered comparison of the double precision values ofa andb
and shall return 1 ifa is less than or equal tob, and 0 otherwise.
int _d_flt(double a, double b)

This function shall perform an ordered comparison of the double precision values ofa andb
and shall return 1 ifa is less thanb, and 0 otherwise.
int _d_fne(double a, double b)

This function shall perform an unordered comparison of the double precision values ofa and
b and shall return 1 if they are unordered or not equal, and 0 otherwise.
double _d_itod(int a)

This function shall convert the signed integer value ofa to double precision and shall return
the double precision value.
double _d_mul(double a, double b)

This function shall returna * b computed to double precision.
double _d_neg (double a)

This function shall return-a .
double _d_qtod(const long double *a)

This function shall convert the extended precision value ofa to double precision and shall re-
turn the double precision value.
double _d_sub(double a, double b)

This function shall returna - b computed to double precision.
double _d_utod(unsigned int a)

This function shall convert the unsigned integer value ofa to double precision and shall return
the double precision value.

Libraries

25 PowerPC EABI, Version 1.0

float _f_add(float a, float b)

This function shall returna + b computed to single precision.
int _f_cmp(float a, float b)

This function shall perform an unordered comparison of the single precision values ofa andb
and shall return an integer value that indicates their relative ordering:

int _f_cmpe(float a, float b)

This function shall perform an ordered comparison of the single precision values ofa andb
and shall return an integer value that indicates their relative ordering:

float _f_div(float a, float b)

This function shall returna / b computed to single precision.
int _f_feq(float a, float b)

This function shall perform an unordered comparison of the single precision values ofa andb
and shall return 1 if they are equal, and 0 otherwise.
int _f_fge(float a, float b)

This function shall perform an ordered comparison of the single precision values ofa andb
and shall return 1 ifa is greater than or equal tob, and 0 otherwise.
int _f_fgt(float a, float b)

This function shall perform an ordered comparison of the single precision values ofa andb
and shall return 1 ifa is greater thanb, and 0 otherwise.
int _f_fle(float a, float b)

This function shall perform an ordered comparison of the single precision values ofa andb
and shall return 1 ifa is less than or equal tob, and 0 otherwise.
int _f_flt(float a, float b)

This function shall perform an ordered comparison of the single precision values ofa andb
and shall return 1 ifa is less thanb, and 0 otherwise.

Relation Value

a equal tob 0

a less thanb 1

a greater thanb 2

a unordered with respect tob 3

Relation Value

a equal tob 0

a less thanb 1

a greater thanb 2

Libraries

26 PowerPC EABI, Version 1.0

int _f_fne(float a, float b)

This function shall perform an unordered comparison of the single precision values ofa andb
and shall return 1 if they are unordered or not equal, and 0 otherwise.
double _f_ftod(float a)

This function shall convert the single precision value ofa to double precision and shall return
the double precision value.
int _f_ftoi(float a)

This function shall convert the single precision value ofa to a signed integer by truncating
any fractional part and shall return the signed integer value.
long double _f_ftoq(float a)

This function shall convert the single precision value ofa to extended precision and shall re-
turn the extended precision value.
unsigned int _f_ftou(float a)

This function shall convert the single precision value ofa to an unsigned integer by truncating
any fractional part and shall return the unsigned integer value.
float _f_itof(int a)

This function shall convert the signed integer value ofa to single precision and shall return
the single precision value.
float _f_mul(float a, float b)

This function shall returna * b computed to single precision.
float _f_neg (float a)

This function shall return-a .
float _f_sub(float a, float b)

This function shall returna - b computed to single precision.
float _f_utof(unsigned int a)

This function shall convert the unsigned integer value ofa to single precision and shall return
the single precision value.

Libraries

27 PowerPC EABI, Version 1.0

Conformant library support of sfpe code may include the routines in Table 6-7, which convert be-
tween floating point and 64-bit integer data types (e.g., C’s long long), and shall include all of
them if any is included.

long long _d_dtoll(double a)

This function shall convert the double precision value ofa to a signed long long by truncating
any fractional part and shall return the signed long long value.
unsigned long long _d_dtoull(double a)

This function shall convert the double precision value ofa to an unsigned long long by trun-
cating any fractional part and shall return the unsigned long long value.
double _d_lltod(long long a)

This function shall convert the signed long long value ofa to double precision and shall return
the double precision value.
double _d_ulltod(unsigned long long a)

This function shall convert the unsigned long long value ofa to double precision and shall re-
turn the double precision value.
long long _f_ftoll(float a)

This function shall convert the single precision value ofa to a signed long long by truncating
any fractional part and shall return the signed long long value.
unsigned long long _f_ftoull(float a)

This function shall convert the single precision value ofa to an unsigned long long by truncat-
ing any fractional part and shall return the unsigned long long value.
float _f_lltof(long long a)

This function shall convert the signed long long value ofa to single precision and shall return
the single precision value.
float _f_ulltof(unsigned long long a)

This function shall convert the unsigned long long value ofa to single precision and shall re-
turn the single precision value.

TABLE 6-7. SFPE Library Routines Supporting 64-bit Integer Data Types

_d_dtoll _d_dtoull _d_lltod _d_ulltod

_f_ftoll _f_ftoull _f_lltof _f_ulltof

EABI Summary

28 PowerPC EABI, Version 1.0

APPENDIX A EABI Summary

Table A-1 lists topics that are addressed differently in the EABI and the SVR4 ABI. Table A-2
lists topics in the EABI that are not in the SVR4 ABI. Table A-3 lists the additional requirements
for EABI extended conformance over EABI base conformance. Table A-4 lists EABI topics for
which support is optional. Table A-5 lists SVR4 ABI topics for which there are no EABI require-
ments. Page numbers refer to EABI pages.

TABLE A-1. Different in EABI and SVR4 ABI

Page Topic EABI SVR4 ABI

5 PowerPC instruction set
use

privileged and optional
instructions allowed

privileged and optional
instructions not allowed

5 long double scalar 8-byte aligned 16-byte aligned

5 struct/union containing
long double

starts 8-byte aligned starts 16-byte aligned

5 GPR2 usage dedicated pointer to.sdata2
and.sbss2 sections

reserved for system use

6 stack pointer value multiple of 8
(stack is 8-byte aligned)

multiple of 16
(stack is 16-byte aligned)

6 language processor (e.g.,
compiler) support of
.sdata and.sbss sections

some required capabilities only optional capabilities

9 dynamic stack allocation
(e.g., byalloca)

8-byte aligned 16-byte aligned

15 SVR4 relocation types linker support of certain
types optional, except in
extended conformance
(See Table A-3.)

linker support of all types
required

20 libsys and libc library
routines

support optional
(See Table A-4.)

some required and some
optional routines

EABI Summary

29 PowerPC EABI, Version 1.0

TABLE A-2. EABI Unique

Page Topic Description

6 symbol_SDA2_BASE_ value within 16-bit signed offset of all .sdata2/.sbss2
bytes

9 debug format DWARF Version 1.1.0 or DWARF Version 2.0.0

11 .sdata2 and.sbss2 sections small data area (64K or fewer bytes) pointed to by
GPR2; some required language processor support

12 .PPC.EMB.sdata0 and
.PPC.EMB.sbss0 sections

small data area within 16-bit signed offset of address 0

13 .PPC.EMB.seginfo section created by static linker to name segments or
declare one segment is ROM copy of a second; support
for creation optional, and creating linker may support
just naming, just ROM copies, or both (See Table A-4.)

15 EABI relocation types several required relocation types

21 software floating point
emulation (sfpe)

optionally supported language processor code genera-
tion restrictions and library routines for achieving float-
ing point without using native PowerPC floating point;
sfpe library support requires all single and double preci-
sion routines, and, if any 64-bit integer routine is sup-
ported, all such routines must be supported
(See Table A-4.)

TABLE A-3. EABI Extended Conformance

Page Description

4 dynamic linking as in SVR4 ABI

4 global offset tables as in SVR4 ABI

4 procedure linkage tables as in SVR4 ABI

4 shared objects as in SVR4 ABI

14 static linker supporting optional ROM copy segments ensures
that relocation entries resolved by dynamic linkers do not refer
to locations in a ROM copy segment

15 linker support of all SVR4, as well as all EABI, relocation types

EABI Summary

30 PowerPC EABI, Version 1.0

TABLE A-4. EABI Optional Support

Page Description

14 static linker creation of.PPC.EMB.seginfo, and whether a linker
supporting creation allows only segment naming, only ROM
copy segments, or both.

21 language processor (e.g. compiler) generation of software float-
ing point emulation (sfpe) code, and whether such generation
includes conversions between floating point and 64-bit integer
data types

27 inclusion in libraries that support sfpe code of routines that con-
vert between floating point and 64-bit integer data types

TABLE A-5. SVR4 ABI Unique

exception interface

operating system interface

process initialization

program interpreter

program loading

software distribution and installation

