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Abstract

Since 1998, StackGuard patches to GCC have
been used to protect entire distributions from
stack smashing buffer overflows. Performance
overhead and software compatibility issues
have been minimal. In its history, the parts
of GCC that StackGuard has operated in have
twice changed enough to require complete
overhauls of the StackGuard patch. Since
StackGuard is a mature technology, even see-
ing re-implementations in other compilers, we
propose that GCC adopt StackGuard as a stan-
dard feature. This paper describes our recent
work to bring StackGuard fully up to date with
current GCC, introduce architecture indepen-
dence, and extend the protection of stack data
structures, while keeping the StackGuard patch
as small, simple, and modular as possible.

1 Introduction

Despite years of punditry, source code au-
dits, and many layers of proposed technology,
buffer overflows arestill the leading cause of
software vulnerability. This paper describes
the motives and technical issues of incorporat-
ing the StackGuard [6] stack smash defense as
a standard feature of GCC.

∗This work supported by DARPA Contract F30602-
01-C-0172.

†nee WireX Communications, Inc.

Thestack smashingvariety of buffer overflow
[14] is its most common subtype, and the most
readily treatable. A stack smash attack gains
control of a thread in an address space by over-
writing control information—such as a return
address—on its stack.

The common way for the attacker to overwrite
values stored on the stack is to use abuffer
overflow, where large inputs are used to cause
more data to be written to an area of memory
than space has been allocated. StackGuard pro-
tects against stack smash attacks resulting from
buffer overflows, but also those resulting from
anysequential write through memory.

To detect corrupted control information in pro-
cedure activation records, StackGuard adds a
location that it calls a “canary”1 to the stack
layout to hold a special guard value. Tradition-
ally, the layout of that section of the stack has
been determined by functionprologueandepi-
loguecode generators, which are architecture
specific. As a result, StackGuardimplemen-
tations have also been architecture specific.
As time has passed, these parts of GCC have
become more abstract, requiring repeated re-
implementations of StackGuard, but the ability
to modify stack layout in a platform indepen-
dent way has been lacking.

A new version of StackGuard has been imple-

1Alluding to the canary Welsh miners used to detect
air problems before the miners could.
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mented for modern versions of GCC. It now
guardsall the information in the control re-
gion of all procedure activation records gener-
ated by the./gcc back end of the GCC com-
piler suite (C, C++,etc.). That is, the saved
registers and saved frame pointer are are now
protected in addition to the return address for
every procedure. Stack layout to provide the
canarylocation is still left to the architecture
specific function prologue and epilogue code
generators. The rest of StackGuard is now ar-
chitecture independent.

This new StackGuard has been successfully
used in conjunction with other security hard-
ening technologies to rebuild the Red Hat 7.3
distribution (GCC 2.96-113). The StackGuard
patch has also been applied to the source for
GCC 3.2-7 used in the Red Hat 8 distribution
to rebuild both the compiler and GLIBC.

In accordance with the principle of default
deny [15] StackGuard makes a point to apply
the guarding technology toeveryprocedure in
a distribution. In this fashion, StackGuard is a
security optimizationthat transformsall emit-
ted code to deny a class of attacks. It also
shows the soundness of the transformation by
showing that the distribution works the same
after the transformation as it did before. Pick-
ing and choosing which procedures receive the
transformation is aperformance optimization
that, based onassumptionsabout the nature
of the security threat, trades some security for
performance.

StackGuard strives to be the essence of the
“guard the control information” security opti-
mization that is capable of being applied to ev-
ery procedure on a system. Given the negligi-
ble performance impact of the complete trans-
formation [5, 7], we have never seen the need
to apply any additional performance optimiza-
tions. Unfortunately, there persists the mis-
taken impression that StackGuard produces a

significant performance impact [1].2

This paper describes the issues to be consid-
ered for including StackGuard as a standard
feature in GCC. In keeping with good modu-
lar design principles, we emphasize the consid-
erations specific to the stack smash detection
technique to keep that problem small and sepa-
rate. In particular, the guarding technology can
be used, with compiler support, to guard other
regions of memory. Its design and implemen-
tation should not be unnecessarily tied to the
specific use as a Stack Smash detector, though
that’s all that is discussed in this paper.

The rest of this paper is as follows. Section 2
describes compiler work to date on the buffer
overflow problem. Section 3 describes the de-
sign of our proposed feature for GCC. Sec-
tion 4 describes our current implementation of
this design in GCC 3.2. Section 5 presents
our performance benchmarks, supporting our
claim that this feature is low-cost. Section 6
describes our on-going security testing. Sec-
tion 7 presents our conclusion. Section 8 de-
scribes the availability of the StackGuard tech-
nology.

2 Background and related work

Aleph One’s paper [14] presented a cook book
for the “stack smashing” variety of buffer over-
flows, in which the attacker overflows a stack
buffer to change the return address in an acti-
vation record to point to malicious code con-
tained in that self same overflow. In the gen-
eral case, the attacker wants to inject mali-
cous code, and alter control flow structures so
that the program will jump to the malicious
code. The stack smash is an elegant attack that

2The performance issues shown in the Libsafe pa-
per result from selected benchmarks (quicksort) that
emphasize where StackGuard imposes overhead (func-
tion calls) and ignores where Libsafe imposes overhead
(string functions).
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achieves both objectives in a single stroke by
exploting a very common programming error
(weak bounds checking on fixed sized stack
buffers). However, the attacker onlyneedsto
change control flow, because subvertable code
(capable of performing the moral equivalent of
“exec(sh) ” for the attacker) is often already
resident in the victim program’s address space.

Since Aleph One’s paper appeared, there has
been a lot of work to defend against buffer
overflows, interceding in the operating sys-
tem [9, 8, 11, 17], system libraries [16, 1],
and compilers [6, 12, 13, 10, 19]. These tech-
niques variously try to prevent the modification
of control flow paths, prevent the injection of
malicious code, or both [7].

Because we are proposing a GCC enhance-
ment, we consider only compiler defenses.
Compiler defenses can in turn be divided into
array bounds checking (which prevents buffer
overflows, described in Section 2.1) and data
integrity checking (which detects buffer over-
flows in time to prevent attacks from succeed-
ing, described in Sections 2.2).

2.1 Bounds Checking

Array bounds checking is the ultimate way to
eliminate buffer overflows. Unfortunately, the
design and idioms of the C language make
it difficult to provide for fully secure array
bounds checking while preserving reasonable
legacy compatibility and reasonable perfor-
mance.

The Compaq C compiler for Tru64 UNIX [3]
is an example of incomplete protection. The
compiler has an option to perform bounds
checking, but it only does so onexplicit array
references; pointer references are not checked.
Since all arrays passed as function arguments
are converted to pointers, this means that ar-
ray bounds checking is effectively limited to

strictly local variables, and the security value
of the feature is low.

The Jones and Kelly GCC enhancement [12,
18] is an example of compromised perfor-
mance. This GCC enhancement provides com-
plete array bounds checking, even for pointer
references, and maintains the current size of a
pointer as a machine word. They achieve this
through an associative lookup on each pointer
reference to an array descriptor that stores the
base and bounds. Performance penalties are
high, approximately 10X to 30X slowdown.

The Bounded Pointers project [13] is an exam-
ple of compromised compatibility. Rather than
associative lookup, Bounded Pointers changes
pointers from a single word into a tuple that
incorporates base and bounds. This improves
performance by eliminating the associative
lookup in Jones and Kelly, but also costs com-
patibility because pointers no longer fit in a sin-
gle word. Performance penalties are still high
at approximately 5X slowdown. It is conjec-
tured that this slowdown could be substantially
reduced, but unlikely that the penalty would
reach the low percent range.

2.2 Integrity Checking

The first integrity checking mechanism was
Snarski’s libc [16] that checked the integrity of
activation records within libc functions. Stack-
Guard [6] generalized this notion with a com-
piler enhancement to check the integrity ofall
activation records. These methods ornament
activation records as they are built with data
structures that cannot survive stack smashing
attacks, so that when the function tries to re-
turn, it can detect that the activation record
has been corrupted. Upon detection, the pro-
gram issues an intrusion attempt alert and exits,
rather than handing control to the attacker.

There have been three major releases of Stack-
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Guard. StackGuard 1 was a patch to GCC
2.72, hooking directly into theprologue and
epilogue code generation functions to emit
StackGuard canary generation and verification
code into function set up and tear down. Stack-
Guard 2 was a complete re-write, providing an
enhancement to GCC 2.92, this time imple-
mented as modified RTL generation for func-
tion setup and tear down. StackGuard 3, pre-
sented here, is another complete re-write to ac-
comodate GCC 2.95 and newer.

There are two significant reimplementations of
StackGuard: Propolice and Visual C++.net.

OpenBSD’s Propolice implements something
very much like the StackGuard defense as an
enhancement to GCC, and provides a impor-
tant and very interesting contrast with its dif-
ferences:

• To a large extent, Propolice and Stack-
Guard have independently converged,
from opposite directions, on doing the
guarding code inserts at the RTL level.3

But they haven’t quite met in the middle—
Propolice does the inserts at a much ear-
lier pass in the compiler.

• Propolice places the canary word, as
a buffer overflowdetector, only at the
top of auto variable regions containing
“buffers”.4 StackGuard places the canary
word, as astack smashdetector, at the bot-
tom ofeverycontrol region.

• Propolice uses random canaries. Stack-
Guard uses terminator canaries.

• Propolice provides variable sorting—
moving somecharacter arrays above all

3Propolice started at the AST level, while Stack-
Guard started at the architecture specific function pro-
logue and epilogue backend level.

4Currently, this appears to be defined as character ar-
rays of greater than 4.

other data types—to make it difficult to
overflow into adjacentvariables. Stack-
Guard makes no assumptions about the
starting point of runaway sequential over-
writes of the stack, leaving security op-
timized stack layouts to separate mecha-
nisms, such as Propolice.

• Propolice appears to move significantly
towards a universal, architecture indepen-
dent, stack layout. It even goes as far as to
move saved registers into the autovariable
region. StackGuard goes to great pains to
try to leave the stack layout as close to the
way it was as possible.

• Propolice modifies far older versions of
GCC than StackGuard.5

Propolice’s design decisions present different
trade-offs than StackGuard:

• By doing the code inserts well before
sibling and tail recursion is recognized,
Propolice has no way to insert canary
checks before the function exits points
produced by the external branches. Stack-
Guard makes a point of doing these inser-
tions also.

• By depending on thecoincidentaladja-
cency of the autovariable region and the
control region on the stack, Propolice
gives the appearance of guarding the con-
trol region from buffer overflows that it
detects leaving the autovariable region.
But thisimplicit invariant isn’t maintained
across compositions with other security
and performance oriented transformations
that affect stack layout.

• The apparent strengths and weaknesses of
both terminator and random canaries are
discussed in Section 3.1.

5OpenBSD’s GCC 2.95.3 20010125vs.Redhat 7.3’s
GCC 2.96-113 and Redhat 8.0’s GCC 3.2.2-2.
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• Nothing requires string writes to start in
a char buffer. When an exploit finds such
an opportunity, Propolice will stop it only
if it’s lucky. StackGuard will stop it by
its design thatall stack smashes should be
detected.

• Propolice’s buffer overflow detector be-
comes quite different than StackGuard’s
stack smash detector when alternate stack
layouts, involving multiple stacks, stacks
growing upward, heap allocated stacks,
etc. are considered. Both are useful:
Propolice detects buffer overflows that
aren’t stack smashes, and StackGuard de-
tects stack smashes that aren’t buffer over-
flows.

• By moving saved registers into the auto-
variable region, Propolice appears to as-
sume that saved registers have the same
dynamic scope rules as autovariables.
This is not necessarily true for tail calls,
where it would be correct to restore saved
registers, but not correct, in general, to
deallocate autovariables.6

• Propolice’s changing of the stack layout
could disrupt other tools that do stack in-
trospection, such as GDB and JIT-styled
JVM’s.7 StackGuard goes to pains to be
invisible to such tools.

• It’s unknown how well Propolice ports
to current versions of GCC. StackGuard
strives to be its part of that work, done
completely and correctly.

Microsoft has also implemented [4] a feature
very similar to StackGuard which they call
the “/gs” feature in Visual C++.net. Compiler

6Some really clever tricks would be needed to sup-
port tail recursion from functions with autovariables, and
people have been known to build compilers that do that.

7As has happened with previous (but not current) ver-
sions of StackGuard.

implementation details are naturally closed
source, but the emitted code strongly resembles
StackGuard code. The comparison is gone into
more detail at various points in later sections.

Section 3 presents the StackGuard 3 design in
more detail.

3 Design

The purpose of StackGuard is to do integrity
checking on activation records, with sufficient
precision and timeliness that a program will
never dereference corrupted control informa-
tion in an activation record, which is written
to once on entry to a function, and read from
once on exit from a function.

Thethreatis that the attacker has the capability
to overwrite control information in some frame
on the stack via a sequential write operation—
such as a string copy or a memory copy—
starting from somewhere lower in memory
than thetarget. This permits the attacker to hi-
jack the thread to execute code of the attacker’s
choice. The desired code might be new code
supplied by this particular sequential write into
the stack, another sequential write into stackor
non-stackmemory, or else code that is already
in the address space that will do what the at-
tacker needs when branched to in this fashion.

We will assume that the attacker does not need
to inject code, but can use executable code al-
ready in the address space. This is a growing
technique in practice, and permits us to focus
on the most important part of the attack: over-
writing control information, particularly point-
ers to code, such as return addresses.

The attack works if it can rewrite the control in-
formation between the time it was written with
correct values to be saved and the time it was
later read assuming it contained correct values
of things to be restored.
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Figure 1: i386 Stack Layout

Thedefenseis to insert acanary location im-
mediately before the control information in
each frame on the stack. See Figure 1. Any
sequential write through memory, such as by
a buffer overflow, that tries to rewrite the con-
trol information will be forced to also rewrite
the canary location. Then the remaining prob-
lem is to make the value of the canary some-
thing that’s hard to spoof. The canary location
is initialized immediately after the control val-
ues are saved, andcheckedimmediately before
the control values are restored.

The control region is protected by virtue of the
fact that the canary is checked before each use
of the protected information. The arguments
sitting above that are used sooner than that, so
aren’t protected.

3.1 Types of Canaries

There are three kinds of canaries, each with a
different strength and weakness:

• terminator canaries detect runaway
strings, but is a known value.

• random canaries detect all sequential
memory writes that don’t know its secret
value.

• random XOR canaries are random ca-
naries that might also detect random-
access memory writes into the protected
region.

Terminator canaries leverage the observation
that moststackbuffer overflows involve string
operations, and not the memory copy opera-
tions almost always applied instead to heap al-
located objects, by using a value composed of
four different string terminators (CR, LF, Null,
and -1). The attacker can’t write the termina-
tor character sequence for the particular string
operation being used to memory and then con-
tinue writing, because one or more of the ter-
minator characters halt the string operation.

If the exploit gets to overwrite the canary more
than once, it can overwrite the protected con-
trol information on the first write, and then
reconstruct the canary value with consecutive
writes. It’s not known how rare multiple write
vulnerabilities are.

Any memory copy will be able to write the ter-
minator canary value.

Random canariesassume that the exploit can
sequentially write any value it wants and keep
going. So it forces the exploit to know a 32-
bit secret random number thats retrieved from
a global variable that’s initialized to a differ-
ent value each time the program is executed.
Memory protection techniques can be used to
protect the global from writing, such as isolat-
ing the global on its own page and bracketing
it with “red” (unmapped) pages. The exploit
might also be able to get the victim program to
tell it what the current random canary value is,
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having it read from either the stack or from the
global.

If the attacker can also deploy an exploit that
can read the random canary value from any-
place it might also reside in memory, then both
string and memory copies can easily overwrite
the correct value (unless it contains the appro-
priate string termination characters, and thus
less entropy).

Random XOR canariesassume that the ex-
ploit might be able to random-access write to
the location of some of the protected infor-
mation [2]. So in addition to employing the
random canary defense, some or all of the
saved control information is exclusive-or “en-
crypted”8 with the random canary value, stor-
ing the result in the canary location. Then to
change the protected control information the
attacker needs to deploy an exploit that sets the
canary location to the exclusive-or of the ran-
dom canary value and the new values of the
control values used in the full “encryption.”

Random XOR canaries have the same weak-
ness as random canaries above.

3.2 Examples of Canaries

All versions of StackGuard have provided ter-
minator canaries. We know of no alternate im-
plementations that provide this type of canary.

All versions of StackGuard up to, but exclud-
ing the latest version, provide random canaries.
Propolice provides random canaries.

Only the mid-1999 version of StackGuard pro-
vided random XOR canaries, protecting only
the region containing the return address. When
we checked in early 2003, Visual C++.net’s
/gs option performed exactly the same algo-

8Some people are uncomfortable with the use of the
word “encryption” to protect integrity instead of confi-
dentiality, hence the scare quotes.

rithm with the return address, but positioned
the canary to also protect (without the “encryp-
tion”) the saved frame pointer.

4 Implementation

The first thing a function does on entry is to
save the caller’s control information on the
stack. The region of memory used for this must
be protected by a canary location, which is ini-
tialized with the desired canary value.

The last thing a function does on exit is to re-
store the caller’s control information from the
region of memory set aside for that. But, be-
fore that restoration can take place, the canary
value must be checked to see if it has changed.
If it has, the stack has been corrupted, and the
process is killed after a suitable Intrusion Re-
sponse System has been notified.

The code generators are:

• determine canary location—decide on
where the canary location is going to be
on the stack and how the below operations
are going to refer to it.

• allocate canary location—make space
for the canary in the stack layout in a
memory location close to and preceed-
ing the region containing the saved control
values to be protected.

• initialize canary—give the canary loca-
tion its correct value before any operation
happens that could rewrite it or its pro-
tected region of memory.

• check canary location—check that the
canary location contains its correct value,
after any operation happens that could
rewrite it or its protected region, but be-
fore the saved control information it pro-
tects is restored with corrupted values. If
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the check fails, invoke the fail stop opera-
tion below.

• deallocate canary location—remove the
space made for the canary on the stack
by the allocate canary location operation
above.

• perform fail stop—send the mangled
name9, the type of canary, the correct
value of the canary, and the corrupted new
value of the canary to a security fault han-
dler.

The traditional way to implement StackGuard
has been to modify the function prologue and
epilogue code generators, which are responsi-
ble for causing the machine instructions to be
emitted that save the caller’s frame pointer at
the beginning of the frame (if frame pointers
are enabled), saving registers, establishing the
position independent code pointer if it is en-
abled, and possibly aligning the stack pointer
to some boundary.10

We’ve decided on terminator canaries on the
basis of the observation that nearly allstack
overflows are via string operations.

It should be noted that the order of the applica-
tion of the code generators is different than the
order that the emitted code appears in the gen-
erated function. In particular, first, the body
of the function is converted to RTL. Then a
number of optimizations take place, until the
sibling and tail recursion optimization makes
its decisions available. Then theinitialize ca-
nary location operation is added to the begin-
ning, and thecheck canary location opera-
tion is added to all the exit points. Then some
more RTL optimizations are performed until

9The variable containing the unmangled name isn’t
always initialized at the time it is needed.

10The author believes his IA-32 bias here merely adds
concreteness to his examples, and doesn’t build in bad
assumptions.

the function prologue adds code to the begin-
ning and invokes theallocate canary location
code generator, and the function epilogue adds
code to all the exit points and invokes thede-
allocate canary locationcode generator.

In this paper, we try to keep a clear distinction
between “code generators” and “operations.”
Code generators might be invoked in an arbi-
trary order to emit operations that appear in a
desired order in the object code.

In an earlier section, we were critical of Propo-
lice’s design. In the remainder of this section,
despite that it really does successfully recom-
pile practically all of the Redhat 7.3 distribu-
tion for a production quality distribution, we
are critical of StackGuard’simplementationfor
the remainder of this section.

4.1 Determine Canary Location

The determine canary location code gener-
ator is architecturespecific, since it needs to
know how the stack is laid out.

Both theinitialize canary location andcheck
canary location code generators need the ar-
chitecture specific RTX for referring to the lo-
cation of the canary. But both are invoked be-
fore the architecture specificallocate canary
location anddeallocate canary locationcode
generators are. It turned out that the i386 back-
end placed alignment padding (padding1 )
right where the soft frame pointer points:

rtx canary_loc
= gen_rtx_MEM (SImode,

frame_pointer_rtx);

and that was a nice location for the canary.

Marking the location volatile:

MEM_VOLATILE_P (canary_loc) = 1;

was required for theinitialize canary location
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code generator to keep its RTL from floating
past things that could corrupt the canary.

But, it broke the GCSE pass of the optimizer
for thecheck canary locationcode generator,
apparently due to the way the infinite loop in
the perform fail stop was constructed, and it
appears not to be required to keep the RTL suf-
ficiently pinned down.

4.2 Allocate Canary Location

The allocate canary locationcode generator
is architecturespecific, since it runs in the ar-
chitecture specific function prologue code gen-
erator.

For i386, it turns out to be very simple.
Currently, the i386 architecture’six86_
compute_frame_size function does
alignment padding between the autovariable
region and the saved control information re-
gion. The solution is to add another alignment
to padding1 if it’s not big enough to hold
the padding.

Since the padding is allocated when the stack
pointer is decremented (stack grows down-
ward) to also allocate the autovariables, the
allocation has no performance impact at run-
time.

4.3 Initialize Canary Location

The initialize canary location code generator
is architectureindependent, since it just inserts
an assignment into the RTL of the current func-
tion immediately after the sibling and tail re-
cursion recognition optimization:

emit_move_insn (canary_loc,
GEN_INT(terminator_canary_host_value));

where the canary value happens to be a sim-
ple expression11 not requiring evaluation as an
expression:

static const int
terminator_canary_host_value
= 0x000aff0d;

if it wasn’t such a simple expression, then you
would need to worry more about its tempo-
raries being spilled to the stackwhere they can
be attacked. Random and random XOR canary
value expressions are largely non-simple, espe-
cially when being compiled for position inde-
pendent code.

The above RTL sequence is inserted before the
first non-NOTE RTL in the current function.
As remarked in section 4.1 above, designating
canary_loc as volatile appears to be suffi-
cient to keep the it from floating past some-
thing that could corrupt the protected control
information, but this isn’t very comfortable.
I’ve been hoping to stumble on a good way to
insert barriers in the RTL instead of depending
on volatile.

Sometimes the machine instruction generated
needs a register, and usually it doesn’t. Thus
the late insertion might confuse late stages of
register allocation depending on information
from stages earlier than the insertion.

4.4 Check Canary Location

The check canary locationcode generator is
architectureindependent, since it just inserts a
conditional branch into the RTL of the current
function immediately after the sibling and tail
recursion recognition optimization (see the dis-
cussion in subsection 4.3 above):

emit_cmp_and_jump_insns

11There are two different sorts of simplicity, one at the
source code level (see the talk on TreeSSA), and one at
the RTL to ASM conversion level.
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(canary_loc,
GEN_INT(terminator_canary_host_value),
/* comparison = */ comparison, /* EQ/NE */
/* size = */ 0,
/* mode = */ SImode,
/* unsignedp = */ 0,
/* label = */ else_label);

which is appended to the end of each function,
and inserted before each tail-call.

If the expression for the canary is not simple,
then you need to make sure that it doesn’t grab
corruptable temporaries from the same compu-
tation in theinitializer canary location code
at the beginning of the function.

At the end of each function, the compari-
son argument is EQ, because the test is used
to branch around theperform fail stop code
whose generation is described in the sec-
tion 4.6 below. Theelse_label label
jumped to in that case is refers to the normal
function epilogue code that hasn’t been gener-
ated yet.

Before each tail call, the comparison argument
is NE, because the branch is to theperform fail
stopcode appended to the end of the function.

Dead code removal works correctly for all of
these inserts.

The branch prediction of the EQ case appears
to get flipped correctly to put the return on the
fast-path.

The machine instruction seems to usually need
a register, but sometimes not. The late in-
sertion of this RTL when it needs a regis-
ter may be causing the code generation in the
“getdents” function in GLIBC which has the
attribute ((regparm(3), stdcall)) to
go awry in the GREG (global register alloca-
tion) pass.

4.5 Deallocate Canary Location

The deallocate canary locationcode genera-
tor is architecturespecific, since it runs in the
architecture specific function prologue code
generator.

For i386, it turns out to be absolutely free. The
alignment padding where the location resides
is stripped off at the same time as the autovari-
ables.

4.6 Perform Fail Stop

The perform fail stop code generator is ar-
chitecture independent, since it mostly just
inserts a call to an external function named
“__canary_death_handler ” using the
GCC’s internalemit_library_call pro-
cedure.

The __canary_death_handler is in-
voked with information such as the current pro-
cedure name, the version of stackguard, the
type of canary, what the canary value was sup-
posed to be, and what the canary is now that it
has been corrupted.

It’s not expected that recovery is possible
from a corrupted stack, so if the__canary_
death_handler returns control from its
call, something is very wrong, and the only
thing reliable to do is go into an infinite loop.
The correct way to recover would be to setup a
different stack that returns control to different
code.

Exception handling does not work here, since
the stack is corrupt. If you like, you might con-
sider this to be a securityfault as opposed to an
exception.

The late insertion of theemit_library_
call into the RTL might be causing trouble.
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4.7 Summary of problems

Moving the RTL code generators forinitial-
ize canary location and check canary loca-
tion out of the function prologue and epiloque
code generators was essential for two reasons.
First, the prologue and epilogue were invoked
too late to be able to generate the desired RTL.
Second, the prologue and epilogue are archi-
tecture specific, and architecture independence
is highly desired.

However, the movement of these two genera-
tors appeared to be blocked in two ways. First,
they appeared to only work correctly around
the time of the sibling and tail recursion opti-
mization pass. Second, this was fortuituous be-
cause this was also the first point where the in-
sert points became available for addingcheck
canary location immediately before function
exiting branches (that is, before return state-
ments and tail calls).

Ideally the movement of these two genera-
tors should proceed to the point that AST is
converted to RTL (which would also fix any
problems the call toemit_library_call
might be causing), but that implies that sibling
and tail recursion recognition also move to that
point.

4.8 Debuggers, Exception Handlers, and Other
Stack Crawlers

Previous versions of StackGuard placed the ca-
nary location immediately before the return ad-
dress on the stack. This was quite confusing
to programs that did their own ad hoc parsing
of the stack, such as GDB, Mozilla’s module
loading mechanism, and IBM’s Java JIT com-
piler.

All of these became non-problems with the lat-
est version of StackGuard, which places the
canary location in a spot where nothing’s sup-

posed to be.

The aspell packages for Red Hat 7.3 has a com-
plex enough class system for handling “file not
found” exceptions that something throws it off,
and it runs off the top of the stack without find-
ing an exception handler, and abort()’s. This
appears to be a problem with a dwarf annota-
tion interaction with the old exception handler
in GCC 2.96-113, which would probably be
fixed (or at least completely different) in cur-
rent GCC.

Exception handlers should check canaries for
each frame as they crawl up the stack soas not
to use corrupted information. We’re hoping to
add such support to the new exception handler
in GCC 3.x, just as soon as a distribution that
we can build, strenuously test, and release uses
it.

4.9 Testing

The assembly output of the StackGuard com-
piler has been inspected for correct output for
many optimization levels, with and without
frame pointers, PIC and non-PIC, inlines, and
nested function declarations.

A parser of the disassembler output for the
StackGuarded version of the main glibc library
libc.so.6 was done. Every procedure was cor-
rectly StackGuarded, and several tens of tail-
call sites were observed.

Previous versions of StackGuard rebuilt Red
Hat Linux 5.1, 5.2, 6.0, 6.1, and 7.0. The cur-
rent version of StackGuard has rebuilt Red Hat
7.2 and 7.3, with a rebuild of Red Hat 8 in
progress.

The getdents function in GLIBC in the
Redhat 8 rebuild has problems. It looks like the
late insertion of the canary check causes GREG
optimization phase to drive something insane
enough to apparently be confused about the
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sizes of various types. The RTL for the func-
tion suddenly becomes quite different starting
about halfway through the function after that
pass, with tremendous movement of temporary
and register initializations.

5 Performance Benchmarks

Formal performance benchmarks are cur-
rently under way, but were not complete at
press time. Previous performance bench-
marks on StackGaurd 2 [5, 7] show very
marginal overhead on real loads, especially
those programs that actually face network at-
tack. In particular, benchmarks of Apache
loaded by webstone, and throughput bench-
marks of OpenSSH through the loopback in-
terface, show overhead that is within mea-
surement noise: http://immunix.org/

StackGuard/performance.html . We ex-
pect similar performance from StackGuard 3.

6 Security Benchmarks

Security testing (like total correctness) is al-
ways problematic, because you cannot test for
security, you can only detectvulnerability. As
in performance, security testing is still under
way at press time. Past security testing of
StackGuard [6, 5, 7] shows that StackGuard is
effective in its narrow goal of stopping classic
stack smashing attacks. Furthermore, unlike
some of the kernel-based defenses [8] when
StackGuard stops a vulnerability, it isstopped,
i.e. revising of the attack code does not result
in bypassing StackGuard protection.

The major exception to this claim is that some
exploits can attack the frame pointer, which
was left unprotected in StackGuard 1 and 2.
StackGuard 3 fixes this by moving the canary
below the frame pointer.

7 Conclusion

StackGuard is a very modest sized patch, with
modest performance and legacy compatibility
costs, and yet solves a very large problem:
chronic stack smashing buffer overflows. De-
spite having been first innovated in GCC [6],
Microsoft has implemented a StackGuard-like
feature [4]as a standard featureahead of GCC.
We propose that it would be beneficial for the
GCC user community if the StackGuard secu-
rity optimization became a standard compile
option in GCC.

8 Availability

StackGuard has always been distributed under
the GPL, and is currently available athttp:

//immunix.org/stackguard.html .

Copyright assignment to the FSF for the Stack-
Guard patches is in progress.
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