
Addressing Mode Selection in GCC

Naveen Sharma
HCL Technologies Ltd.

naveens@noida.hcltech.com

Rakesh Kumar
HCL Technologies Ltd.

rakeshku@noida.hcltech.com

Abstract

GCC has no formal addressing mode selection
mechanism. It uses target hooks to generate
valid addressing modes for a target. However,
a significant amount of high level information
is destroyed while doing this, especially for tar-
gets lacking a rich set of addressing modes.
This leads to poor aliasing, and subsequently
poorerCSE, GCSE, and scheduling. Hence, an
unoptimal object code. This paper proposes
an abstraction over RTL to generate machine
independent addressing modes to achieve bet-
ter aliasing. The actual addressing modes of
the target are exposed after the first scheduling
pass, where they are selected based on current
execution scenario. Inter block address inheri-
tance is also done at this point. The idea can be
extended to specify a general “mid-level” RTL
for GCC.

1 Introduction

1.1 Addressing Modes

In simple terms, addressing modes specify the
way instruction operands are chosen at run
time. In most general purpose machines, an ad-
dressing mode can specify a location in mem-
ory, a register or a constant/literal. This paper
talks about addressing modes mainly in con-
text of memory loads and stores i.e. operations
which move data between registers and mem-
ory. In both operations, the destination gets af-

fected; the source is not changed. When dis-
cussing about memory, the effect of Memory
Management Unit can be ignored, since we are
concerned with the addresses generated by the
compiler.

Architectures have wide variance of features
while considering addressing modes of a ma-
chine. Every processor, based on its appli-
cation domain, has its unique set of address-
ing mode features. This choice is usually
a function of various parameters like regis-
ter set, instruction size and alignment restric-
tions. The most common addressing modes for
loads/stores on a typical RISC architecture are:

• Displacement addressing mode: It is used
when data is at known offset from some
base address in a register.

mov.l @(4, r1),r2 1

• Register Indirect addressing mode: It is
used when memory address of the re-
quired data is taken from register.

mov.l @r1,r2

• Register Index addressing mode is used
when the exact offset from a base address
is not known.

mov.l @(r0,r1),r2

1The assembly snippets correspond to SH4 proces-
sor.



142 • GCC Developers’ Summit

• Auto Increment/Decrement modes: They
combine memory access and address
arithmetic.

mov.l @r1+,r2 !post-inc
mov.l r1,@-r2 !pre-dec

Some processors also allow pc-relative loads,
where effective address is relative to the cur-
rent point of execution. The above mentioned
modes can also occur with some restrictions
e.g. the SH4 processor allows only 4-bit dis-
placement in displacement addressing mode.

1.2 Addressing Mode Selection

The compiler owns the responsibility of pro-
ducing optimized code that exploits the fea-
tures of target processor. The optimal choice
of addressing modes aims at reduced code size
and increased performance. GCC traditionally
usesRTL as its intermediate language. Al-
thoughRTL representation is machine indepen-
dent, theRTL actually generated for a target
is machine dependent. This is becauseRTL is
generated directly from information in the ma-
chine description file. The machine descrip-
tion contains the description of exact instruc-
tion set of the target. TheRTL can therefore
be described as low-level intermediate form(or
targetRTL). This form is not very suitable for
several high level/mid-level optimizations. The
tree-ssa work overcomes the difficulty to a
large extent by defining a new high level in-
termediate form. But some sort of mid-level
RTL would is desirable for effective optimiza-
tions by GCC’sRTL optimizer. In one sense,
the notion of infinite pseudo registers can be
considered a mid-levelRTL abstraction.

We propose that addressing modes can also be
abstracted as part of mid-levelRTL. The advan-
tages would be:

• Several initial RTL optimization passes
would be able to perform better.

• Addressing Mode Selection based on ex-
ecution scenario is likely to be better as
address arithmetic is reduced.

1.3 Address Inheritance Problem

Every addressing mode has its associated cost.
This cost could be evaluated in terms of
pipeline characteristics of the processor, the in-
structions involved in address arithmetic, or the
cost imposed by the target design. The concept
of address inheritance encourages the reuse
of address calculations. It states that wher-
ever possible, the side effects of address arith-
metic instructions should be carried forward,
so that there are no recalculations at the point
of next load/store operation. It looks similar
to CSE/GCSEbut there is a subtle difference.
CSE/GCSElook at exact expressions.They do
not know the relationship between two ex-
pressions of the formreg+k1 and reg+k2 ,
wherek1, k2 are constants. The fact that
these can possibly be derived from each other
in target specific way is out of scope for their
functionality.

Address inheritance can be viewed as function
with two parameters—time and space. Spa-
tially related addresses are those which do not
alias and which can be accessed from the same
base without address arithmetic. The tem-
poral local addresses are those which do not
alias and which are separated by minimum
number of instructions. Both can assume two
attributes—near and far . Spatially related
addresses represents a range of addresses al-
lowed in reg+displacement addressing mode.
Temporal relation is determined by number of
available registers and control flow graph.



GCC Developers’ Summit 2004 • 143

Time Space Inherit(Yes/No)
near near Yes
near far Sometimes Possible
far near Register Pressure Issues
far far No

Architectures with relatively more number of
registers are potential candidates for “far
& near ” combination, whereas architectures
having more number of bits reserved for offset
in displacement addressing mode are potential
candidates for “near & far ” combination.

2 Problem Description

The machine description files are used to gen-
erate target-IL at the time ofRTL generation.
As already emphasized, thoughRTL represen-
tation is machine independent, but its gener-
ation is machine dependent. GCC imposes
the restriction that every pass should generate
valid target-RTL. This strategy hampers the ad-
dressing mode optimization, since subsequent
passes are more restricted.

2.1 The Current Scheme

In the current situation, GCC relies on several
target macros. It usesGO_IF_LEGITIMATE_

ADDRESSto verify all memory address related
changes. DuringRTL generation, the macro
LEGITIMIZE_ADDRESS, is used to break large
offsets to valid target-RTL form. When using
one addressing mode, GCC queries whether
the chosen mode is too expensive for the target.
It uses the target hookTARGET_ADDRESS_

COST to compute the cost of an address-
ing mode. Targets defineTARGET_ADDRESS_

COSTas simple heuristic values. The hook ex-
hibits a limited form of cost model for address-
ing mode choice, but it is not a complete frame-
work and certainly misses optimal choice in
most cases.

{
i = 234;
a[i] = 12123;
...
i = 290;
a[i] = 12123;
...
i = 236;
a[i] = 12123;
...
i = 228;
a[i] = 12123;
...

}

Figure 1: Random Accesses in an Array

mov.w .L3,r1
mov.w .L4,r0
mov.l r1,@(r0,r14)
mov.w .L5,r0
mov.l r1,@(r0,r14)
mov.w .L6,r0
mov.l r1,@(r0,r14)
add #-32,r0
mov.l r1,@(r0,r14)

.L3:
.short 12123

.L4:
.short 936

.L5:
.short 1160

.L6:
.short 944

Figure 2: Output without AMS for Figure 1

Figure 1 illustrates some aspects of addressing
mode selection problem.

Figure 2 shows the code generated by current
implementation of GCC. There are few points
noteworthy here:

• The value ofi is known at compile time,



144 • GCC Developers’ Summit

1 mov.w .L3,r1
2 mov.w .L4,r2
3 add r14,r2
4 mov.l r1,@(24,r2)
5 mov.w .L5,r0
6 mov.l r1,@(r0,r14)
7 mov.w .L6,r0
8 mov.l r1,@(32,r2)
9 mov.l r1,@r2
10 .L3:
11 .short 12123
12 .L4:
13 .short 912
14 .L5:
15 .short 1160

Figure 3: Output with AMS for Figure 1

but copy propagation could not take ad-
vantage of it due to target restrictions.

• Since GCC assumesi is not known at
compile time, it has chosen register index
addressing mode. It could have done bet-
ter as Figure 3 shows.

• There are three related addresses2 in
the snippet, viz. a[228], a[234],
a[238] ; but GCC is unable to recognize
the fact.

• Extra pc-relative loads are generated.

The optimal assembly for the above snippet is
shown in Figure 3. The line numbers are not
part of assembly; these are kept for further ref-
erence.

With this improvement, even in this trivial ex-
ample, we get 4 bytes of code size reduction,
lesser stress onr0 , the only index register
available on SH4, and one fewer PC-rel load.

2The notion of related addresses is explained in the
next subsection.

The selection of the optimal addressing modes
with minimal code size and minimal execution
time depends on many parameters and is NP
complete in general[Eckstein]. One important
criteria for choosing appropriate mode is the
execution scenario. The choice which seems
to be best in one scenario may prove to be un-
optimal in another execution sequence. For ex-
ample in Figure 3, dual register indirect ad-
dressing mode is used in line 6. Note thatr0

suffices many needs on SH4, and it is generally
advisable to avoid the use ofr0 wherever pos-
sible. Still, this mode is the best choice in this
execution sequence. The other choice left is
register-indirect which would generate the se-
quence

mov.w .L5,r3
add r14,r3
mov.l r1,@r3

The former choice is better since it is saving
one address arithmetic instruction. The above
example shows the choice of addressing mode
should be determined by the execution sce-
nario. Hence, it should be decided flexibly, and
not rigidly as done in GCC currently.

2.2 Address Inheritance in GCC

GCC implements address inheritance in lim-
ited form through two passes—regmove and
reload_cse . regmove intents register to
register copy elimination. As a side effect, it
does the following transformation:

pX<-pA+N | pX <- pA + N
... |-> ...
pX<-pA+M | pX <- pX + (M - N)

This transformation is an address inheritance
transformation as the the address computed in
pX is reused subsequently.regmove is inef-
fective in several cases because:



GCC Developers’ Summit 2004 • 145

• CSEandGCSEboth run beforeregmove ,
and they attempt to optimize address
arithmetic prior to regmove . They
pull address calculations near basic block
boundaries whereregmove cannot opti-
mize them.

• regmove pass cannot see beyond basic
blocks and is unable to propagate infor-
mation across basic blocks.

• regmove is able to do the required trans-
formation only forSImode accesses for
SH4.

reload_cse is simpleCSE pass over hard
registers after reload. The functions of
reload_cse include:

1. It eliminates no-op moves where two dif-
ferent registers are assigned to the same
hard register, and then copied one to the
other.

2. It detects cases where we load a value
from memory into two registers, and
changes it to simply copy the first regis-
ter into the second register if memory is
more expensive than registers.

3. It scans the operands of each instruction to
see whether the value is already available
in a hard register. If possible, it replaces
the operand with the hard register.

2.3 Alias Analysis

Several passes need alias information for doing
effective optimizations. Alias information is
most important for passes likeCSE, loop invari-
ant code motion, instruction scheduling, and
register allocator. GCC can successfully deter-
mine aliasing between two memory references
if they

void foo (float *a, float *b)
{

a[17] = a[0] + a[18];
b[17] = b[1] + a[18];

}

mov r4,r2
add #72,r2
fmov.s @r2,fr2 !Load a[18].
mov r4,r3
fmov.s @r4,fr1 !Load a[0].
add #68,r3
fadd fr2,fr1 !Add.
fmov.s fr1,@r3 !Store a[17].
fmov.s @r5,fr1 !Load b[0].
fmov.s @r2,fr2 !Load a[18] again.
fadd fr2,fr1
fmov.s fr1,@r1 !Store b[17].

Figure 4: The Alias problem

• use distinct constant offsets from the same
register

• one of them points to stack

For machines that do not have “reg + dis-
placement” addressing mode, pointer arith-
metic is necessary to compute a pointer to the
desired address. GCC lacks the mechanism
to determine aliasing between such computed
pointers[Sanjiv]. Consider the code in Fig-
ure 4. The Figure 4 also shows the correspond-
ing SH4 assembly with -O2 option.

Since SH4 doesn’t support “reg + displace-
ment” addressing mode for floats, GCC alias
analysis mechanism fails. HenceCSEis unable
to determine if a value can be retained in a reg-
ister across a write anda[18] is loaded twice.



146 • GCC Developers’ Summit

3 Solution Strategy

3.1 Designing an Abstraction over RTL

It is desirable to have some sort of abstrac-
tion to hide target addressing modes to elimi-
nate problems highlighted in the previous sec-
tions. We initially pretend some standard high
level addressing modes. The change to tar-
get’s addressing mode is done in a separate
pass after first scheduling pass. The sched-
uler can do better load/store scheduling with
abstract modes. There is a new macro called
TARGET_USE_ABSTRACT_MODES. If this is
nonzero, this will force the front end to gener-
ate memory references with following abstrac-
tions.

• Infinite displacement (natural register
size) for register+offset addressing mode.

• Dual register indexed mode with two gen-
eral purpose pseudos—i.e., @(rm, rn)—is
supported.

• Auto-ionic modes are disabled as they ef-
fect the scheduling adversely.

3.2 Addressing mode selection pass

The addressing mode selection pass (AMS)
lowers mid-levelRTL to a low-levelRTLby im-
posing target’s constraint on addressing modes.
At the same time, it would generate the re-
quired arithmetic. Address inheritance is part
of the functionality of the AMS pass.

Virtual Displacement Handling: The transfor-
mation of infinite virtual displacements to tar-
get specific displacements is done as follows.
The pointer pseudo is given the following at-
tributes:

1. The bias of a pointer is the value currently
added to the base pointer.

2. The mode of a pointer is the mode in
which the register is accessed or used.

3. The slack of a pointer is the maximum
negative value, which can currently be
added to the pointer and still properly ad-
dress the memory references which have
already been assigned to this pointer.

The algorithm also defines alocked_pool
of pointer pseudos which contains bias values
at a specific execution point. A locked regis-
ter is a register which is usable for an address
within the currently visible lookahead window
without any bias changes. The look ahead win-
dow is normally a basic block. We also define
unlocked_pool registers with each regis-
ter’s bias. An unlocked register is a register
which is currently not usable for an address
within the currently visible lookahead window
without any bias changes. E.g., consider the
reference sequence with addresses:

(plus:Pmode (fp,124))
(plus:Pmode (fp,120))
(plus:Pmode (fp,128))

where fp is the frame pointer. It can be
any base register in general. Initially, a new
pseudo (sayrn ) is created with a<bias,
slack> value pair as<124, 60> for SH4.
We can then access memory at (fp, 124) sim-
ply as (rn, 0) with displacement address-
ing mode. At second access, (fp, 120), we note
that we can reusern with a bias change of 4.
So we change the<bias, slack> value to
<120, 56> . When an offset is not reachable
with any pseudo in the locked pool, then a new
pseudo (sayrn+1 ) is created.

By applying the above reasoning the following
output is generated for SH4(which has 60 byte
valid displacement):

mov #120,r2



GCC Developers’ Summit 2004 • 147

add r14,r2 !r14 is fp
mov.l @(4,r2),r1 !fp+124
mov.l @r2,r3 !fp+120
..
mov.l r1,@(8,r2) !fp+128

With current framework GCC ends up generat-
ing code like this for SH4.

mov r14,r2
add #64,r2
mov.l @(60,r2),r1
mov.l @(56,r2),r2
...
mov r14,r2
add #124,r2
mov.l r1,@(4,r2)

The address arithmetic is reduced in former
case. To avoid creating too many pseudos
during the process, some heuristics have been
tried. Limiting pseudos to approximately half
of the register set usually turns out be good.
With a proper register rematerialization frame-
work new-ra , limiting pseudos might be-
come un-necessary.

General index register mode: We can tackle
this mode in two ways depending on archi-
tecture features and register pressure. There
can be weird limitations on use of index reg-
isters. While in common cases, the index reg-
isters form aREGISTER_CLASS, there may be
cases like SH4 wherer0 is the sole legal in-
dex register. Excessive pressure build up on
r0 as ABI specifies it as a return value register
too. So in many cases, it is simply desirable to
convert from index register mode to register in-
dex mode. The register pressure estimation is
still in experimental phases, and forms part of
several other problems in compiler technology.
We use very simple register pressure heuristics
based on machine modes of register. The re-
sults would be updated once a general infras-
tructure for register estimation can be imple-
mented.

Inter-Block Address Inheritance: The tech-
nique described needs to be extended to retain
<bias, slack> values across basic blocks.
Taking control flow graph into account is a
difficult problem. For simplicity, we propa-
gate thelocked_pool information only to
fallthru basic blocks. So some address cal-
culations are saved across basic blocks. The
overall strategy is still in investigative phase.

4 Conclusion

Implementation of the ideas presented here
have confirmed the expected aliasing gains.
The implementation has been tested for SH4
and IA-64. Preliminary benchmarking indicate
that execution gains can be as high as 5-7%.
However, some more work is required for the
idea to work on CISC machines.

5 Acknowledgements

We owe thanks and credit to Toshiyasu Morita
(Renesas Technologies). Much of this work is
based on his ideas and insights. As always,
GCC developers are so helpful. We specially
thanks all global maintainers, whose insights
often save us weeks of work.

Our special thanks to Mr. Sandeep Khurana at
HCL Technologies for his invaluable inputs.

References

[GCCINT] GCC Internals Manual,
http://gcc.gnu.org

[SH4]
SH4 Programming Manual, Version 4.0
Renesas Technologies,
http://www.renesas.com .

[Eckstein] Erik Eckstein, Bernhard Scholz:
Addressing Mode Selection.



148 • GCC Developers’ Summit

[Sanjiv] Sanjiv K. Gupta, Naveen Sharma:
Alias Analysis for Intermediate Code.
GCC Summit 2003


