
Declarative world inspiration

Zdeněk Dvořák
SuSE Labs

dvorakz@suse.cz, http://atrey.karlin.mff.cuni.cz/˜rakdver/

Abstract

The techniques for compilation and optimiza-
tion of the declarative (logic and functional)
programming languages are quite different
from those used for procedural (imperative)
languages, especially on the low level. There
are however several reasons why they are still
relevant even for the typically procedural lan-
guage compilers like GCC: On higher level we
can observe similarities, and due to more sys-
tematic design of the declarative languages the
development in these areas is usually more ad-
vanced. In some contexts it is also consid-
ered a good style to use declarative program-
ming techniques (recursion, generic program-
ming, callbacks) even in imperative languages;
currently the performance penalties for these
constructs are usually quite large.

The paper quickly summarizes the similari-
ties and differences between compilation of
declarative and imperative languages. We then
investigate the techniques used for declara-
tive languages—tail recursion and general re-
cursion optimizations, advanced inlining tech-
niques (partial inlining, function specialisa-
tion, partial evaluation), program analysis, in-
termodular optimizations, etc., their usability
and implementability in GCC.

Introduction

The contemporary programming languages
can be divided into procedural and declara-

tive. Programs in procedural languages de-
scribe precisely the control flow and they map
more or less directly to the machine code of the
target platform. On the other hand declarative
languages focus on describing the semantics of
the program. They do not describe that much
how things should be done, but rather specify
what result we would like to obtain, leaving the
exact way how to do it up to the compiler. Of
course this division is not all that clear—many
procedural languages include some construc-
tions derived from especially functional lan-
guages, and declarative languages usually con-
tain procedural bits in order to handle things
like input and output.

It is well-known fact that the compilation of
declarative languages is in some sense both
easier and harder than the compilation of pro-
cedural languages. Easier since the semantic
description gives more freedom to the compiler
and makes the analyzes simpler. Harder since
the lack of explicit control flow makes it neces-
sary to for a compiler to select a good order of
execution by itself. This in general cannot be
done in compile-time, so this makes it neces-
sary to handle partially evaluated data in run-
time. Also the more high-level nature of the
declarative languages invites the programmers
to use the constructions whose straightforward
translation would be quite ineffective.

Of course on the low-level the techniques for
compilation of procedural and declarative lan-
guages are quite different (it is also true that
they also differ significantly between the vari-



26 • GCC Developers’ Summit

ous types of declarative languages). On higher-
levels however the goals of the optimizations
are more similar, and it is just here where
the declarative languages may use the bene-
fits of their cleaner semantics. Often it hap-
pens that even those high-level optimizations
that could theoretically be used for procedu-
ral languages as well are only developed for
the declarative ones, due to the problems with
the level of analysis necessary to enable the al-
terations of the control flow prescribed by the
procedural program. Also due to this diversity
the research groups for declarative and proce-
dural language compilation techniques do not
communicate with each other frequently, so it
may happen that the optimizations developed
by one of them are either unknown or devel-
oped independently by the other one.

This paper tries to give an overview of (mostly
high-level) optimizations used in declarative
language compilers and to put them in context
of the procedural language compiler GCC. We
try to investigate their implementability and
usefulness and also to derive some optimiza-
tions based on them that might be more useful
for optimization of procedural languages.

First we provide a short introduction to the
declarative language compiler construction and
define the terms used in the area. Then we con-
tinue with the short descriptions of available
optimizations, with more detailed descriptions
for those that we consider relevant in the con-
text of procedural languages. We also provide
some thoughts and pointers on the eventual im-
plementation in the current infrastructure of the
GCC compiler (tree-ssa branch, since all the
optimizations are only suitable for implemen-
tation on the tree level).

1 Compilation of Declarative Lan-
guages

In this section we provide a short introduction
to the techniques used for compilation of the
declarative languages. References to papers
containing more detailed descriptions are pro-
vided. Of course the approaches different from
the ones described below used as well, and the
basic schemes can be altered to obtain varia-
tions useful for specific purposes.

We must distinguish between the different
kinds of declarative languages, especially be-
tween logic (based on the predicate logic) and
functional (based on the lambda calculus) ones.
There are also other special purpose declar-
ative languages (for constraint programming,
database querying, scene description, etc.), but
these are out of the scope of this paper.

Initial stages of compilation of all the lan-
guages, like lexical and syntactic analysis, are
of course very similar and not interesting from
our point of view. The optimizations (both
generic and specific for the given style of
the language) are then performed (some of
them will be mentioned in the following sec-
tions). Usually the level of the representa-
tion is lowered during the process, finally leav-
ing us with just the basic elements of the lan-
guage. Type (and for logic languages mode—
determining which arguments of predicates are
input/output) checking and eventually special-
ization of operations happens during this pro-
cess

For logic languages the basic elements are uni-
fication (that includes both construction and
decomposition of data structures) and defini-
tion of predicates (that usually are recursive
and use some built-in predicates for perform-
ing things like arithmetics). The language
specification also defines the rule for order of
evaluation of the predicates, which may be



GCC Developers’ Summit 2004 • 27

fixed (Prolog), flexible subject to some mini-
mal constraints (Mercury) or even alterable by
the program (Goedel). The possible substitu-
tions to the variables are processed according
to this rule, backtracking whenever such a sub-
stitution fails.

This rule (or its particular variant chosen by
the compiler) is then translated into a code of
a low-level abstract machine (which is later
mapped to the target language). One of those
used is the Warren Abstract Machine ([W83]).
It consists of the low-level instructions to con-
trol unification, predicate lookup and back-
tracking. Indeed the main challenge at the low
level is to make these operations efficient.

For unification it is necessary to handle the spe-
cial cases of unification with terms with known
structure, and to employ efficient algorithm
for matching the terms with unknown structure
when this fails. This is complicated by the fact
that unification is two-way process (i.e. both
unified sides may get modified). Also we need
to be careful about the possibility to create the
cyclic structures when compiling unifications
like X = f(X).

Predicate lookup is usually made faster by fil-
tering out predicates that cannot match due to
the known structures of parameters; this index-
ing may be either shallow (only looking at the
topmost level) or deep. The things get more
complicated in languages like Prolog where the
program may be changed dynamically.

For backtracking we need to implement the
rollback mechanism, either using timestamps
or a clever layout of allocated data structures
(or both).

For more details on construction of logic
language compilers see for example [R94],
[DC01] or [HS02].

For functional languages the basic elements

are pattern matching (data structure decompo-
sition), data structure construction and func-
tion application. Local function definitions
are usually replaced by the global ones, in
process called lambda-lifting. The functional
languages often allow polymorphic functions
(whose arguments may be of different types,
similar to mechanism of virtual methods in ob-
ject oriented programming); these are usually
lowered to explicitly passing the dictionaries of
the functions.

There are two commonly used semantics for
functional languages regarding the passing of
the arguments to the functions. The eager eval-
uation (Scheme, Erlang) means that the argu-
ments are evaluated before they are passed to
the function. The lazy evaluation (Haskell)
means that they are only evaluated on de-
mand, when the called function needs to know
their values. The later approach is theoret-
ically more clean (making the identities like
(λ x.f)g = f [x := g] valid even in cases when
evaluation ofg does not have to terminate), but
significantly less efficient to implement (it is
necessary to create thunks for unevaluated ex-
pressions whenever we pass an argument to a
function) and the actual control flow is hard to
predict, making the programs difficult to op-
timize. Nevertheless the methods of compila-
tion of these languages are similar—even eager
languages must be able to suspend evaluation
of expressions when partially applied functions
are passed as arguments, although their advan-
tage is that from the type information they can
often derive whether this occurs.

The examples of low-level abstract machines
used for compilation of the functional lan-
guages are for example G-machine ([A84],
[J84]) or the Three Instruction Machine
([FW87]). Despite the significant differences,
the basic operations include manipulation and
querying of the data structures (to enable their
construction and pattern-matching), the param-



28 • GCC Developers’ Summit

eter passing and the function calls.

There are two basic models used to call func-
tions. The “eval-apply” model works by evalu-
ating the function, in case of eager languages
evaluating the arguments and applying the
functions to the arguments. The “push-enter”
model is used for lazy languages; it pushes
the arguments of the function to the parame-
ter stack, then enters evaluation of the function.
There is no return after the end of the function
in this case.

For lazy languages, it is necessary to ensure
sharing. For example in(λ x.x + x) f we want
f to be evaluated just once. This means that
when we finish evaluation of a thunk, we need
to arrange its value to be rewritten by the result.

For the reasonable performance, there are sev-
eral problems to be solved. We need to arrange
for a sane argument/return value passing con-
ventions using registers, and to make this work
together with the argument stack. The partially
applied functions present in the form of the
thunks must have a mechanism how to apply
additional arguments to them (by copying the
thunk, creating the linked lists of arguments, or
combination of both depending on the size of
the thunk). We need to distinguish between al-
ready evaluated values and thunks, which may
be done either by tagging or by keeping even
evaluated values as trivial thunks that just re-
turn their value. Similarly either tagging or
selector function needs to be used for distin-
guishing the variants of values during pattern
matching.

For more involved description of these deci-
sions as well as other issues with compilation
of (especially lazy) functional languages see
e.g. [J92] or [JL92].

Usually either some low-level procedural lan-
guage (C) or assembler is used as the target
language. The former is more portable and

usually produces a better code due to the low-
level target specific optimizations done by the
C compiler, assuming that there is a possibil-
ity to ensure that the important values (for ex-
ample stack and heap boundaries) are kept in
registers all the time. The later is more compli-
cated, but it gives a better compilation speed.

Of course these are just the basic approaches,
which need to be enhanced by various low-
level optimizations both on the source and the
resulting code. In result, the performance of
the more practical languages (functional with
eager evaluation, logic without implicit back-
tracking) is in general the same as of the
higher-level procedural languages. The per-
formance of the languages that more precisely
match the clean theoretical ideas (functional
languages with lazy evaluation) tends to be
worse by a factor of 2–5.

2 Declarative Language Optimiza-
tions

Many of the optimizations in the declarative
languages try to eliminate the inefficiencies of
the models described above. We omit the de-
scription of the low-level optimizations com-
pletely, since they clearly are not relevant, and
also require a detailed knowledge of the par-
ticular model. The more high-level examples
include

• Deforestation ([W90], [G96]) attempts to
eliminate the need for creating temporary
structures in clean declarative languages,
where by clean we mean that the functions
cannot have side effects, and consequently
it is impossible to rewrite the data in-place
(i.e. when you need to modify some-
thing, you must create its copy). This is
remotely similar to loop fusion, although
the main effect we want to obtain by it



GCC Developers’ Summit 2004 • 29

is quite different. For example program-
mer would usually writemap f (map g l)
to apply two functionsf andg to the listl.
This however requires creation of the tem-
porary list for the result ofmap g l. De-
forestation rewrites this tomap (f . g) l,
which produces the result directly.

• In lazy languages, strictness analysis de-
termines whether the arguments of the
function will always be evaluated. If this
is true, we may evaluate them directly and
we do not have to create thunks for them.

• In logic languages, analysis of whether
the predicate is deterministic (i.e. always
giving just a single solution) can be used
to omit the code necessary to handle back-
tracking.

Note that despite of the fact that the mentioned
optimizations are quite high-level and they re-
quire nontrivial analyzes, they are obviously
specific for the particular family of models and
they do not seem to be directly applicable to
the procedural programming languages (possi-
bly with the exception of the limited version of
deforestation in languages including map-like
commands, but usually this can be handled by
loop fusion as well).

Still there are some optimizations that seem
relevant. The following sections are dedicated
to them.

3 Recursion Elimination

Since the declarative languages do not in gen-
eral include loop-like statements, all such con-
structions are achieved using recursion. There-
fore it is important to handle recursion ef-
ficiently, and replace it by standard iterative
loops as possible.

The simplest case is the tail call elimination
(replacing the calls after that the function ex-
its immediately by ordinary jumps). This op-
timization is standard in procedural languages
as well, so we will not describe it in detail here.
Instead we focus on some useful improvements
to this basic scheme (most of them based on
[LS99]):

• Provided that we have sufficient knowl-
edge about the operations done after the
call, we may be able to reorganize the
computations and remove the recursion.
Consider for example

f(x): if x == 0 then
return 1;

else if x % 2 then
return 5 * f (x - 1);

else
return 3 + f (x - 2);

This can be transformed into

f(x): m = 1;
a = 0;

start:
if x == 0 then

return m + a;
else if x % 2 then

{
x--;
m *= 5;
goto start;

}
else

{
x -= 2;
a += 3 * m;
goto start;

}

This is what we currently do in GCC.
Note that to get this result we needed a



30 • GCC Developers’ Summit

plenty of knowledge about nature of the
operations+ and∗—distributive law, as-
sociativity, commutativity, and existence
of neutral elements. In the special case
when just a single such operation is used
and all non-recursive exits return the same
value, associativity (and in some cases
commutativity) would be sufficient, but
even these are quite hard to check and
this restricts this approach to just a limited
class of programs.

• Provided that we have a sufficient knowl-
edge about the operations done before the
call, we may turn the recursion into itera-
tion without changing the order of opera-
tions executed, in this way:

f(x): if x <= 0 then
return 1;

else
return g (x, f(x-1));

into

f(x): if x <= 0 then
return 1;

r = 1;
for (ax = 0; ax != x; )

{
ax++;
r = g (ax, r);

}
return r;

We need the function to be in somewhat
restricted shape to perform this transfor-
mation (see [LS99] for details, most im-
portantly no unhandled code can be exe-
cuted before the recursive call), the incre-
ment (x ← x − 1) needs to be invertible
(see [HK92] for some theory on the topic;
in practice probably just the simple in-
duction variable-like increments could be
handled), and we need to be able to deter-
mine the start value of the counter. On the

other hand effects ofg (or whatever code
might be there) are unrestricted, since we
do not change the order of execution of
the calls tog.

• The situation becomes more complicated
when one of the conditions above is not
satisfied, but still sometimes it can be han-
dled. For example if there are more exits
and some code executed before the recur-
sive call, we can still optimize the func-
tion by creating two loops—one executing
the stuff done before the call and coming
all the way down to the appropriate exit
case, the second one identical to the one
described in the previous case. This re-
quires that those two pieces of code do
not communicate with each other except
for the value of the counter.

• Finally if there are also multiple recursive
calls or we are unable to derive the inverse
of the increment, we may eliminate the
recursion by maintaining the stack our-
selves. This gives less benefits than the
previous cases, but still we only need to
save variables that are live across the call,
we save on the cost of the call itself (in-
cluding parameter passing) and we expose
the loops to the loop optimization (but see
also the following section regarding the
subject).

4 Loop Optimizations

As mentioned in the previous sections, loops in
the declarative programming languages are al-
most exclusively expressed through recursion.
Although we have demonstrated several pow-
erful techniques for eliminating the recursion,
in fact in many cases these approaches fail. It
is therefore useful to be able to optimize such
loops.



GCC Developers’ Summit 2004 • 31

The interprocedural loops can be detected us-
ing the standard algorithms applied to the
graph obtained by taking union of a callgraph
and the control flow graphs of the functions.
Since the strongly connected components of
mutually recursive functions are usually en-
tered at one point, the concept of the natural
loop seems to be sufficiently general to cover
the most important cases. On a side note, con-
sidering the ordinary intraprocedural loops in
context of this graph may be useful as well, for
example in order to be able to estimate instruc-
tion and data cache effects.

For the interprocedural loops the invariant mo-
tion and redundancy elimination seem to be
the easiest to apply and the most useful from
the standard optimizations (some other like
strength reduction could work as well, but only
under assumptions that are quite unlikely to
happen). The implementation is straightfor-
ward:

• Determine the parameters and global vari-
ables that are just passed through un-
changed, and propagate the information to
determine those that are invariant.

• Run the function local invariant analysis.

• Move the computation of the invariants
out of the loop. It may be necessary to cre-
ate a wrapper around the header function
of the loop (which is analogical to creat-
ing the preheaders) unless it is called from
only one place outside of the loop.

If the moved invariants are expensive, we can
create a global variable for them, since the
loads from the memory will still pay up. Oth-
erwise we must be able to reserve a register
for them across the functions (which should
be possible in GCC with just minor modifi-
cations). Obviously we must be very careful
about the register pressure in this case.

On intraprocedural level, there are other in-
teresting high-level loop optimizations. For
example incrementalization (usage of the val-
ues computed in the previous iterations—see
[LSLR02]) can be used to transform code like

for (i = 0; i < 100; i++)
{

sum[i] = 0;
for (j = 0; j < i; j++)

sum[i] += a[j];
}

into

sum[0] = 0;
for (i = 1; i < 100; i++)

sum[i] = sum[i - 1] + a[i - 1];

thus achieving an asymptotic speedup.

5 Inlining and Specialization

The declarative programs tend to be composed
of small functions. To make the intraproce-
dural optimizations useful, it is necessary to
perform function inlining intensively. See for
example [JM02] for discussion of applicability
and problems connected with inlining in lazy
functional languages.

Also generic functions and usage of callback-
type functions is a norm in these languages.
They obviously carry a significant penalties
for their usage with them—such functions are
harder to optimize and often require passing of
a partially applied function arguments or func-
tion dictionaries, which is not cheap. To over-
come this, function specialization (also called
cloning) is necessary. This optimization con-
sists of creating duplicates of functions de-
pending on the call site and optimizing them



32 • GCC Developers’ Summit

for the particular values or types of arguments.
See for example [FPP00] and [P97] for more
details.

Both of these optimizations are studied in the
context of procedural languages as well, and at
least some of the implementation issues should
be covered by Hubicka ([H04]), so we make
just a few minor points here.

• It is necessary to interleave inlining and
specialization with other optimizations.
The approach that tries to get the best
performance would have to at least op-
timize the functions locally (to get rid
of unreachable calls, decrease the func-
tion sizes and propagate the informa-
tion about values of arguments), then
inline/specialize the optimized function
bodies, rerun the optimizations, then
run inlining and specialization again (to
exploit the interprocedural information
taken into account due to the first inlining
pass), then again rerun the optimizations.
Of course this may get compile-time ex-
pensive, so other variations of the scheme
may be useful at the lower optimization
levels.

• The code growth is the major problem
with both of these optimizations, since it
has bad effects on the instruction caches.
To overcome the problems, having a call-
graph with profiling information is very
useful—we then may optimize just the in-
tensively used functions and function call
sites.

An implementability note: in fact we have
basically everything needed in GCC with
the current profiling scheme—it would be
sufficient to tag the call sites in a unique
way and to emit the call7→ basic block
map before profiling (similar to the cur-
rent .gcno files). The other possibil-
ity would be the early instrumentation of

the call sites. The main problem cur-
rently is that both of these possibilities in-
terfere with the ordinary profiling. The
former possibility needs the function in-
lining not to be run in the training pass.
The later needs to be done before inlin-
ing and changes the code, so it cannot be
done simultaneously with the ordinary in-
strumentation that is done after inlining.
One of the solutions is to do the both at
the same time, which again needs the in-
lining to be done later in the compilation
process.

• Other possibility is to inline just the rel-
evant parts of the function (so-called par-
tial inlining). If we identify that there is a
short hot part in the inlined function, we
may copy just this part and put the rest
into a separate shared function. This is
useful especially for functions that cache
their results, or handle common special
cases in advance.

• There are several approaches to limit the
code growth with specialization. One of
them is to first specialize all possible oc-
currences, optimize the bodies and then
reshare those for that we were not able to
improve the code sufficiently. The other
one is to identify applicability of opti-
mizations in advance and just specialize
those for that we believe it will be useful.

None of these approaches seems to be
suitable for GCC. The former obviously
wastes a lot of compile time, and detecting
the non-improved instances also would
not be straightforward. The later is dif-
ficult to implement (it would need to have
a separate analysis for each optimization)
and unreliable. The realistic approach
seems to identify the obvious possibili-
ties (functions with callback arguments,
boolean flags passed to them and guard-
ing parts of the code in their bodies, con-



GCC Developers’ Summit 2004 • 33

stant integer parameters used as bounds of
the loops, for example) and specialize just
these. Additionally attribute mechanism
could be used to give the programmer a
possibility to tell that he wants the func-
tion to be specialized for the specified ar-
guments.

• Interprocedural loop optimizations men-
tioned in the previous section as well
as other optimizations may need to cre-
ate simple wrappers around the functions.
This may be useful in other cases as well.
For example we do changing of calling
conventions for static functions. If we
detect that an exported function is often
called locally (from the callgraph profil-
ing, or just by determining that it is called
recursively), creating an exported wrapper
just calling its local instance may pay up.
The other possibility would be to clone
a local copy of it, but this would usually
grow the code much more.

• Specialization on the constant arguments
and specialization on types of arguments
is the most commonly used option. Other
possibility is to specialize according to the
information from value range propagation
or other analyzes, but currently there is
not the infrastructure necessary to exploit
this possibility in GCC.

6 Data Structure Analysis and Op-
timizations

This section describes some optimizations re-
lated to data structures used by the programs.
They are mostly relevant for higher-level lan-
guages. Applying them for low-level procedu-
ral languages like C is complicated by the fol-
lowing issues:

• The layout of data structures is precisely

given in C (by ABI for the particular ar-
chitecture). This makes it only possible
to alter it in cases when we are able to
prove that there are no external references
to the structure, and that the program does
not rely on a particular layout of the data
structure.

• The exposed pointer arithmetics makes all
analyzes close to impossible. It is not easy
to handle even the basic prerequisite for
all the optimizations—alias analysis—in a
satisfactory way.

Despite of these problems, some of the opti-
mizations have also been studied in the con-
text of procedural languages, since the mem-
ory access times are a bottleneck in many ap-
plications. For these reasons we provide only a
short descriptions of several chosen optimiza-
tions, with references to relevant papers:

• Array reshaping changes the layout of ar-
rays (order of indices and their dimen-
sions) to improve the effectiveness of
caches. See for example [G00] that imple-
ments the array padding (changing dimen-
sions of an array by adding unused ele-
ments). Memory layout optimizations can
be with advantage used together with loop
nest optimizations ([CL95]).

• Linked lists are the basic structures used
in the declarative languages. Therefore
much of effort is directed to their opti-
mizations. Although the procedural pro-
grams often also work with linked lists,
usability of the techniques mentioned be-
low is quite limited due to problems with
identifying this pattern (see [CAZ99] for
overview of such an analysis).

If we are able to detect usage of linked
lists, we may use the knowledge in sev-
eral ways. We may arrange the mem-



34 • GCC Developers’ Summit

ory to be allocated sequentially, thus im-
proving cache behavior ([LA02] does a
similar optimization, but without trying to
identify precisely the access pattern). In
cases when the list is accessed in a queue-
like fashion only, we may also change
the representation of the list, for example
by putting several consecutive elements of
the list to an array. This decreases the
amount of memory needed by eliminating
the successor (and possibly predecessor)
pointers, allows more effective traversal
of the lists (in loops controlled by a nor-
mal induction variable) and consequently
increases efficiency of loop optimizations.

• Declarative languages often support use
of temporary data structures (especially
linked lists) in an almost transparent fash-
ion, leading to initially quite ineffective
code. This makes optimizations like
dead store elimination for partially dead
data structures necessary; see for example
([L98]).

• For some of these optimizations a mem-
ory access profiling might be useful. In
the most expensive variant, the full list of
all memory accesses tagged with the cor-
responding references to the source pro-
gram and perhaps also exact values of in-
dices for array accesses is recorded in the
training pass. This data together with a
memory cache model provides a quite ex-
act base for determining the parameters
for all cache directed optimizations. The
optimizations that require exact analysis
of the access pattern of course cannot be
based just on this empiric data, but they
may at least use it to locate the opportuni-
ties and to evaluate their usefulness.

Obviously recording all memory accesses
may turn quite expensive, so recording
just the relevant information may be nec-
essary. For implementation details in

GCC see for example the recent works of
the author and Caroline Tice on profiling
driven array prefetching.

Conclusions

Several of the techniques we have presented
appear to be implementable GCC (note that at
least for some of them this would not be a sim-
ple task at all, however) and useful enough so
that they might bring measurable speedups, es-
pecially

• improvements of the recursion elimina-
tion

• data access profiling and data structure re-
organization

• call graph profiling

• function cloning and specialization

There are other optimizations that seem to be
“cool” and implementable in the GCC frame-
work, although they are only applicable in very
special cases. They probably would not im-
prove the performance much by themselves,
but implementing them might be interesting
from theoretical reasons. In some cases there
also seem to be a chance to generalize them
and thus improve their applicability. They in-
clude

• interprocedural loop optimizations

• loop incrementalization

• linear structures analysis and related opti-
mizations

Of course there also are many optimizations
that probably are only useful in context of



GCC Developers’ Summit 2004 • 35

declarative languages (deforestation, strictness
analysis and unboxing, etc.)

The list of the optimizations can by no means
considered complete. I have filtered out the
low-level optimizations that seem too specific
for the particular compilation model. I also am
not deeply involved in the declarative language
compilation research, so I probably missed
quite a few relevant techniques; I would be
grateful to anyone pointing my attention to
them.

Acknowledgments

This research was supported by SuSE Labs.

References

[W83] D.H.D. Warren,An abstract Prolog in-
struction set, Technical Note 309, SRI
International, Menlo Park, CA, October
1983.

[A84] L. Augustsson,A Compiler for Lazy
ML, Proceedings of the 1984 ACM Sym-
posium on Lisp and Functional Program-
ming, August 1984, pp. 218–227.

[J84] Johnsson, T.,Efficient compilation of
lazy evaluation, Proceedings of the SIG-
PLAN’84 Symposium on Compiler Con-
struction, June 1984, pp. 58–69.

[FW87] J. Fairbairn, S. Wray,TIM—a sim-
ple lazy abstract machine to execute
supercombinators, Functional Program-
ming Languages and Compiler Architec-
ture, LNCS 274, Springer Verlag.

[W90] P. Wadler,Deforestation: transforming
programs to eliminate trees, Theoretical
Computer Science 73 (1990), 231–248.

[HK92] P.G. Harrison, H. Khoshnevisan,On
the synthesis of function inverses, Acta
Informatica, 29(3):211–239, 1992.

[J92] S.P. Jones,Implementing lazy functional
languages on stock hardware: the Spine-
less Tagless G-machine, Journal of Func-
tional Programming 2(2) (April 1992),
pp. 127–202.

[JL92] S.P. Jones, D. Lester,Implementing
functional languages: a tutorialPub-
lished by Prentice Hall, 1992.

[R94] P. van Roy,Issues in implementing logic
languages, Slides, École de Printemps,
Châtillon/Seine, May 1994.

[CL95] M. Cierniak, W. Li, Unifying Data
and Control Transformations for Dis-
tributed Shared-Memory Machines, Pro-
ceedings of the ACM SIGPLAN Confer-
ence of Programming Design and Imple-
mentation (PLDI’95), La Jolla, Califor-
nia, USA, 1995.

[G96] A. Gill, Cheap deforestation for non-
strict functional languages, PhD thesis,
University of Glasgow, Jan 1996.

[P97] G. Puebla, Advanced Compilation
Techniques based on Abstract Interpre-
tation and Program Transformation,
Ph.D. Thesis, Universidad Politécnica
de Madrid (UPM), Facultad Informat-
ica UPM, 28660-Boadilla del Monte,
Madrid-Spain, November 1997.

[L98] Y.A. Liu, Dependence Analysis for Re-
cursive Data, Proceedings of the 1998
International Conference on Computer
Languages, 1998.

[CAZ99] F. Corbera, R. Asenjo, E.L. Zap-
ata, New shape analysis techniques for
automatic parallelization of C codes,
Proceedings of the 13th International



36 • GCC Developers’ Summit

Conference on Supercomputing, Rhodes,
Greece, 1999.

[LS99] Y.A. Liu, S.D. Stoller, From recur-
sion to iteration: what are the optimiza-
tions?, Proceedings of the 2000 ACM
SIGPLAN workshop on Partial evalua-
tion and semantics-based program ma-
nipulation, pp. 73–82.

[FPP00] F. Fioravanti, A. Pettorossi, M. Proi-
etti, Rules and Strategies for Contextual
Specialization of Constraint Logic Pro-
grams, Electronic Notes in Theoretical
Computer Science, Vol. 30 (2) (2000)

[G00] C. Grelck,Array Padding in the Func-
tional Language SAC, Proceedings of the
International Conference on Parallel and
Distributed Processing Techniques and
Applications, PDPTA 2000, June 24–29,
2000, Las Vegas, Nevada, USA

[DC01] D. Diaz, P. Codognet,Design and
Implementation of the GNU Prolog Sys-
tem, Journal of Functional and Logic Pro-
gramming (JFLP), Vol. 2001, No. 6, Oc-
tober 2001.

[HS02] F. Henderson, Z. Somogyi,Compil-
ing Mercury to high-level C code, Pro-
ceedings of the 2002 International Con-
ference on Compiler Construction Greno-
ble, France, April 2002.

[JM02] S.P. Jones, S. Marlow,Secrets of the
Glasgow Haskell Compiler inliner, Jour-
nal of Functional Programming 12(4),
July 2002, pp393-434.

[LA02] C. Lattner, V. Adve,Automatic Pool
Allocation for Disjoint Data Structures,
ACM SIGPLAN Workshop on Memory
System Performance (MSP), Berlin, Ger-
many, June 2002.

[LSLR02] Y. Liu, S. Stoller, N. Li, T.
Rothamel,Optimizing Aggregate Array

Computations in Loops, Technical Report
TR 02-xxxx, Computer Science Depart-
ment, State University of New York at
Stony Brook, Stony Brook, New York,
July 2002.

[H04] J. Hubicka,The GCC call graph mod-
ule: a framework for inter-procedural
optimization, accepted to the 2nd GCC
& GNU Toolchain Developers’ Summit,
June 2004.


