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Abstract

This paper will present a design for loop op-
timizations using high-level loop transforma-
tions. We will describe a loop optimization in-
frastructure based on improved induction vari-
able, scalar evolution, and data dependence
analysis. We also will describe loop trans-
formation opportunities that utilize the infor-
mation discovered. These transformations in-
crease data locality and eliminate data depen-
dencies that prevent optimization. The trans-
formations also can be used to enable auto-
matic vectorization and automatic paralleliza-
tion functionality.

The TreeSSA infrastructure in GCC provides
an opportunity for high level loop transforms
to be implemented. Prior to the Loop Nest Op-
timization effort described in this paper, GCC
has performed no cache reuse, data locality,
parallelization, or loop vectorization optimiza-
tions. It also had no infrastructure to perform
data dependence analysis for array accesses
that are necessary to apply these transforma-
tions safely. We have implemented data de-
pendence analysis and linear loop transforms
on top of TreeSSA, which provides the follow-
ing features:

1. A data dependence framework for deter-

mining whether two data references have
a dependence. The core of the dependence
analysis is a new, low-complexity algo-
rithm for the recognition of scalar evolu-
tions that tracks induction variables across
a def-use graph. It is used to determine
the legality of various transformations, in-
cluding the vectorization transforms being
implemented, and the matrix based trans-
formations.

2. A matrix-based transformation method
for rearranging loop nests to optimize lo-
cality, cache reuse, and remove inner loop
dependencies (to help vectorization and
parallelization). This method can per-
form any legal combination of loop inter-
change, scaling, skewing, and reversal to a
loop nest, and provides a simple interface
to doing it.

1 Introduction

As GNU/Linux tackles high-performance sci-
entific and enterprise computing challenges,
GCC (the GNU Compiler Collection)—the
GNU/Linux system compiler—is challenged
as well. Modern computer processors and
systems are implemented with advanced fea-
tures that require greater compiler assistance
to achieve high performance. Many techniques
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developed for vector and parallel architectures
have found new application to superscalar and
VLIW computer architectures, and to systems
with large memory latencies, more compli-
cated function unit pipelines, and multiple lev-
els of memory caches.

The TreeSSA optimization infrastructure[11]
in GCC provides an enhanced framework for
program analysis. Improved data dependence
information allows the compiler to transform
an algorithm to achieve greater locality and im-
proved resource utilization leading to improved
throughput and performance.

The GCC Loop Nest Optimizer joins a pow-
erful loop nest analyzer with a matrix trans-
formation engine to provide an extensible loop
transformation optimizer that addresses uni-
modular and scaling operations. The data de-
pendence analyzer is based on a new algorithm
to track induction variables without being lim-
ited to specific patterns. The matrix transfor-
mation functionality uses a building block de-
sign that allows many of the standard toolbox
of optimizations to be implemented. A simi-
lar matrix toolkit is used by proprietary com-
mercial compilers. The pieces form a clean
and maintainable design, avoiding an ad hoc
set of optimizers with similar technical require-
ments.

2 Scalar Evolutions

After thegenericizationandgimplification, the
loop structures of the compiled language are
transformed into lower level constructs that are
common to the imperative languages: three ad-
dress assignments, gotos and labels. In order
to retrieve the classic representation of loops
from the GIMPLE representation[9], the natu-
ral loop structures are detected, as described in
the Dragon Book [1], then based on the anal-
ysis of the instructions contained in the loops

bodies, the indexes and the bounds of loops are
detected.

We describe in this section the algorithm used
for analyzing the properties of the scalar vari-
ables updated in a loop. The main extracted
properties are the number of iterations of a
loop, and a form that allows a fast evaluation
of the values of a variable for a given iteration.
Based on these two properties, it is possible to
extend the copy constant propagation pass after
the crossing of a loop, and the elimination of
redundant checks. A further analysis extracts
a representation of the relations between the
reads and the writes to the memory locations
referenced by arrays, and the classic data de-
pendence tests.

2.1 Representation of the Program

The analyzed program is inStatic Single As-
signmentform [10, 5], that ensures the unique-
ness of a variable definition, and a fast retrieval
of the definition from a use. These properties
have lead to the design of an efficient algorithm
that extracts the scalar evolutions in a bidi-
rectional, non-iterative traversal of the control-
flow graph.

2.2 Chains of Recurrences

The information extracted by the analyzer
is encoded using the chains of recurrences
(chrecs) representation proposed in [3, 6, 17,
14, 13]. This representation permits fast eval-
uations of a function for a given integer point,
using the Newton’s interpolation formula. In
the following, we present an intuitive descrip-
tion of the chrecs based on their interpretation,
then the link between the notation of the chrecs
and the semantics of the polynomial functions.
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r1 = 0
r2 = 1
r3 = 2
loop (

�
1)

r1 += r2
r2 *= r3

end1:

Figure 1: Univariate evolution
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Figure 2: Data-flow interpretation

r4 = 9
r5 = 8
r6 = 7
loop (

�
2)

loop (
�

3)
r6 += r5

end3:
r5 += r4

end2:

Figure 3: Multivariate

2.2.1 Interpretation of Chrecs

The main property modeled by the chrecs is the
effect of the iterative execution of a program
on storage points. Each storage point contains
an initial value on the entry of a loop. The
stored value evolves during the execution of the
loop following the operations of the updating
statements. The description of the updating ex-
pressions is embedded in the chrecs represen-
tation, such that it is possible to retrieve a part
of the original program from the chrec repre-
sentation. In other words, only the interest-
ing scalar properties are selected, and the unde-
cidable scalar properties are abstracted into the
unknown element. In the following, the chrecs
representation is illustrated by intuitive exam-
ples based on two interpretation models: using
a register based machine, and a data-flow ma-
chine.

In the register based machine, the coefficients
of a chrec are stored in registers. Then, the
value of a register is updated at each iteration
of a loop, using the operation specified in the
chrec on its own value and the value of the reg-
ister on its right. The first example illustrates
the interpretation of a chrec that vary in a sin-
gle loop.

Example 1 (Univariate chrec on register machine)

Figure 2.2.1 illustrates the interpretation of
the chrec{0, +, {1, ∗, 2}1}1. The registersr1,
r2, andr3 are initialized with the coefficients
of the chrec. Then, the registers are updated
in the loop specified in index of the chrec:

loop 1. The registerr2 is updated in the loop,
and its evolution is described by the chrec
{1, ∗, 2}1. r1 is accumulating the successive
values ofr2 starting from its initial value0,
and consequently it is described by the chrec
{0, +, {1, ∗, 2}1}1.

Another intuitive description of the chrecs is
given by the data-flow model: the nodes of an
oriented graph contain the initial conditions of
the chrec, while the oriented edges transfer in-
formation from a node to another and perform
an operation on the operands. Figure 2 illus-
trates the data-flow machine that interprets the
chrec from Example 1.

Finally, the last example illustrates the inter-
pretation of a chrec that vary in two loops.

Example 2 (Multivariate chrec on register machine)

In Figure 2, the registerr6 can be de-
scribed by the multivariate scalar evolution
{7, +, {8, +, 9}2}3. The value ofr6 is incre-
mented at each iteration of loop3 by the value
contained inr5 that vary in loop2.

In the register based machine, the value of
a chrec at a given integer point is computed
by successively evaluating all the intermedi-
ate values. The initial values of the chrec are
stored in registers that are subsequently up-
dated at each iteration step. One of the goals
of the analyzer is to detect these iterative pat-
terns, and then to recognize, when possible,
the computed function. The link between the
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chrecs and the classic polynomial functions is
described in the next subsection.

2.2.2 Semantics of Chrecs

As described in the previous works [3] New-
ton’s interpolation formula is used for fast eval-
uation of the chrec at a given integer point. The
evaluation of the chrec{c0, +, . . . , +, ck}, at an
integer pointx is given by the formula

{c0, +, . . . , +, ck}(x) =
k∑

i=0

ci

(
x

i

)

with c0, . . . , ck integer coefficients. In the pe-
culiar case of linear chrecs, this formula gives

{base, +, step}(x) = base + step · x

wherebase andstep are two integer constants.
As we will see, it is possible to handle sym-
bolic coefficients, but the above formula for
evaluating the chrecs is not always true.

2.2.3 Symbolic Chrecs

We have extended the classic representation of
the scalar evolution functions by the use of pa-
rameters, that correspond to unanalyzed vari-
ables. The main purpose of this extension is to
free the analyzer from the ordering constraints
that were proposed in the previous versions of
the analyzer. The parameters allow the ana-
lyzer to postpone the analysis of some scalar
variables, such that the analyzer establishes the
order in which the information is discovered in
a natural way.

However, this extension leads to a more ex-
pressive representation, on which the Newton
interpolation formula cannot be systematically

used for fast evaluation of the chrec, because
some of the parameters can stand for a func-
tion. In order to guarantee that all the coef-
ficients of the chrec have scalar (non varying)
values, the last step of the analysis fully instan-
tiate all the parameters. When the instantiation
fails, the remaining parameters are all trans-
lated into the unknown element,>.

2.2.4 Peeled Chrecs

We have proposed another extension of the
classic chrecs representation in order to model
the variables that have an initial value that is
overwritten during the first iteration. For rep-
resenting the peeled chrecs, we have chosen a
syntax close to the syntax of the SSA phi nodes
because the symbolic version of the peeled
chrec is the loop phi node itself. The seman-
tics of the peeled chrecs is as follows:

(a, b)k =

{
a, during the first iteration of loop k,
b otherwise.

wherea and b are two chrecs that can be in
a symbolic form. The peeled chrecs are built
whenever the loop phi node does not define a
strongly connected component over the SSA
graph. The next section describes in more de-
tails the extraction algorithm.

2.3 Extraction Algorithm

Figure 4 presents the algorithm that computes
the scalar evolutions for all the loop-φ nodes
of the loops. The scalar evolution analyzer
is composed of two parts: ANALYZE EVOLU-
TION returns a symbolic representation of the
scalar evolution, and the second part INSTAN-
TIATEEVOLUTION completes the analysis by
instantiating the symbolic parameters. The
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Algorithm: COMPUTEEVOLUTIONS

Input: SSA representation of the procedure
Output: a chrec for every variable defined by loop-φ nodes

For each loopl
For each loop-φ noden in loop l

INSTANTIATEEVOLUTION(ANALYZE EVOLUTION(l, n), l)

Algorithm: ANALYZE EVOLUTION(l, n)
Input: l the current loop,n the definition of an SSA name
Output: chrec for the variable defined byn within l

v ← variable defined byn
ln← loop ofn
If n was analyzed before Then

res← evolution ofn
Else Ifn matches "v = constant " Then

res← constant
Else Ifn matches "v = a " Then

res← ANALYZE EVOLUTION(l, a)
Else Ifn matches "v = a � b" (with � ∈ {+,−, ∗}) Then

res← ANALYZE EVOLUTION(l, a) � ANALYZE EVOLUTION(l, b)
Else Ifn matches "v = loop- φ(a, b) " Then

(noticea is defined outside loopln andb is defined inln)
Search in depth-first order a path fromb to v :
(exist, update)← DEPTHFIRSTSEARCH(n, definition ofb)
If (not exist) (i.e., if such a path does not exist) Then

res← (a, b)l

Else Ifupdate is> Then
res←>

Else
res← {a, +, update}l

Else Ifn matches "v = condition- φ(a, b) " Then
eva← INSTANTIATEEVOLUTION(ANALYZE EVOLUTION(l, a), ln)
evb← INSTANTIATEEVOLUTION(ANALYZE EVOLUTION(l, b), ln)
If eva = evb Then

res← eva
Else

res←>
Else

res←>
Save the evolution functionres for n
Return the evaluation ofres in loop l

Algorithm: DEPTHFIRSTSEARCH(h, n)
Input: h the halting loop-φ, n the definition of an SSA name
Output: (exist, update), existis true ifh has been reached

If (n is h) Then
Return (true,0)

Else Ifn is a statement in an outer loop Then
Return (false,⊥),

Else Ifn matches "v = a " Then
Return DEPTHFIRSTSEARCH(h, definition ofa)

Else Ifn matches "v = a + b " Then
(exist, update)← DEPTHFIRSTSEARCH(h, a)
If existThen Return (true,update+ b),
(exist, update)← DEPTHFIRSTSEARCH(h, b)
If existThen Return (true,update+ a)

Else Ifn matches "v = loop- φ(a, b) " Then
ln← loop ofn
(noticea is defined outsideln andb is defined inln)
If a is defined outside the loop ofh Then

Return (false,⊥)
s← APPLY(ln, ANALYZE EVOLUTION(ln, n),

NUMBEROFITERATIONS(ln))
If s matches "a + t " Then

(exist, update)← DEPTHFIRSTSEARCH(h, a)
If existThen

Return (exist, update+ t)
Else Ifn matches "v = condition- φ(a, b) " Then

(exist, update)← DEPTHFIRSTSEARCH(h, a)
If existThen Return (true,>)
(exist, update)← DEPTHFIRSTSEARCH(h, b)
If existThen Return (true,>)

Return (false,⊥)

Algorithm: INSTANTIATEEVOLUTION(chrec, l)
Input: chreca symbolic chrec,l the instantiation loop
Output: an instantiation ofchrec

If chrecis a constantc Then Returnc
Else Ifchrecis a variablev Then

Return ANALYZE EVOLUTION(l, v )
Else Ifchrecis of the form{e1, +, e2}l′ Then

i1← INSTANTIATEEVOLUTION(e1, l)
i2← INSTANTIATEEVOLUTION(e2, l)
Return{i1, +, i2}l′

Else Ifchrecis of the form(e1, e2)l′ Then
i1← INSTANTIATEEVOLUTION(e1, l)
i2← INSTANTIATEEVOLUTION(e2, l)
Return(i1, i2)l′

Else Return>

Figure 4: Algorithm to compute scalar evolutions

main analyzer is allowed to discover only a
part of the evolution information. The missing
information is stored under a symbolic form,
waiting for a full instantiation. The role of
the instantiation is to determine an order for
assembling the discovered information. Af-
ter full instantiation, the extracted informa-
tion corresponds to the classic chains of recur-
rences. In the rest of the section we analyze in

more details the components of this algorithm,
and give two illustration examples.

2.3.1 Description of the Algorithm

The cornerstone of the algorithm is the search
and reconstruction of the symbolic update ex-
pression on a path of the SSA graph. Let us
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start with the description of the DEPTHFIRST-
SEARCH algorithm. Each step is composed of
a look-up of an SSA definition, and then fol-
lowed by a recursive call of the search algo-
rithm on the symbolic operands. The search
halts when the starting loop-φ node is reached.
When analyzing an assignment whose right-
hand side is a sum, the search algorithm exam-
ines the first operand, and if the starting loop-φ
node is not reachable through this path, it ex-
amines the second operand. When one of the
operands contains a path to the starting loop-φ
node, the other operand of the sum is added to
the update expression, and the result is propa-
gated to the lower search steps together with
the reconstructed update expression. If the
starting loop-φ node cannot be found by depth-
first search, i.e., when DEPTHFIRSTSEARCH

returns (false,⊥), we know that the definition
does not belong to a cycle of the SSA graph: a
peeled chrec is returned.

INSTANTIATEEVOLUTION substitutes sym-
bolic parameters in a chrec. It computes their
statically known value, i.e., a constant, a pe-
riodic function, or an approximation with in-
tervals, possibly triggering other computations
of chrecs in the process. The call to IN-
STANTIATEEVOLUTION is postponed until the
end of the depth-first search, ensuring termi-
nation of the recursive nesting of depth-first
searches, and avoiding early approximations in
the computation of update expressions. Com-
bined with the introduction of symbolic param-
eters in the chrec, postponing the instantiation
alleviates the need for a specific ordering of
the computation steps. This is a strong ad-
vantage with respect to the method by Engelen
[14] based on a topological sort of all defini-
tions. Furthermore, it becomes possible to rec-
ognize evolutions in every possible SSA graph,
although some of them may not yield a closed
form.

The overall effect of an inner loop may only be

computed when the exit value of the variable is
a function of the entry value. In such a case, the
whole loop is behaving as a macro-increment
operation. When the exit condition depends
on affine chrec only, function NUMBEROFIT-
ERATIONS deduces the number of iterations of
the loop. Then we call APPLY to evaluate the
overall effect of the inner loop. APPLY imple-
ments the efficient evaluation scheme for chrec
based on Newton interpolation series (see Sec-
tion 2.2.2). As a side-effect, the algorithm does
indeed compute the loop-trip count for many
natural loops in the control-flow graph. Our
method recovers information that was lost dur-
ing the lowering process or syntactically hid-
den in the source program.

2.3.2 Illustration Examples

Let us now illustrate the algorithm on two ex-
amples in Figures 5 and 6. In addition to
clarifying the depth-first search and instantia-
tion phases of the algorithm, this will exercise
the recognition of polynomial and multivariate
evolutions.

First example. The depth-first search is best
understood with the analysis ofc = φ(a,
f) in the first example. The SSA edge of the
initial value exits the loop, as represented in
Figure 5.(1). Here, the initial value is left in
a symbolic form, but GCC would replace it by
3 through constant propagation.

To compute the parametric evolution function
of c , the analyzer starts a depth-first search
algorithm, as illustrated in Figure 5.(2). We
follow the update edgec→f to the defini-
tion of f in the loop body: assignmentf =
e + c . The depth-first algorithm follows the
first operand,f →e, reaching the assignmente
= d + 7 , and finally follows the edgee→d
that leads to a loop-φ node of the same loop.
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a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(1) Initial condition
edge

a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(2) Search “c”

a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(3) Found the halting
phi

a = 3;
b = 1;
loop (

�
4)

c = φ(a, f);
d = φ(b, g);
if (d>=123) goto end;
e = d + 7;
f = e + c;
g = d + 5;

end:

(4) the “returning
path”

Figure 5: The first example

Since this is not the loop-φ node from which
the analyzer has started the depth-first search,
the search continues on the other operands that
were not yet analyzed: back one = d + 7 ,
operand7 is a scalar and there is nothing more
to do, then back onf = e + c , the edge
f →c is followed to the starting loop-φ node,
as illustrated in Figure 5.(3).

At this point, the analyzer has found the
strongly connected component that corre-
sponds to the path of iterative updates. Follow-
ing this path in execution order, as illustrated in
Figure 5.(4), the analyzer builds the update ex-
pression as an aggregation of the operands that
are not on the updating path: in this example,
the update expression is juste. As a result, the
analyzer assigns to the definition ofc the para-
metric evolution function{a, +, e}1.

The instantiation of the parametric expression
{a, +, e}1 starts with the substitution of the
first operand of the chrec:a = 3, then the anal-
ysis of e is triggered. First the assignmente
= d + 7 is analyzed, and since the evolution
of d is not yet known, the edgee→d is taken
to the definitiond = φ(b, g) . Since this
is a loop-φ node, the depth-first search algo-
rithm is used as before and yields the evolution
function of d, {b, +, 5}1, and after instantia-
tion, {1, +, 5}1. Finally the evolution ofe =
d + 7 is computed:{8, +, 5}1. The final re-

sult of the instantiation yields the polynomial
chrec ofc : {3, +, 8, +, 5}1.

h = 3;
loop (

�
5)

i = φ(h, x);
loop (

�
6)

j = φ(i, k);
k = j + 1;
t = j - i;
if (t>=9) goto end6;

end6:
x = k + 3;
if (x>=123) goto end5;

end5:

Figure 6: Second example

Second example. We will now compute the
evolution of x in the nested loop example of
Figure 6, to illustrate the recognition of mul-
tivariate induction variables and the computa-
tion of the trip count of a loop. The first step
consists in following the SSA edge to the defi-
nition of x . Consider the right-hand side of the
definition: since the evolution ofk along loop
5 is not yet analyzed, we follow the edgex→k
to its definition in loop 6, thenk→j ending on
the definition of a loop-φ node.

At this point we know thatj is updated in
loop 6. The initial conditioni is kept under
a symbolic form, and the iteration edgej →k



44 • GCC Developers’ Summit

is followed in the body of loop 6. The depth-
first search algorithm starts from right-hand
side of the assignmentk = j + 1 : follow-
ing the edgek→j we end on the loop-φ node
from which we have started the search, mean-
ing that the search succeeded. Back on the
pathj →k→j , the analyzer gathers the evolu-
tion of j along the whole loop, an increment of
1, and ends on the following symbolic chrec:
{i , +, 1}6.

From the evolution ofj in the inner loop, the
analyzer determines the overall effect of loop 6
on j , that is the evaluation of functionf(n) =
n + i for the number of iterations of loop 6.
Fortunately, the exit condition is the simple ex-
pressiont>=9 , and the chrec fort (or j - i )
is {0, +, 1}6, an affine (non-symbolic) expres-
sion. It comes that 10 iterations of loop 6 will
be executed for each iterations of loop 5. Call-
ing APPLY(6, {i , +, 1}6, 10) yields the overall
effect j = i + 10 .

The analyzer does not yet know the evolution
function of i , and consequently it follows the
SSA edge to its definition:i = φ(h, x) .
Since this is a loop-φ node, the analyzer must
determine its evolution in loop 5. We ignore
the edge to the initial condition, and walk back
the update edge, searching for a path fromi to
itself.

First, edgei →x leads to the statementx = k
+ 3, then following the SSA edgex→k , we
end on a statement of the loop 6. Again, edge
k→j is followed, ending on the definition ofj
that we have already analyzed:{i , +, 1}6. The
depth-first search selects the edgej →i , as-
sociated with the overall effect statementj =
i + 10 that summarizes the evolution of the
variable in the inner loop. We finally reached
the starting loop-φ nodei . From this point, the
path is walked back gathering the stride of the
loop: 10 from the assignmentj = i + 10 ,
then1 from the assignmentk = j + 1 , and

3 from the last assignment on the return path.
We have computed the symbolic chrec ofi :
{h, +, 14}5.

The last step consists in the propagation of this
evolution function from the loop-φ node ofi
to the original node of the computation: the
definition of x . Back from i to j , we can
partially instantiate its evolution: a symbolic
chrec forj is {{h, +, 14}5, +, 1}6. Then back
to k = j + 1 we get a symbolic chrec for
k : {{h + 1, +, 14}5, +, 1}6; and finally back
to x = k + 3 , we get a symbolic chrec for
x : {h + 14, +, 14}5. A final instantiation ofh
yields the closed form ofx and all other vari-
ables.

As we have seen, the analyzer computes the
evolution functions on demand, and caches the
discovered informations for later queries oc-
curring in different analyzes or optimizations
that make use of the scalar evolution informa-
tion. In the next section, we describe the appli-
cations that use the informations extracted by
the analyzer.

2.4 Applications

Scalar optimizations have been proposed in the
early days of the optimizing compilers, and
have evolved in speed and in accuracy with
the design of new intermediate representations,
such as the SSA. In this section we describe
the extensions to the classic scalar optimization
algorithms that are now enabled by the extra
information on scalar evolutions. Finally, we
give a short description of the classic data de-
pendence tests.

2.4.1 Condition Elimination

In order to determine the number of iterations
in a loop, the algorithm computes the first it-
eration that does not satisfy the condition that
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keeps the execution inside the loop. This same
algorithm can be used on other condition ex-
pressions that don’t keep the loop exit, such
that the algorithm determines the number of
iterations that fall in the then or in the else
clauses. Based on the total number of itera-
tions in the loop it is then possible to determine
whether a branch is always taken during the
execution of the loop, in which case the con-
dition can be eliminated together with the dead
branch.

Another approach for the condition elimination
consists in using symbolic techniques for prov-
ing that two evolutions satisfy some compari-
son test for all the iterations of the loop. In the
case of an equality condition, the algorithm is
close to the value numbering technique, and is
described in the next subsection.

2.4.2 Value Numbering

The value numbering is a technique based on a
compile-time classification of the values taken
at runtime by an expressions. The compiler de-
termines the inclusion property of an expres-
sion into a class based on the results of an anal-
ysis: in the classic algorithms, the analysis is a
propagation of symbolic AST trees [10, 12].

Using the information extracted by the scalar
evolution, the classification can be performed
not only on constants and symbols, but also on
evolution functions, or on the scalar values de-
termined after crossing the loop.

2.4.3 Extension of the Constant Propaga-
tion

The field of action of the classic conditional
constant propagation (CCP) is limited to code
that does not contain loop structures. When
the scalar evolution analyzer is asked for the

evolution function of a variable after crossing
a loop with a static count, it computes a scalar
value, that can be further propagated in the rest
of the program. This removes the restriction of
the classic CCP, where constants are only prop-
agated from their definition to the dominance
frontier.

2.4.4 Data Dependence Analysis

Several approaches have been proposed for
computing the relations between the reads and
the writes to the memory locations referenced
by arrays. The compiler literature [4, 15, 10]
describes loop normalizations, then the extrac-
tion of access functions by pattern matching
techniques, while more recent works [16], rely
on the discovery of monotonicity properties of
the accessed data. An important part of the effi-
ciency of these approaches resides in the algo-
rithm used for determining the memory access
patterns, while the subscript intersection tech-
niques remain in the same range of complexity.

Our data dependence analyzer is based on the
classic methods described in [4, 2]. These tech-
niques are well understood and quite efficient
with respect to the accuracy and the complexity
of the analysis. However, our data dependence
analyzer can be extended to support the newer
developments on monotonicity properties pro-
posed by Peng Wuet al. [16], since the scalar
evolution analyzer is able to extract not only
chrecs with integer coefficients, but also evo-
lution envelopes, that occur whenever a loop
contains updating expressions in a condition
clause. In the following we shortly describe
the classic data dependence analyzer, and show
how to extend it for handling the monotonicity
informations exposed by the scalar analyzer.

A preliminary test, that avoids unnecessary fur-
ther computations, classifies the relation be-
tween two array accesses asnon dependent
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when their base name differ. Thus, the remain-
ing dependence tests consider only tuples of
accesses to the same base name array.

The first test separately analyzes each tuple of
access functions in each dimension of the an-
alyzed array. This tuple is in general called a
subscript. A basic test classifies a subscript fol-
lowing the number of loops in which it is vary-
ing. The three classes of subscripts, constants,
univariate, or multivariate, have different spe-
cific dependence tests that avoids the use of the
multivariate generic solver.

The iterations for which a subscript access
the same element, or conflicting iterations, are
computed using a classic Diophantine1 equa-
tion solver. The resulting description is a tu-
ple of functions that is encoded yet again using
the chrecs representation. Banerjee presents a
formal description [4] of the classic data de-
pendence tests that we just sketch in this pa-
per. The basic idea is to find a first solution (or
the first conflicting iteration) to the Diophan-
tine equation, then to deduce all the subsequent
solutions from this initial one: this is repre-
sented as a linear function under the form of
a chrec as base plus step. The gcd test provides
an easy way to prove that the initial solution
does not exist, and consequently it proves the
non dependenceproperty and stops the algo-
rithm before the resolution of the Diophantine
equation. The most costly part of this depen-
dence test is effectively the resolution of the
Diophantine equation, and more precisely the
determination of the initial solution.

Once the conflicting iterations are known, the
analyzer is able to abstract this information into
a less precise representation: the distance per
subscript information. When the conflicting it-
erations have a same evolution step, the differ-
ence of their base gives the distance at which

1A Diophantine equation is an equation with integer
coefficients.

the conflicts occur. When the steps of the con-
flicting iterations are not equal, the dependence
relation is not captured by the distance descrip-
tion.

In a second step, the analyzer refines the depen-
dence relations using the information on sev-
eral subscripts. The subscript coupling tech-
nique allows the disambiguation of more non
dependent relations in the case of multidimen-
sional arrays. The classic per loop distances
are computed based on the per subscript dis-
tance information. When a loop carries two
different distances for two different subscripts,
the relation is classified to benon dependent.

As we have seen, the current implementation of
the dependence analyzer is based on the clas-
sic dependence tests. For this purpose, only
the well formed linear access functions were
selected for performing the dependence analy-
sis. Among the rejected access functions are all
those whose evolution is dependent on an ele-
ment that was left under a symbolic form, or
contain intervals. For all these cases, the con-
servative result of the analyzer is theunknown
dependencerelation. In the case of evolution
envelopes, it is possible to detect independent
data accesses based on the monotonicity prop-
erties, as proposed by Peng Wuet al. [16].

3 Matrix Transformations

3.1 Purpose

The reason for using matrix based transforma-
tions as opposed to separate loop transforma-
tions in conjunction are many. First, one can
composite transformations in a much simpler
way, which makes it very powerful. While
any of the transformations described could be
written as a sequence of simple loop trans-
forms, determining the order in which to apply
them to achieve the desired transformation is
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non-trivial. However, with a matrix transform,
one can generate the desired transformation di-
rectly. In addition, determining the legality of a
given transformation is a simple matter of mul-
tiplication. The algorithm used also allows for
completion of partial transforms.

3.2 Algorithm

The code generation algorithm implemented
for GCC is based on Wei Li’s Lambda Loop
Transformation Toolkit [8]. It uses integer lat-
tices as the model of loop nests and uses non-
singular matrices as the model of the trans-
forms. The implemented algorithm supports
any loop whose bounds can be expressed as a
system of linear expressions, where each lin-
ear expression can include loop invariants in
the expression. This algorithm is in use by sev-
eral commercial compilers (Intel, HP), includ-
ing those known to perform these transforma-
tions quite well. This was a consideration in
choosing it. Using this algorithm, we can per-
form any combination of the following trans-
formations, simply by specifying the applica-
ble transformation matrix.

(
1 0
0 1

) DO I=1,3
DO J=1,3

A(I, 2*J) = J
END DO

END DO

Figure 7: Original loop

(
1 0
0 2

) DO U=1,3
DO V=2,6,2

A(U, V) = V/2
END DO

END DO

Figure 8: Loop scaling

The loops produced by applying these trans-
forms to the loop in 7 can be seen in Figures 8,

(
0 1
1 0

) DO U=1,3
DO V=1,3

A(V, 2*U) = U
END DO

END DO

Figure 9: Interchanged loop

(
1 0
1 1

) DO U=1,3
DO V=U + 1,U + 3

A(U, 2*(V-U)) = 2*(V-U)
END DO

END DO

Figure 10: Skewed loop

(
1 0
0 −1

) DO U=1,3
DO V=-3,-1

A(U, -2*V) = -V
END DO

END DO

Figure 11: Reversed loop

9, 10, and 11 respectively.

This set of operations includes every unimodu-
lar operation (interchange, reversal, and skew-
ing) plus scaling. The addition of scaling to
the applicable transforms means that any non-
singular transformation matrix can be applied
to a loop, because they can all be reduced to
some combination of the above. Scaling is use-
ful in the context of loop tiling, and distributed
memory code generation.

Legality testing is performed simply by multi-
plying the dependence vectors of the loop by
the transformation matrix, and verifying that
the resulting dependence vectors are lexico-
graphically positive. This will guarantee that
the data dependencies are respected in the loop
nest generated.

The completion procedures allows completion
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of transformation matrices that contain the de-
sired transformation for some portion of the
loop, in a way that respects loop dependencies
for the entire loop.

Consider the following loop:

DO I=4,8
DO J=3,8

A(I, J) = A(I-3, J-2) + 1
END DO

END DO

The dependence matrix for this loop is

D =
(

3
2

)
The outer loop can be made parallel if and only
if it does not carry any dependences, i.e., the
first entry of every dependence vector is 0. In
its current form, this is obviously not true. We
can make it parallel if we can find a transfor-
mationT such that every entry in the first row
of TD is 0. We can easily satisfy that with the
partial transform

(
2 −3

)
. However, this is

not a complete transformation matrix because
it does not specify what to do with the inner
loop. The completion algorithm will complete
this partial transform in a way that maintains
the legality of the transform, i.e., respects de-
pendences.

The full completion procedure is specified in
[8]. It works by generating vectors that are
independent of the existing row vectors in the
partial transformation and within 90 degrees of
each dependence vector.

3.3 Implementation

The GCC implementation of linear loop trans-
forms is decomposed into several pieces: a ma-
trix math engine, a transformation engine, and
converters.

The matrix math engine implements various

vector and matrix math routines necessary to
perform the transformations (inversion, com-
putation of Hermite form, multiplication, etc).

The transformation engine implements legality
testing, rewriting of loop bounds, rewriting of
loop bodies, and completion of partial trans-
forms.

To transform a loop using GCC, we first need
to convert it to a form usable by the code gen-
eration algorithm. There is a simple function
which takes a GCC loop structure and produces
a loopnest structure usable by the transforma-
tion engine. This loopnest structure consists of
a system of linear equations representing the
bounds of each loop.

Next, we perform legality testing. We have
provided a function that takes the loopnest
structure and a transformation matrix, and re-
turns true if it is legal. This mainly is useful
for transformations that were not produced by
the completion algorithm, because that compo-
nent only produces legal transforms.

Third, The loop bounds of the loopnest struc-
ture are rewritten using the aforementioned
code generation algorithm.

Finally, we transform the loopnest structure
back into real GIMPLE/Tree-SSA code. The
subroutine accepts a loopnest structure and
rewrites the actual loop nest code to match it.
This involves two steps: first the new iteration
variables, bounds, and exit condition are gen-
erated. Next, the body of the loop is trans-
formed to eliminate uses of the old iteration
variables. This procedure is straightforward:
given a vector of source iteration variablesSi

and a vector of the target iteration variables
Sj, and the transformation matrixT , the func-
tion computes the source iteration variables in
terms of the target iteration variables using the
equationSi = T−1Sj. This calculation is per-
formed for each statement in the loop, and the
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old uses are replaced with the new equations.

As a side note, all of these functions work in-
dependently of one another. In other words, as
long as one supplies the function that rewrites
loopnest structures into GCC code, one can
reuse the components for other transforma-
tions.

3.4 Applications

Matrix based loop transforms can be used to
improve effectiveness of parallelization and
vectorization by removing inner loop depen-
dencies that inhibit their substitution. They can
also be used to perform spatial and temporal lo-
cality optimizations that optimize cache reuse
[7].

These types of optimizations have the potential
to significantly improve both application and
benchmark scores. Memory locality optimiza-
tions are observed to produce speedup factors
from 2 to 50 relative to the unmodified algo-
rithm, depending on the application.

As an example of such a speedup, we’ll take
a well known SPEC® CPU2000 benchmark,
SWIM2.

SWIM spends most of its time in a single loop.
By simply interchanging this loop, the perfor-
mance can be improved sevenfold, as shown in
Figure 12.

3.5 Future plans

Determination of a good transformation matrix
for optimizing temporal and spatial locality is
work in progress. There are many potential al-
gorithms from which to choose. The authors
are investigating research literature and other
compiler implementations in order to choose a
good algorithm to implement in GCC. An opti-

2http://www.spec.org/
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Figure 12: Effect of interchanging loop on
SWIM

mal transform matrix can be calculated in poly-
nomial time for most loops encountered. The
matrix transform method can be extended to
perform loop alignment transforms, statement-
based iteration space transforms, and other
useful operations.

4 Optimizations

4.1 Loop Optimizations

The new data dependence and matrix transfor-
mation functionality allows GCC to implement
loop nest optimizations that can significantly
improve application performance. These opti-
mizations include loop interchange, unroll and
jam, loop fusion, loop fission, loop reversal,
and loop skewing.

Loop interchange exchanges the order of loops
to better match use of loop operands to system
characteristics, e.g., improved memory hierar-
chy access patterns or exposing loop iterations
without dependencies to allow vectorization.
When the transformation is safe to perform, the
optimal ordering of loops depends on the tar-
get system. Depending on the intended effect,



50 • GCC Developers’ Summit

interchange can swap the loop with the great-
est dependencies to an inner position within the
loop nest or to an outer position within the nest.
The effectiveness of the optimization is limited
by alias and data dependence information.

The Unroll and jam transformation unrolls it-
erations of an outer loop and then fuses copies
of the inner loop to achieve greater value reuse
and to hide function unit latency. The optimal
unrolling factor is a balance between schedul-
ing and register pressure. The optimization is
related to loop interchange and unrolling, so it
similarly requires accurate alias and data de-
pendence information.

Loop fusion combines loops to increase com-
putation granularity and create asynchronous
parallelism by merging independent computa-
tions with the same bounds into a single loop.
This allows dependent computations with inde-
pendent iterations to execute in parallel. Loop
fusion requires appropriate alias and data de-
pendence information, and also requirescount-
able loops.

DO I=1,N
A(I) = F(B(I))

END DO
Q = . . .
DO J=2,N

C(I) = A(I-1) + Q*B(I)
END DO

⇓

Q = . . .
A(1)=F(B(1))
DO I=2,N

A(I) = F(B(I))
C(I) = A(I-1) + Q*B(I)

END DO

Figure 13: Example of Loop Fusion

Loop fission or distribution is the opposite of
loop fusion: breaking multiple computations
into independent loops. It can enable other
optimizations, such as loop interchange and
blocking. Another benefit is reduction of reg-
ister pressure and isolation of vectorizable op-
erations, e.g., exposing the opportunity to in-
voke a specialized implementation of an opera-
tor for vectors or using a vector/SIMD instruc-
tion. Vectorization is a balance between vec-
tor speedup and memory locality. Again, alias
information, data dependence, andcountable
loopsare prerequisites.

DO I=1,N
S = B(I) / SQRT(C(I))
A(I) = LOG(S)*C(I)

END DO

⇓

CALL VRSQRT(A,C,N)
DO I=1,N

A(I) = B(I)*A(I)
END DO
CALL VLOG(A,A,N)
DO I=1,N

A(I) = A(I)*C(I)
END DO

Figure 14: Example of Loop Fission

Loop reversal inverts the direction of iteration
and loop skewing rearranges the iteration space
to create new dependence patterns. Both opti-
mizations can expose existing parallelism and
aid other transformations.

4.1.1 Future Plans

After addressing the optimizations that can
be implemented with initial loop transforma-
tion infrastructure, the functionality will be



GCC Developers’ Summit 2004 • 51

expanded to other well-known loop optimiza-
tions, such as loop tiling, interleaving, outer
unrolling, and support for triangular and trape-
zoidal access patterns.

The goal function for high-level loop trans-
formations is dependent on the target system.
Communicating the system characteristics to
the GCC loop optimizer is an ongoing area of
investigation.

GCC’s high-level loop optimization frame-
work will not implement all, or even most,
loop transformations in the first release—it is
a work in progress, but an effective starting
point from which to grow. Future enhance-
ments to the framework will expand the func-
tionality in two directions: implementing ad-
ditional optimizations and reducing the restric-
tions on existing optimizations. The transfor-
mations first must be safe to enable for any ap-
plication with well-defined numerical behav-
ior. The optimizations will be enhanced to rec-
ognize more and different types of loops that
can benefit from these techniques and improve
application performance.

4.1.2 Helping the Compiler

The programmer can assist the compiler in
its optimization effort while ensuring that the
source code is easy to understand and main-
tain. This primarily involves simplifying mem-
ory analysis, loop structure, and program struc-
ture to aid the compiler.

Limiting the use of global variables and point-
ers allow the compiler to compute more thor-
ough alias information, allowing the safety of
transformations to be determined. Replacing
pointers by arrays and array indexing is one
such example.

Simplified loop structure permits more exten-
sive analysis of the loops and allows easier

modification of loops. Some loop transforma-
tion optimizations requireperfect loop nesting,
meaning no other code is executed in the con-
taining loop, and most loop optimizations are
limited to countable loops. A countable loop
has a single entry point, a single exit point, and
an iteration count that can be determined be-
fore the loop begins. A loop index should be
a local variable whose address is not taken and
avoids any aliasing ambiguity.

Programmers are encouraged to nest loops
where possible and restructure loops to avoid
branches within, into, or out of loops. Ad-
ditionally, the programmer manually can per-
form loop fission to generate separate loops
with simple bounds instead of a single loop
with complicated bounds and conditionally-
executed code within the loop.

4.2 Interacting with the Compiler: towards an
OpenMP implementation

The OpenMP3 standard can be seen as an ex-
tension to the C, C++, and Fortran program-
ming languages, that provides a syntax to ex-
press parallel constructs. Because the OpenMP
does not specify the compiler implementation,
implementations range from the simple source
to source preprocessors such asOdinMP4 and
Omni5 to the optimizing compilers likeORC6,
that exploit the extra information provided
by the programmer for better optimizing loop
nests. Based on these implementations of the
OpenMP norm, we give some reflections on a
possible implementation of OpenMP in GCC.

3http://www.openmp.org/
4http://odinmp.imit.kth.se/
5http://phase.hpcc.jp/Omni/
6http://ipf-orc.sourceforge.net/
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4.2.1 Source to Source Implementations

The source to source implementations of
OpenMP include a parser that constructs an ab-
stract syntax tree (AST) of the program, then a
pretty printer that generates a source code from
the AST. The AST is rewritten using the in-
formation contained in the OpenMP directives.
The transformations involved in the rewriting
of the AST are principally insertions of calls
to a thread library, the creation of new func-
tions, and restructuring of loop bounds and
steps. The main benefit of this approach is that
it requires a reduced compiler infrastructure for
translating the OpenMP directives.

For implementing this source to source ap-
proach in GCC, two main components have to
be designed:

• a directive parser, that is an extension of
the parser for generating AST nodes for
each directive, and

• a directive rewriter, that transforms the
code in function of the directives.

In order to keep the code generation part
generic for all the front-ends, a specific
OMP_EXPRnode could contain the informa-
tion about the directives, until reaching the
GENERIC, or the GIMPLE levels, the GIM-
PLE level having the benefit of being simpler,
and more flexible for restructuring the code.

In the source to source model, the rewrite of the
directives directly generates calls to a thread-
ing library, and the rest of the compiler does
not have to handle theOMP_EXPRnodes. This
kind of transformation tends to obfuscate the
code by inserting calls to functions in place of
the loop bodies, rendering the loop optimiza-
tions ineffective. In order to avoid this draw-
back we have to make the optimizers aware

about the parallel constructs used by the pro-
grammer.

4.2.2 An Optimizing Compiler Approach

In the C, C++, and Fortran programming lan-
guages, the parallelism is expressed mainly us-
ing calls to libraries that implement threading
or message passing interfaces. The compiler is
not involved in the process of optimizing par-
allel constructs because the parallel structures
are masked by the calls to the parallel library.
In other programming languages, such as Ada
and Java, parallel constructs are part of the lan-
guage specification, and allow the compiler to
manage the parallel behavior of the program.
OpenMP directives fill a missing part of the
C, C++, and Fortran programming languages
with respect to the interaction of the program-
mer with the compiler for concurrent program-
ming. It is in this extent that the OpenMP norm
is interesting from the point of view of an opti-
mizing compiler.

In order to allow the optimizers to deal with
the parallel constructs in a generic way, the
compiler has to provide a set of primitives
for the parallel constructs. For the moment,
the GENERIC level does not contain parallel
primitives, and consequently the front-end lan-
guages have to lower their parallel constructs
before generating GENERIC trees. In this re-
spect, the OpenMP directives should not be dif-
ferent than other languages parallel constructs,
and should not have a specificOMP_EXPRthat
allow these constructs to be propagated to the
GIMPLE level for their expansion as described
in section 4.2.1. The support of OpenMP in
this context is togenericizethe directives to
their equivalent constructs in GENERIC and
let the optimizers work on this representation.
Using this approach would allow the compiler
to choose the right degree of parallelism based
on a description of the underlying architecture.
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In the previous discussions on the GCC mail-
ing lists, there were some good questions on
whether we want to support the OpenMP stan-
dard in GCC, but rather than asking again this
question, the authors would like to ask another
question: do we want the generic optimizer
to deal with concurrency aspects, and the pro-
grammer to be able to interact with the opti-
mizer on parallel constructs?

5 Conclusions

The Loop Nest Optimizer provides an effec-
tive and modular framework for implementing
high-level loop optimizations in GCC. Initial
loop optimizations are built on a new loop data
dependence analysis and matrix transformation
engine infrastructure.

This work allows GCC to expand into a num-
ber of areas of optimization for high perfor-
mance computing. The loop optimizations im-
prove performance directly and provide a base
on which to develop auto-vectorization and
auto-parallelization facilities.
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