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Abstract

This paper will present a design for loop op-
timizations using high-level loop transforma-
tions. We will describe a loop optimization in-
frastructure based on improved induction vari-
able, scalar evolution, and data dependence
analysis. We also will describe loop trans-
formation opportunities that utilize the infor-
mation discovered. These transformations in-
crease data locality and eliminate data depen- o
dencies that prevent optimization. The trans-
formations also can be used to enable auto-
matic vectorization and automatic paralleliza-
tion functionality.

The TreeSSA infrastructure in GCC provides
an opportunity for high level loop transforms
to be implemented. Prior to the Loop Nest Op-
timization effort described in this paper, GCC
has performed no cache reuse, data locality,
parallelization, or loop vectorization optimiza- 1
tions. It also had no infrastructure to perform
data dependence analysis for array accesses
that are necessary to apply these transforma-
tions safely. We have implemented data de-

on top of TreeSSA, which provides the follow-
ing features:

mining whether two data references have
adependence. The core of the dependence
analysis is a new, low-complexity algo-
rithm for the recognition of scalar evolu-
tions that tracks induction variables across
a def-use graph. It is used to determine
the legality of various transformations, in-
cluding the vectorization transforms being
implemented, and the matrix based trans-
formations.

A matrix-based transformation method
for rearranging loop nests to optimize lo-
cality, cache reuse, and remove inner loop
dependencies (to help vectorization and
parallelization). This method can per-
form any legal combination of loop inter-
change, scaling, skewing, and reversal to a
loop nest, and provides a simple interface
to doing it.

Introduction

S GNU/Linux tackles high-performance sci-
entific and enterprise computing challenges,
GCC (the GNU Compiler Collection)—the
BNU/Linux system compiler—is challenged
as well.

Modern computer processors and

systems are implemented with advanced fea-
tures that require greater compiler assistance
1. A data dependence framework for deterto achieve high performance. Many techniques
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developed for vector and parallel architecturedodies, the indexes and the bounds of loops are
have found new application to superscalar andletected.

VLIW computer architectures, and to systems I _ )
with large memory latencies, more compli-We describe in this section the algorithm used

cated function unit pipelines, and multiple lev- O analyzing the properties of the scalar vari-
els of memory caches. ables updated in a loop. The main extracted
properties are the number of iterations of a
The TreeSSA optimization infrastructure[11] loop, and a form that allows a fast evaluation
in GCC provides an enhanced framework forof the values of a variable for a given iteration.
program analysis. Improved data dependencBased on these two properties, it is possible to
information allows the compiler to transform extend the copy constant propagation pass after
an algorithm to achieve greater locality and im-the crossing of a loop, and the elimination of
proved resource utilization leading to improvedredundant checks. A further analysis extracts
throughput and performance. a representation of the relations between the
reads and the writes to the memory locations

The GCC Loop Nest Optimizer joins & pow- reterenced by arrays, and the classic data de-
erful loop nest analyzer with a matrix trans- pendence tests.

formation engine to provide an extensible loop

transformation optimizer that addresses uni-

modular and scaling operations. The data de, ; Representation of the Program
pendence analyzer is based on a new algorithm

to track induction variables without being lim-

ited to specific patterns. The matrix transfor-.l_he analyzed program is iBtatic Single As-

mation functionality uses a building block de- _. :
. signmenform [10, 5], that ensures the unique-
sign that allows many of the standard toolbox . - :
o ) .. 'ness of a variable definition, and a fast retrieval

of optimizations to be implemented. A simi- L :

. . . of the definition from a use. These properties

lar matrix toolkit is used by proprietary com- . . .
: ) . have lead to the design of an efficient algorithm
mercial compilers. The pieces form a clean . . .
o : L that extracts the scalar evolutions in a bidi-
and maintainable design, avoiding an ad hoc

o o2 ) . Tectional, non-iterative traversal of the control-
set of optimizers with similar technical require-
ments flow graph.

2 Scalar Evolutions 2.2 Chains of Recurrences

After thegenericizatiorandgimplification the  The information extracted by the analyzer
loop structures of the compiled language aras encoded using the chains of recurrences
transformed into lower level constructs that arg(chrecs) representation proposed in [3, 6, 17,
common to the imperative languages: three adi4, 13]. This representation permits fast eval-
dress assignments, gotos and labels. In orderations of a function for a given integer point,
to retrieve the classic representation of loopsising the Newton’s interpolation formula. In
from the GIMPLE representation[9], the natu-the following, we present an intuitive descrip-
ral loop structures are detected, as described ition of the chrecs based on their interpretation,
the Dragon Book [1], then based on the analthen the link between the notation of the chrecs
ysis of the instructions contained in the loopsand the semantics of the polynomial functions.
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r4d =9
rl =0 r5 = 8
r2 =1 r6 = 7
r3 =2 * + copy loop (£3)
loop (£1) @ @ @ result loop (£3)
rl += r2 | r6 += 15
r2 *=r3 end3:
endl: . r5 += réd
Figure 2: Data-flow interpretation end2:

Figure 1: Univariate evolution i
Figure 3: Multivariate

2.2.1 Interpretation of Chrecs loop 1. The register-2 is updated in the loop,
and its evolution is described by the chrec

The main property modeled by the chrecs is thd 1, *; 2}1- 71 is accumulating the successive
effect of the iterative execution of a programVa|UeS ofr2 starting from its initial value0,

on storage points. Each storage point contain@nd consequently it is described by the chrec
an initial value on the entry of a loop. The {0+, {1, %2} }1.

stored value evolves during the execution of the

loop following the operations of the updating Another intuitive description of the chrecs is
statements. The description of the updating exgiven by the data-flow model: the nodes of an
pressions is embedded in the chrecs represegriented graph contain the initial conditions of
tation, such that it is possible to retrieve a parthe chrec, while the oriented edges transfer in-
of the original program from the chrec repre-formation from a node to another and perform
sentation. In other words, only the interest-gn operation on the operands. Figure 2 illus-

ing scalar properties are selected, and the underates the data-flow machine that interprets the
cidable scalar properties are abstracted into thgnrec from Example 1.

unknown element. In the following, the chrecs

representation is illustrated by intuitive exam-Finally, the last example illustrates the inter-
ples based on two interpretation models: usingpretation of a chrec that vary in two loops.

a register based machine, and a data-flow ma-

chine. Example 2 (Multivariate chrec on register machine)

In the register based machine, the coefficientd? Figure 2, the registerrG can be de-
of a chrec are stored in registers. Then thscribed by the multivariate scalar evolution

value of a register is updated at each iteratiort 7 T {8, +,9}2}s. The value of6 is incre-
of a loop, using the operation specified in themented at each iteration of logpby the value

chrec on its own value and the value of the regContained in'5 that vary in loopz.

ister on its right. The first example illustrates
the interpretation of a chrec that vary in a sin-In the register based machine, the value of
gle loop. a chrec at a given integer point is computed
by successively evaluating all the intermedi-
Example 1 (Univariate chrec on register machine) — ate values. The initial values of the chrec are
Figure 2.2.1 illustrates the interpretation of stored in registers that are subsequently up-
the chrec{0, +, {1, x,2}:},. The registers'1, dated at each iteration step. One of the goals
r2, andr3 are initialized with the coefficients of the analyzer is to detect these iterative pat-
of the chrec. Then, the registers are updatederns, and then to recognize, when possible,
in the loop specified in index of the chrec:the computed function. The link between the
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chrecs and the classic polynomial functions isused for fast evaluation of the chrec, because

described in the next subsection. some of the parameters can stand for a func-
tion. In order to guarantee that all the coef-
ficients of the chrec have scalar (non varying)

2.2.2 Semantics of Chrecs values, the last step of the analysis fully instan-
tiate all the parameters. When the instantiation

As described in the previous works [3] New- fails, the remaining parameters are all trans-

ton’s interpolation formula is used for fast eval- lated into the unknown element,

uation of the chrec at a given integer point. The

evaluation of the chrefeg, +, ..., +, ¢}, atan
integer pointz is given by the formula 2.2.4 Peeled Chrecs
k
{co, 4. .., +, e} (z) = Zci <x> We have proposed another extension of the
i=0  \! classic chrecs representation in order to model

the variables that have an initial value that is
with cq, ..., ¢ integer coefficients. In the pe- overwritten during the first iteration. For rep-
culiar case of linear chrecs, this formula gives resenting the peeled chrecs, we have chosen a
syntax close to the syntax of the SSA phi nodes
because the symbolic version of the peeled
- chrec is the loop phi node itself. The seman-
{base, +, step}(w) = base + step - x tics of the peeled chrecs is as follows:
wherebase andstep are two integer constants.

As we will see, it is possible to handle sym- { a, during the first iteration of loop k

bolic coefficients, but the above formula for (a,b); = b otherwise.

evaluating the chrecs is not always true.

wherea and b are two chrecs that can be in
a symbolic form. The peeled chrecs are built

whenever the loop phi node does not define a

We have extended the classic representation Qfrongly connected component over the SSA

the scalar evolution functions by the use of Pagyraph. The next section describes in more de-
rameters, that correspond to unanalyzed varigils the extraction algorithm.

ables. The main purpose of this extension is to
free the analyzer from the ordering constraint
that were proposed in the previous versions o
the analyzer. The parameters allow the ana- _
lyzer to postpone the analysis of some scalaF'9ure 4 presents the algorithm that computes
variables, such that the analyzer establishes tH8€ scalar evolutions for all the loapnodes

order in which the information is discovered in Of the loops.  The scalar evolution analyzer
a natural way. is composed of two parts: MaLYZE EvOLU-

TION returns a symbolic representation of the
However, this extension leads to a more exscalar evolution, and the second paysTAN-
pressive representation, on which the NewtoITIATEEVOLUTION completes the analysis by
interpolation formula cannot be systematicallyinstantiating the symbolic parameters. The

2.2.3 Symbolic Chrecs

.3 Extraction Algorithm
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Algorithm: COMPUTEEVOLUTIONS
Input: SSA representation of the procedure
Output: a chrec for every variable defined by logmodes
For each loopg
For each loops noden in loop!
INSTANTIATEEVOLUTION(ANALYZE EvoLuTion(l, 1), 1)

Algorithm: ANALYZE EVOLUTION(I, n)
Input: [ the current loopr the definition of an SSA name
Output: chrec for the variable defined bywithin [
v « variable defined by,
In < loop ofn
If n was analyzed before Then
res «— evolution ofn
Else Ifn matchesV = constant
res «— constant
Else Ifn matchesV = a" Then
res +— ANALYZE EvoLUTION(/, a)
Else Ifn matchesV = a ® b"(with ® € {+, —,*}) Then
res < AnaLyzeEvoLuTion(l, &) @ AnaLyzeEvoLution(l, b)
Else Ifn matchesV = loop- ¢(a, b) "Then
(noticea is defined outside loop: andb is defined inn)
Search in depth-first order a path frdimio v:
(exist update < DEPTHFIRSTSEARCH(n, definition ofb)
If (not exis) (i.e., if such a path does not exist) Then
res < (a,b);
Else Ifupdate is T Then
res«— T
Else
res <« {a, +, updateg;
Else Ifn matchesV = condition-  ¢(a, b) "Then
eva «— INSTANTIATEEvoLUTION(ANALYzE EvoLuTion(l, @), In)
evb «— INsTANTIATEEVOLUTION(ANALYZEEvoLuTion(l, b), In)
If eva = evb Then
res «— eva
Else
res <« T
Else
res < 1
Save the evolution functiores for n
Return the evaluation ofes in loop{

"Then

Algorithm: DEPTHFIRSTSEARCH(h, n)
Input: h the halting loopé, n the definition of an SSA name
Output: (exist updat9, existis true if h has been reached
If (nis k) Then
Return (truep)
Else Ifn is a statement in an outer loop Then
Return (false,L),
Else Ifn matchesV = a" Then
Return DEPTHFIRSTSEARCH(h, definition ofa)
Else Ifn matchesV = a + b" Then
(exist updat§ «— DEPTHFIRSTSEARCH(h, &)
If existThen Return (truejpdate+ b),
(exist updatg < DEPTHFIRSTSEARCH(h, b)
If existThen Return (trueypdate+ a)
Else Ifn matchesV = loop- ¢(a, b) "Then
In < loop ofn
(noticea is defined outsidén andb is defined inn)
If a is defined outside the loop &f Then
Return (false,L)
s < APPLY(In, AnaLvzeEvoLuTion(in, n),
NUMBEROFITERATIONS((72))
If s matches& + t " Then
(exist updat§ < DEPTHFIRSTSEARCH(h, @)
If existThen
Return exist update+ t)
Else Ifn matchesV = condition-  ¢(a, b) "Then
(exist updat§ «— DEPTHFIRSTSEARCH(h, &)
If existThen Return (truey)
(exist updatg < DEPTHFIRSTSEARCH(h, b)
If existThen Return (truey)
Return (false,l)

Algorithm: INSTANTIATEEVOLUTION(chreg 1)
Input: chreca symbolic chred] the instantiation loop
Output: an instantiation o€hrec
If chrecis a constant Then Returrc
Else Ifchrecis a variablev Then
Return ANALYZE EVOLUTION(Z, v)
Else Ifchrecis of the form{e1, +, e2};» Then
41 < INSTANTIATEEVOLUTION(eq, 1)
12 < INSTANTIATEEVOLUTION(e2, [)
Return{ii, +, 2}
Else Ifchrecis of the form(e1, e2);» Then
41 < INSTANTIATEEVOLUTION(eq, 1)
32 <+ INSTANTIATEEVOLUTION(e2, 1)
Return(i1, i2);
Else ReturnT

Figure 4: Algorithm to compute scalar evolutions

main analyzer is allowed to discover only amore details the components of this algorithm,
part of the evolution information. The missing and give two illustration examples.

information is stored under a symbolic form,
waiting for a full instantiation. The role of
the instantiation is to determine an order for
assembling the discovered information. Af-
ter full instantiation, the extracted informa-
tion corresponds to the classic chains of recur] he cornerstone of the algorithm is the search

rences. In the rest of the section we analyze ind reconstruction of the symbolic update ex-
pression on a path of the SSA graph. Let us

2.3.1 Description of the Algorithm
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start with the description of the EPTHFIRST  computed when the exit value of the variable is
SEARCH algorithm. Each step is composed ofa function of the entry value. In such a case, the
a look-up of an SSA definition, and then fol- whole loop is behaving as a macro-increment
lowed by a recursive call of the search algo-operation. When the exit condition depends
rithm on the symbolic operands. The searclon affine chrec only, function 8WBEROFIT-
halts when the starting loopnode is reached. ERATIONS deduces the number of iterations of
When analyzing an assignment whose rightthe loop. Then we call ApPLY to evaluate the
hand side is a sum, the search algorithm exanmverall effect of the inner loop. ApLY imple-
ines the first operand, and if the starting lopp- ments the efficient evaluation scheme for chrec
node is not reachable through this path, it exbased on Newton interpolation series (see Sec-
amines the second operand. When one of thiton 2.2.2). As a side-effect, the algorithm does
operands contains a path to the starting lgop-indeed compute the loop-trip count for many
node, the other operand of the sum is added toatural loops in the control-flow graph. Our
the update expression, and the result is propanethod recovers information that was lost dur-
gated to the lower search steps together witling the lowering process or syntactically hid-
the reconstructed update expression. If the&len in the source program.

starting loops node cannot be found by depth-

first search, i.e., when EPTHFIRSTSEARCH

returns (false,L), we know that the definition 2.3.2 lllustration Examples

does not belong to a cycle of the SSA graph: a

peeled chrec is returned. Let us now illustrate the algorithm on two ex-
amples in Figures 5 and 6. In addition to
rclarifying the depth-first search and instantia-
tion phases of the algorithm, this will exercise
the recognition of polynomial and multivariate
Sevolutions.

INSTANTIATEEVOLUTION substitutes sym-
bolic parameters in a chrec. It computes thei
statically known value, i.e., a constant, a pe
riodic function, or an approximation with in-
tervals, possibly triggering other computation
of chrecs in the process. The call to-I
STANTIATEEVOLUTION is postponed until the _ )

end of the depth-first search, ensuring termiF TSt example. The depth-first search is best
nation of the recursive nesting of depth-firstunderstood with the analysis af = ¢(a,
searches, and avoiding early approximations i) 1N the first example. The SSA edge of the
the computation of update expressions. Cominitial value exits the loop, as represented in
bined with the introduction of symbolic param- Figureé 5.(1). Here, the initial value is left in
eters in the chrec, postponing the instantiatiord SYmbolic form, but GCC would replace it by
alleviates the need for a specific ordering of through constant propagation.

the computation steps. This is a strong ad—, compute the parametric evolution function
vantage with respect to the method by Engeleqys ¢ he analyzer starts a depth-first search

[14] based on a topological sort of all defini- algorithm, as illustrated in Figure 5.(2). We
tions. Furthermore, it becomes possible to recs, 0w the update edge —f to the defini-
ognize evolutions in every possible SSA graphyiqn of  in the loop body: assignmeriit =

although some of them may not yield a closed, | ¢ The depth-first algorithm follows the

form. first operandf —e, reaching the assignmeat

The overall effect of an inner loop may only be= d *+ 7, and finally follows the edge —d

that leads to a loog- node of the same loop.
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a = 3; a = 3; a = 3; a = 3;

b\ 1; b= 1; b =1; b=1;

loop 4) loop ({4) loop () loop (4)
c=0(a f); c=0(a, £); c=0(a, f); c=0(a, £);
d=¢(b, 9); de= 0(b, g); d="(b, g); d =™ (b, gl
if (d>=123) goto end; igud>:123) goto end; i\d> 123) goto end; if (d>»e123)) goto end;
e=d+7; e=d + 7; e=d A\7; e=dHA7;
f=e+c; f‘:e.;., f\:‘e+, f=e+
g=d+5; g 5 g=d ; g 5;

end: end: end: end:

(1) Initial condition  (2) Search “c” (3) Found the halting  (4) the “returning

edge phi path”

Figure 5: The first example

Since this is not the loop-node from which sult of the instantiation yields the polynomial
the analyzer has started the depth-first searclehrec ofc: {3, +,8,+,5};.

the search continues on the other operands that
were not yet analyzed: back en= d + 7,
operand’ is a scalar and there is nothing more

to do, then back orf = e + c , the edge io:o;;ws)
f —c is followed to the starting loop- node, i= ¢(h2 x)
. . . loop (ks)

as illustrated in Figure 5.(3). ISP
k=3+1;

At this point, the analyzer has found the F;(i‘ :9? S

strongly connected component that corre- e '

sponds to the path of iterative updates. Follow- f;i;éé) S

ing this path in execution order, as illustrated in ends: ’ '

Figure 5.(4), the analyzer builds the update ex-

pression as an aggregation of the operands that .

are not on the updating path: in this example, Figure 6: Second example
the update expression is just As a result, the

analyzer assigns to the definitionothe para-

metric evolution functior{a, +, e},. Second example. We will now compute the

evolution ofx in the nested loop example of
The instantiation of the parametric expressiorFigure 6, to illustrate the recognition of mul-
{a,+,e}; starts with the substitution of the tivariate induction variables and the computa-
first operand of the chrea = 3, then the anal- tion of the trip count of a loop. The first step
ysis of e is triggered. First the assignmeat consists in following the SSA edge to the defi-
= d + 7 is analyzed, and since the evolutionnition of x. Consider the right-hand side of the
of d is not yet known, the edge—d is taken definition: since the evolution & along loop
to the definitiond = ¢(b, g) . Since this 5is notyet analyzed, we follow the edge-k
is a loop¢ node, the depth-first search algo-to its definition in loop 6, thek—j ending on
rithm is used as before and yields the evolutiorthe definition of a loops node.
function ofd, {b,+,5};, and after instantia- . . o .
tion, {1,+,5},. Finally the evolution o = At this point we know t_h_at]_ IS updated in
d + 7 is computed:{8, +,5},. The final re- loop 6. T_he initial condltlpn is kept _under

a symbolic form, and the iteration edge-k
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is followed in the body of loop 6. The depth- 3 from the last assignment on the return path.
first search algorithm starts from right-handWe have computed the symbolic chreciaf
side of the assignmet = j + 1 : follow-  {h,+,14}s.

ing the edgek—j we end on the loop> node o _ )
from which we have started the search, mean] N€ last step consists in the propagation of this

ing that the search succeeded. Back on thgvelution function from the loog- node ofi
pathj —k—j , the analyzer gathers the evolu-© 'th_orlglnal node of the'computatlon: the
tion ofj along the whole loop, an increment of définition of x. Back fromi toj, we can

1, and ends on the following symbolic chrec:Partially instantiate its evolution: a symbolic
0,4+ 1. chrec forj is {{h,+,14}5,+, 1}¢. Then back

tok =] + 1 we get a symbolic chrec for
From the evolution of in the inner loop, the k: {{h + 1,+,14}5,+, 1}s; and finally back
analyzer determines the overall effect of loop 6o x = k + 3, we get a symbolic chrec for
onj , that is the evaluation of functiofin) =  x: {h + 14, +, 14};. A final instantiation oh
n + 1 for the number of iterations of loop 6. yields the closed form ot and all other vari-
Fortunately, the exit condition is the simple ex-ables.

pressiort>=9 , andthe chrecfar (orj - i )
is {0, +, 116, an affine (non-symbolic) expres- As We_ have sgen, the analyzer computes the
sion. It comes that 10 iterations of loop 6 will €volution functions on demand, and caches the

be executed for each iterations of loop 5. Call-discovered informations for later queries oc-
ing APPLY(6, {i ,+, 1}6, 10) yields the overall Curfing in different analyzes or optimizations
effectj = i + 10 . that make use of the scalar evolution informa-

tion. In the next section, we describe the appli-
The analyzer does not yet know the evolutioncations that use the informations extracted by
function ofi , and consequently it follows the the analyzer.
SSA edge to its definitioni = ¢(h, X)
Since this is a loog> node, the analyzer must 2.4 Applications
determine its evolution in loop 5. We ignore

the edge to the initial coqdltlon, and Wal_k ba‘CkScaIar optimizations have been proposed in the
_the update edge, searching for a path fiioo early days of the optimizing compilers, and

itself. have evolved in speed and in accuracy with
First, edgé —x leads to the statemert= k the design of new intermediate representations,
+ 3, then following the SSA edgr—k, we such as the SSA. In this section we describe

end on a statement of the loop 6. Again edgéhe extensions to the classic scalar optimization
k—j is followed, ending on the definition f algorithms that are now enabled by the extra

that we have already analyzefd:, +, 1}¢. The iqformation on scglgr evolutions. F?nally, we

depth-first search selects the edgesi , as- 9V€ @ short description of the classic data de-

sociated with the overall effect statemgne ~ Pendence tests.

i + 10 that summarizes the evolution of the

variable in the inner loop. We finally reached

the starting loops nodei . From this point, the

path is walked back gathering the stride of the

loop: 10 from the assignmenjt= i + 10 , In order to determine the number of iterations

then1 from the assignmerk = j + 1 ,and in a loop, the algorithm computes the first it-
eration that does not satisfy the condition that

2.4.1 Condition Elimination
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keeps the execution inside the loop. This samevolution function of a variable after crossing
algorithm can be used on other condition ex-a loop with a static count, it computes a scalar
pressions that don’t keep the loop exit, suchvalue, that can be further propagated in the rest
that the algorithm determines the number ofof the program. This removes the restriction of
iterations that fall in the then or in the else the classic CCP, where constants are only prop-
clauses. Based on the total number of iteraagated from their definition to the dominance
tions in the loop it is then possible to determinefrontier.
whether a branch is always taken during the
execution of the loop, in which case the con-
ctj)ition rc]:an be eliminated together with the dead, 4 4 pata Dependence Analysis

ranch.

Another approach for the condition elimination Several approaches have been proposed for
consists in using symbolic techniques for prov-computing the relations between the reads and
ing that two evolutions satisfy some compari-the writes to the memory locations referenced
son test for all the iterations of the loop. In theby arrays. The compiler literature [4, 15, 10]
case of an equality condition, the algorithm isdescribes loop normalizations, then the extrac-
close to the value numbering technique, and ision of access functions by pattern matching
described in the next subsection. techniques, while more recent works [16], rely
on the discovery of monotonicity properties of
the accessed data. An important part of the effi-
2.4.2 Value Numbering ciency of these approaches resides in the algo-
rithm used for determining the memory access

The value numbering is a technique based on patterns, while the subscript intersection tech-
compile-time classification of the values takendUes remain in the same range of complexity.

atruntime by an expressions. The compiler degyr gata dependence analyzer is based on the
termines the inclusion property of an expres-cjassic methods described in [4, 2]. These tech-

sion into a class based on the results of an analiqes are well understood and quite efficient
ysis: in the classic algorithms, the analysis is gt respect to the accuracy and the complexity

propagation of symbolic AST trees [10, 12]. ot the analysis. However, our data dependence

Using the information extracted by the scalar2N@lyzer can be extended to support the newer
evolution, the classification can be performedd€velopments on mor?otonlcny prophertles lpro-
not only on constants and symbols, but also o?©Sed by Peng Wat al. [16], since the scalar

evolution functions, or on the scalar values de_e\r:olutlon_e;lnglyzer IS abflf_e _to EXtLaCt rllOt only
termined after crossing the loop. chrecs with integer coefficients, but also evo-

lution envelopes, that occur whenever a loop
contains updating expressions in a condition
clause. In the following we shortly describe
the classic data dependence analyzer, and show
how to extend it for handling the monotonicity

] ) ] N informations exposed by the scalar analyzer.
The field of action of the classic conditional

constant propagation (CCP) is limited to codeA preliminary test, that avoids unnecessary fur-
that does not contain loop structures. Wherther computations, classifies the relation be-
the scalar evolution analyzer is asked for theween two array accesses aen dependent

2.4.3 Extension of the Constant Propaga-
tion
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when their base name differ. Thus, the remainthe conflicts occur. When the steps of the con-
ing dependence tests consider only tuples dfiicting iterations are not equal, the dependence
accesses to the same base name array. relation is not captured by the distance descrip-

tion.
The first test separately analyzes each tuple of

access functions in each dimension of the ankh a second step, the analyzer refines the depen-
alyzed array. This tuple is in general called adence relations using the information on sev-
subscript. A basic test classifies a subscript foleral subscripts. The subscript coupling tech-
lowing the number of loops in which it is vary- nique allows the disambiguation of more non
ing. The three classes of subscripts, constantslependent relations in the case of multidimen-
univariate, or multivariate, have different spe-sional arrays. The classic per loop distances
cific dependence tests that avoids the use of there computed based on the per subscript dis-
multivariate generic solver. tance information. When a loop carries two

different distances for two different subscripts,

The iterations for which a subscript accesshe rejation is classified to ben dependent
the same element, or conflicting iterations, are

computed using a classic Diophantinequa- As we have seen, the currentimplementation of
tion solver. The resulting description is a tu-the dependence analyzer is based on the clas-
ple of functions that is encoded yet again usingsic dependence tests. For this purpose, only
the chrecs representation. Banerjee presentsthe well formed linear access functions were
formal description [4] of the classic data de-selected for performing the dependence analy-
pendence tests that we just sketch in this pasis. Among the rejected access functions are all
per. The basic idea is to find a first solution (orthose whose evolution is dependent on an ele-
the first conflicting iteration) to the Diophan- ment that was left under a symbolic form, or
tine equation, then to deduce all the subsequembntain intervals. For all these cases, the con-
solutions from this initial one: this is repre- servative result of the analyzer is thbaknown
sented as a linear function under the form ofdependenceelation. In the case of evolution

a chrec as base plus step. The gcd test providesivelopes, it is possible to detect independent
an easy way to prove that the initial solutiondata accesses based on the monotonicity prop-
does not exist, and consequently it proves therties, as proposed by Peng \&tal. [16].

non dependencproperty and stops the algo-

rithm before the resolution of the Diophantine ) )

equation. The most costly part of this depen-3 Matrix Transformations

dence test is effectively the resolution of the

Diophantine equation, and more precisely they 1 pyrpose

determination of the initial solution.

Once the conflicting iterations are known, theThe reason for using matrix based transforma-
analyzer is able to abstract this information intotions as opposed to separate loop transforma-
a less precise representation: the distance péions in conjunction are many. First, one can
subscript information. When the conflicting it- composite transformations in a much simpler
erations have a same evolution step, the differway, which makes it very powerful. While
ence of their base gives the distance at whiclany of the transformations described could be
written as a sequence of simple loop trans-

1A Diophantine equation is an equation with integer fOrms, determining the order in which to apply
coefficients. them to achieve the desired transformation is




non-trivial. However, with a matrix transform,
one can generate the desired transformation di- DO U=1,3

rectly. In addition, determining the legality of a ( 01 DO V=1,3
given transformation is a simple matter of mul- 0 AV, 2U) = U
tiplication. The algorithm used also allows for ENEEI)\IBC?O
completion of partial transforms.

Figure 9: Interchanged loop
3.2 Algorithm
The code generation algorithm implemented DO U=1,3
for GCC is based on Wei Li's Lambda Loop ( 10 DOV=U+1U+3
Transformation Toolkit [8]. It uses integer lat- 1 AU, 2(v-U)) = 2*(V-U)
tices as the model of loop nests and uses non- ENE[I)\IBSO

singular matrices as the model of the trans-

forms. The implemented algorithm supports Figure 10: Skewed loop
any loop whose bounds can be expressed as a

system of linear expressions, where each lin-

ear expression can include loop invariants in DO U=1,3

the expression. This algorithm is in use by sev-( 1 0) DO V=-3,-1

eral commercial compilers (Intel, HP), includ- \ 0 —1 AU, -2*V) =-V
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ing those known to perform these transforma- END DO
tions quite well. This was a consideration in END DO
choosing it. Using this algorithm, we can per- Figure 11: Reversed loop

form any combination of the following trans-
formations, simply by specifying the applica-
ble transformation matrix.

DO I=1,3
10 DO J=1,3
01 A, 2*3) = J

END DO
END DO

Figure 7: Original loop

DO U=1,3
10 DO V=2,6,2
0 2 A(U, V) = V/2
END DO
END DO

Figure 8: Loop scaling

9, 10, and 11 respectively.

This set of operations includes every unimodu-
lar operation (interchange, reversal, and skew-
ing) plus scaling. The addition of scaling to
the applicable transforms means that any non-
singular transformation matrix can be applied
to a loop, because they can all be reduced to
some combination of the above. Scaling is use-
ful in the context of loop tiling, and distributed
memory code generation.

Legality testing is performed simply by multi-
plying the dependence vectors of the loop by
the transformation matrix, and verifying that
the resulting dependence vectors are lexico-
graphically positive. This will guarantee that
the data dependencies are respected in the loop
nest generated.

The loops produced by applying these trans-
forms to the loop in 7 can be seen in Figures 8The completion procedures allows completion
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of transformation matrices that contain the dewvector and matrix math routines necessary to
sired transformation for some portion of theperform the transformations (inversion, com-
loop, in a way that respects loop dependencieputation of Hermite form, multiplication, etc).

for the entire loop.
The transformation engine implements legality

Consider the following loop: testing, rewriting of loop bounds, rewriting of
loop bodies, and completion of partial trans-
DO 1=4.8 forms.
DO J=3,8 To transform a loop using GCC, we first need
All, ) =A(1-3,3-2) +1 to convert it to a form usable by the code gen-
END DO eration algorithm. There is a simple function
END DO

which takes a GCC loop structure and produces
a loopnest structure usable by the transforma-
5 tion engine. This loopnest structure consists of
D= (2) a system of linear equations representing the

The outer loop can be made parallel if and only??U"dS of each loop.

if it does not carry any dependences, i.e., th@yext, we perform legality testing. We have
first entry of every dependence vector is 0. INprovided a function that takes the loopnest
its current form, this is obviously not true. We gtrycture and a transformation matrix, and re-
can make it parallel if we can find a transfor-tyrs true if it is legal. This mainly is useful
mationT" such that every entry in the first row for transformations that were not produced by
of T'D is 0. We can easily satisfy that with the the completion algorithm, because that compo-

partial transform( 2 =3 ) However, this is  nent only produces legal transforms.
not a complete transformation matrix because

it does not specify what to do with the inner Third, The loop bounds of the loopnest struc-
loop. The completion algorithm will complete turé are rewritten using the aforementioned
this partial transform in a way that maintains code generation algorithm.

the legality of the transform, i.e., respects de-FinaIIy, we transform the loopnest structure
pendences.

back into real GIMPLE/Tree-SSA code. The

The full completion procedure is specified in subroutine accepts a loopnest structure and
[8]. It works by generating vectors that arerewrites the actual loop nest code to match it.
independent of the existing row vectors in theThIS involves two StepS: first the new iteration

partial transformation and within 90 degrees ofvariables, bounds, and exit condition are gen-
each dependence vector. erated. Next, the body of the loop is trans-

formed to eliminate uses of the old iteration
variables. This procedure is straightforward:
given a vector of source iteration variablés
and a vector of the target iteration variables
The GCC implementation of linear loop trans- S;, and the transformation matrik, the func-
forms is decomposed into several pieces: a maion computes the source iteration variables in
trix math engine, a transformation engine, anderms of the target iteration variables using the
converters. equationS; = 7-1S;. This calculation is per-

. . ._formed for each statement in the loop, and the
The matrix math engine implements various

The dependence matrix for this loop is

3.3 Implementation
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old uses are replaced with the new equations.

10.0
As a side note, all of these functions work in- 9.0
dependently of one another. In other words, as 8.07
long as one supplies the function that rewrites o /.07
: 2 6.0
loopnest structures into GCC code, one can ® 5.0
reuse the components for other transforma- & 4.0
tions. 3.0
2.07
L 1.0

3.4 Applications 0 !

regular interchanged

Matrix based loop transforms can be used to

improve effectiveness of parallelization and _ . _
vectorization by removing inner loop depen-Figure 12: Effect of interchanging loop on
dencies that inhibit their substitution. They canSWIM

also be used to perform spatial and temporal lo-

cality optimizations that optimize cache reuse
[7]. mal transform matrix can be calculated in poly-

S ~ nomial time for most loops encountered. The
These types of optimizations have the potentiamatrix transform method can be extended to
to significantly improve both application and perform loop alignment transforms, statement-

benchmark scores. Memory locality optimiza-pased iteration space transforms, and other
tions are observed to produce speedup factorigseful operations.

from 2 to 50 relative to the unmodified algo-
rithm, depending on the application. o

4  Optimizations
As an example of such a speedup, we’ll take

a well known SPE€ CPU2000 benchmark,

SWIM?Z. 4.1 Loop Optimizations

SWIM spends most of its time in a single 100p. The new data dependence and matrix transfor-
By simply interchanging this loop, the perfor- mation functionality allows GCC to implement
mance can be improved sevenfold, as shown ifhop nest optimizations that can significantly

Figure 12. improve application performance. These opti-
mizations include loop interchange, unroll and
3.5 Future plans jam, loop fusion, loop fission, loop reversal,

and loop skewing.

Determination of a good transformation matrix .
g Loop interchange exchanges the order of loops

for optimizing temporal and spatial locality is 1o better match use of 1oop operands to svstem
work in progress. There are many potential al- pop y

gorithms from which to choose. The authorscharacterlstlcs, e.g., improved memory hierar-

are investigating research literature and othe\?v?%gﬁf%sj Fe’it(;ir:;eo; ?é(p;i;\?vg\llzgfo'rtsgtg%ns
compiler implementations in order to choose P '

good algorithm to implement in GCC. An opti-aWh_en the transformation is safe to perform, the
optimal ordering of loops depends on the tar-
2http://www.spec.org/ get system. Depending on the intended effect,
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interchange can swap the loop with the greatioop fission or distribution is the opposite of
est dependencies to an inner position within théoop fusion: breaking multiple computations
loop nest or to an outer position within the nest.into independent loops. It can enable other
The effectiveness of the optimization is limited optimizations, such as loop interchange and
by alias and data dependence information.  blocking. Another benefit is reduction of reg-

) ) _ister pressure and isolation of vectorizable op-
The.UnroII and jam transformation unrolls |t.- erations, e.g., exposing the opportunity to in-
erations of an outer loop and then fuses copie§gke a specialized implementation of an opera-

of the inner loop to achieve greater value reusgq; for vectors or using a vector/SIMD instruc-
and to hide function unit latency. The optimal jo,  \ectorization is a balance between vec-

unrolling factor is a balance between scheduly,, speedup and memory locality. Again, alias

ing and register pressure. The optimization isinformation, data dependence, acduntable
related to loop interchange and unrolling, so itloopsare prerequisites.

similarly requires accurate alias and data de-
pendence information.
DO I=1,N

Loop fusion combines loops to increase com- S =B(l) / SQRT(C(1))

putation granularity and create asynchronous
parallelism by merging independent computa-
tions with the same bounds into a single loop.
This allows dependent computations with inde-
pendent iterations to execute in parallel. Loop
fusion requires appropriate alias and data de-

A(l) = LOG(S)*C(l)
END DO

4

CALL VRSQRT(A,C,N)

A(l) =F(B(1)
C(l) = A(I-1) + Q*B(l)
END DO

Figure 13: Example of Loop Fusion

pendence information, and also requicesint- DO I=1N
able loops A(l) = B()*A(1)
END DO
CALL VLOG(A,AN)
DO I=1,N
= *
DO I=1,N EI\'IA\S)DOA(I) 0
A(l) = F(B(1))
END DO
Q=... Figure 14. Example of Loop Fission
DO J=2,N
C(l) = A(I-1) + Q*B(l)
END DO Loop reversal inverts the direction of iteration
and loop skewing rearranges the iteration space
\ to create new dependence patterns. Both opti-
mizations can expose existing parallelism and
Q=... aid other transformations.
A(1)=F(B(1))
DO I=2,N

4.1.1 Future Plans

After addressing the optimizations that can
be implemented with initial loop transforma-
tion infrastructure, the functionality will be
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expanded to other well-known loop optimiza- modification of loops. Some loop transforma-
tions, such as loop tiling, interleaving, outertion optimizations requirperfect loop nesting
unrolling, and support for triangular and trape-meaning no other code is executed in the con-
zoidal access patterns. taining loop, and most loop optimizations are

] ] limited to countable loops A countable loop
The gpal fL_mctlon for high-level loop trans- has a single entry point, a single exit point, and
formations is dependent on the target systéMy, jeration count that can be determined be-
Communicating the_sys?em charac;teristics t3ore the loop begins. A loop index should be
the GCC loop optimizer is an ongoing area ofy |oc4 variable whose address is not taken and
Investigation. avoids any aliasing ambiguity.

GCC's high-level loop optimization frame- programmers are encouraged to nest loops
work will not implement all, or even most, \yhere possible and restructure loops to avoid
loop transformations in the first release—it IShranches within, into, or out of loops. Ad-
a work in progress, but an effective startinggjionally, the programmer manually can per-
point from which to grow. Future enhance- torm |oop fission to generate separate loops
ments to the framework will expand the func-,iin simple bounds instead of a single loop

tionality in two directions: implementing ad- \yitn complicated bounds and conditionally-
ditional optimizations and reducing the restric- oy acuted code within the loop.

tions on existing optimizations. The transfor-

mations first must be safe to enable for any ap-

plication with well-defined numerical behav- _ _ _

ior. The optimizations will be enhanced to rec-4-2  Interacting with the Compiler: towards an

. . OpenMP implementation

ognize more and different types of loops that

can benefit from these techniques and improve

application performance.
The OpenMP standard can be seen as an ex-
tension to the C, C++, and Fortran program-

4.1.2 Helping the Compiler ming languages, that provides a syntax to ex-
press parallel constructs. Because the OpenMP

The programmer can assist the compiler irdoes not specify the compiler implementation,

its optimization effort while ensuring that the implementations range from the simple source

source code is easy to understand and mairf© source preprocessors suchGdinMP* and

tain. This primarily involves simplifying mem- Omni® to the optimizing compilers likORC,

ory ana|ysis1 |oop structure, and program Struclhat eXpIOit the extra information prOVided

ture to aid the compiler. by the programmer for better optimizing loop
nests. Based on these implementations of the

Limiting the use of global variables and point- OpenMP norm, we give some reflections on a

ers allow the compiler to compute more thor-possible implementation of OpenMP in GCC.

ough alias information, allowing the safety of

transformations to be determined. Replacing

pointers by arrays and array indexing is one

such example. 3http://www.openmp.org/

e i “http://odinmp.imit.kth.se/
Simplified loop structure permits more exten-  shyp://phase.hpce.jp/Omni/

sive analysis of the loops and allows easier Shttp://ipf-orc.sourceforge.net/
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4.2.1 Source to Source Implementations  about the parallel constructs used by the pro-
grammer.

The source to source implementations of
OpenMP include a parser that constructs an ab- o _
stract syntax tree (AST) of the program, then &-2-2  An Optimizing Compiler Approach
pretty printer that generates a source code from
the AST. The AST is rewritten using the in- In the C, C++, and Fortran programming lan-
formation contained in the OpenMP directives.guages, the parallelism is expressed mainly us-
The transformations involved in the rewriting ing calls to libraries that implement threading
of the AST are principally insertions of calls or message passing interfaces. The compiler is
to a thread library, the creation of new func-not involved in the process of optimizing par-
tions, and restructuring of loop bounds andallel constructs because the parallel structures
steps. The main benefit of this approach is thaare masked by the calls to the parallel library.
it requires a reduced compiler infrastructure forln other programming languages, such as Ada
translating the OpenMP directives. and Java, parallel constructs are part of the lan-
) ) ) guage specification, and allow the compiler to
For |mplement|ng this source to source 4P'manage the parallel behavior of the program.
proach in GCC, two main components have tgnenMp directives fill a missing part of the
be designed: C, C++, and Fortran programming languages
with respect to the interaction of the program-

. a directive parserthat is an extension of mer with the compiler for concurrent program-
the parser for generating AST nodes forming. Itis in this extent that the OpenMP norm

each directive. and is interesting from the point of view of an opti-
mizing compiler.

* a directive rewriter that transforms the |, orqer to allow the optimizers to deal with
code in function of the directives. the parallel constructs in a generic way, the
compiler has to provide a set of primitives

In order to keep the code generation parlfor the parallel constructs. For the moment,
generic for all the front-ends, a specificthe GENERIC level does not contain parallel

OMP EXPRiode could contain the informa- Primitives, and consequently the front-end lan-
tion about the directives, until reaching the9uages have to lower their parallel constructs
GENERIC. or the GIMPLE levels. the GIM- before generating GENERIC trees. In this re-
PLE level having the benefit of being simpler, SPECL, the OpenMP directives should not be dif-

and more flexible for restructuring the code. ferent than other languages parallel constructs,
and should not have a speci@VIP_EXPRhat

In the source to source model, the rewrite of theallow these constructs to be propagated to the
directives directly generates calls to a threadGIMPLE level for their expansion as described
ing library, and the rest of the compiler doesin section 4.2.1. The support of OpenMP in
not have to handle th@MP_EXPRodes. This this context is togenericizethe directives to
kind of transformation tends to obfuscate thetheir equivalent constructs in GENERIC and
code by inserting calls to functions in place oflet the optimizers work on this representation.
the loop bodies, rendering the loop optimiza-Using this approach would allow the compiler
tions ineffective. In order to avoid this draw- to choose the right degree of parallelism based
back we have to make the optimizers awaren a description of the underlying architecture.
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