Statically Typed Trees in GCC

Nathan Sidwell Zachary Weinberg
CodeSourcery, LLC CodeSourcery, LLC
nathan@codesourcery.com zack@codesourcery.com
Abstract pointing to tree nodes have the typee |,

which can address any node no matter what

The current abstract syntax tree of GCC useds internal structure is. To access the data car-
a dynamically typed tiber-union for nearly all ried in a node, one mgst use the macros defined
nodes. The desire for a statically typed tree dell tree.nh . These hide the exact representa-
sign has been raised several times over receffn @nd can be configured to carry out consis-
years, but there has been no concerted effofNCY checks at runtime (of GCC). We discuss
to implement such a design. We describe thdhe in-memory representation and the accessor

impacts of the current design, both in imple-macros in more detail below.

mentation anq performgnce degradation. Wel’hecodeofatree node determines its dynamic

p(esentade5|gnfor statically typed tree.s, alon%,pe_ The generic (language independent) por-

W'th. case studies of part of the_ conversion. We[ion of the compiler defines approximately 150

outline a plan for full conversion and dISCUSScodes. Front ends can define additional codes

further improvements that this would enable. if necessary. There are tetassegconceptual
categories) of tree codes; each has a tag charac-

1 Current architecture ter to identify it. Front ends cannot define new
classes. Presently, the classes are

GCC uses a data structure calledree for

its high-level intermediate representation. The
parser and semantic analyzer for a given pro-
gramming language construct an initial tree
representation of the program to be compiled.
The high-level optimizers work directly on this
tree. After they are done, the “expander” con-

X "o un o= ANRO

, constants

, unary arithmetic operators

, binary arithmetic operators

, comparison operators
references (e.g. array indexing)
, other expressions (e.@:)

0 's', statements
verts the optimized tree to a lower-level repre- . :
. o , declarations
sentation calledRTL for further optimization 1 types

and assembly output. We will not be discussing
RTL in this paper, but it is worth mentioning ’
that many of the same issues also apply.

miscellaneous

Here are some example tree nodes, with the in-

A tree structure is a directed graph mbdes formation they carry:

Each node is a block of memory (asGuct)
on the heap; the graph edges are pointers be-

tween these blocks. Tree nodes are dynamiSTRING_CST (class “constant”)

cally typed. All variables and structure fields A string constant. The node holds a

150 ¢ GCC Developers’ Summit

pointer to a separately-allocated byte ar-1.1 Substructure
ray, and the length of this array.

The tree type is a pointer to ainion of

PLUS_EXPR("binary expression”) struct s. We will call these structs “substruc-
An addition operation. The node holds ;g »

pointers to tree nodes representing the two

addends. .
union tree_node
“ {1 {
IF—STMT (Statement) 3 struct tree_common common,;
An if statement. The nod_e holds point- struct tree_type type;
ers to tree nodes representing the control- struct tree_decl decl;
ling expression, the “then” clause, and the struct tree_list list;
“else” clause.

\

VAR_DECL(“decIaration") typedef union tree_node *tree;

A declaration of a variable. The node
is the root of a directed graph of nodesAll tree nodes include the fields aftruct
which collectively describe the properties tree_common .* Most nodes also carry ad-

of the variable. ditional information stored in one of the other
substructures. The tree code, which is a field
INTEGER_TYPE (“type”) of the common substructure, determines which

A description of an integer data type, substructure is active.

either intrinsic to the programming lan- _

gram being compiled. Again, the node iscording to which substructure is valid. This
the root of a directed graph describing thecategorization is similar, but not identical, to

properties of the type. the categorization into classes. Front ends
can also define new substructures, if necessary.
TREE_LIST (“miscellaneous”) Unfortunately the mechanism for this is some-

A linked list of other trees. Each node What awkward, since there is no way in C to
of the list can point to up to three differ- augment the contents of a union.

ent trees (known as thgpe purpose and
value); however, usually only one of these
slots is used.

Naturally, accessing the wrong substructure of
a node can have grave consequences. To pre-
vent this, GCC can be configured so that the
ERROR_MARKmiscellaneous”) accessor macros inspect the tree code and ver-

A placeholder used when an error is en_ify that they have been applied to the proper
countered during compilation. This node kind of tree. These checks are partially ad-hoc
carries no information. The compiler al- and partially machine-generated. The code is

locates only onERROR_MAR#ode per only known when the compiler is running, so
invocation. - the checks perforce must occur then. If one

fails, GCC halts translation with the infamous
“internal compiler error” (ICE) messagde.

Trees exhibit three levels of polymorphism, Ibecause all the other substructures inclsiect
which we will refer to assubstructure, mul- ee common as their first member.

tipurposing, andoverloading. 2Jeff Law added the checking mechanism in 1998.

GCC Developers’ Summit 2004 « 151

Accessor Used with Content
TYPE_VALUES ENUMERAL_TYPE | A list of CONST_DECY, one for each
enumeration constant.

TYPE_DOMAIN SET_TYPE An integer type whose range determines
ARRAY_TYPE the set of all valid indexes of this type.

TYPE_FIELDS RECORD_TYPRE A list of FIELD_DECLs, one for each
UNION_TYPE data member of the type.

TYPE_ARG_TYPES | FUNCTION_TYPE A list giving the type of each parameter,
METHOD_TYPE in order, to the function or method.

TYPE_DEBUG_ VECTOR_TYPE The type to use when describing this type

REPRESENTATION _ to the debugger. (Most debuggers do not

TYPE understand vectors.)

Table 1: Multipurposing of thegalues field of tree_type

1.2 Multipurposing Of course, not all possibilities can occur within
avalid tree structure. The accessor macros par-

Some fields of a substructure have differentially validate the targets of pointer fields, and

meanings for different tree codes. When therd1iand-coded assertions finish the job. When a
is more than one possible meaning, we say thdteld can legitimately point to more than one

that field is multipurposed. For instance, akind of node, we say that the field is over-

tree_type structure represents a data typeloaded.

in the program being Complleq. There 4"®The distinction between overloading and mul-

twenty tree codes that use this substructure

Eight of them assign one of five possible mean_tlpurposmg is whether the code of the node

ings to thevalues _ field. Table 1 enumerates containing the field determines what the field

the possibilities. The field goes unused in type'loS omtjsltitoﬁrTgizlui\SrPljﬁ gj gi;c;u;ssde?gg(\j/e
nodes with one of the other twelve codes. purp) - P

fields are overloaded—we do not know, upon
A relatively common special case of multipur- encountering alPLUS_EXPRwhether its op-
posing is when a field has only one possibleerands are expressions, declarations, or con-
meaning, but only a subset of the tree code§tants. (Wedo know that they are in one of
for that substructure need to use that field. Théhose three categories.)
others leave it aslULL

13 Overloading 2 Issues of the status quo

Many of the fields of a tree node are pointersThe present architecture has a number of de-
to other nodes. These, like all pointers to treesign issues, which manifest either as runtime
nodes, have the tyfgeee ; as far as the C type overhead (both space and time) or as increased
system is concerned, they can point to any treburden on the maintainers of the program.
node. The operands of &LUS_EXPRneed For an obvious example of both, the runtime
not be expressions; they can be declarationghecking done by the accessor macros slows
constants, types, or anything else. the compiler down 5-15% (depending on in-

152 ¢ GCC Developers’ Summit

put). This is substantial enough that checkingadditional complexity in the accessor macros.
is disabled in release builds, which can mean]

that bugs go undetected. It is on by default in"While many nodes have fields that are never
development builds, which means GCC develYS€d, some nodes do not have enough, which

opers all put up with a slower compiler for the leads to ancillary data being maintained out-
sake of dynamic type safety. A slow compiler side the tree structure. This may consume more

hence a slow edit-compile-link-debug cycle, ismemory than would have been required oth-

a maintenance burden in itself; also, the check€"Wis€, and it also makes the program harder

ing mechanism is complicated and easy to mistO maintain, since all the necessary informa-

program (see section 2.2 for an example). tion is not in one place. lronically, the _declg-
ration structure is also an example of this, with

Each of the above varieties of polymorphismsubstantial ancillary data being carried in the
has its own set of issues, which we will dis- cgraph_node structures.

cuss in turn. We will also discuss a number of

related issues that we intend to address at the, \uyltipurposing and generic accessors

same time.

In the past, the accessor macros and the de-
bugging pretty-printerdebug_tree) did not
know anything about multipurposing. One
The dynamic type system has a certain level ofvould use the same accessor macfyRE __
intrinsic overhead. In many cases, GCC’s ownVALUES for all five purposes listed in Ta-
source code, not the content of the program beble 1. This led to confusion about which
ing compiled, completely determines the coddree codes might use a given field. While
of atree node. However, we must still maintainconsiderable work has gone into introducing
the node header, which is a full word (the codemore specific accessors, some generic acces-
plus 24 flags). For smaller nodes, this can be gors still exist. Furthermore, the set of valid
considerable amount of memory overhead. codes for each accessor may be incorrect. As
~we were writing this paper, we discovered that
In the larger substructures, many of the fields,yo of the accessor macros for thalues
are only applicable to a few of the_ tree c_odesﬁem allowed &VECTOR_TYPEObviously the
that use those substructures. This obviouslysme field cannot serve two purposes simulta-

wastes memory. Itis a particularly severe prOb'neoust. Tightening up the checks exposed a
lem for type and declaration nodes; the contenf 5 rmiess bug irexpr.c and a more serious
of a CONST_DECIcould fit into 16 bytes or bug incp/decl.c

SO0 on a 32-bit host, but it occupies 116 bytes

anyway. The other side of this problem is thatAccessors for fields with only one use are still
adding a new field to a substructure consumebkely to check only that the substructure is cor-
memory proportional to the total number of rect, not that the field is relevant to the spe-
nodes using that substructure, not just the numeific code. They thus fail to document or en-
ber of nodes it's relevant to. People there-force which codes the fieldare meaningful
fore avoid adding fields to substructures. In-for. Generic routines that inspect trees (such
stead they add new purposes to existing fieldsas the debug-info generators) won't bother to
which adds to maintenance burden instead. Weheck for an appropriate code; they’ll rely on
could solve this within the existing framework the fields beindNULLwhen they are irrelevant.
by defining new substructures, at the cost ofThis situation can persist unnoticed until some-

2.1 Substructure overhead

GCC Developers’ Summit 2004 * 153

one decides to introduce a second purpose for == TYPE_DECL)
one of these fields. In the process that person name = DECL_NAME (name);
will tighten the checking macros, which will
probably cause the generic routines to fail. if (TREE_CODE (name)
I= IDENTIFIER_NODE)

2.3 Abusive overloading abort ();

Tree overloading sometimes happens naturally? less troublesome, but still unwise, case of
For instance, the tree the parser builds for #verloading is the C and C++ parsers’ reuse
complex arithmetic expression will consist of Of expression nodes while parsing declarations.
EXPRnodes which may point to oth&XPRs, Normally aCALL_EXPRrepresents a call to a
to DECIs, or to constants. This is a straightfor-function; its operands are the function to call,

ward way to represent an abstract syntax treednd a list of actual arguments. But the C and
and it rarely causes trouble. C++ front ends also use this expression to rep-

resent a function declaration; then its operands
However, since all pointers to trees have theare the function’s name, and a list of formal pa-
generic typetree , overloading can poten- rameter declarations. This is convenient for the
tially happen anywhere. Since this flexibil- parser, but necessitates a complicated conver-
ity is available, it has been used whenever itsjon routine grokdeclarator) to generate
was locally convenient, without thought for the type and declaration structures expected by
global consequences. Indeed, usually there at@e rest of the compiler. These peculiar expres-
none—at the time. Once overloading has beegions are intended never to escape the C front
added to a tree, every routine that examines ignd, so they have not had creeping global con-
must be prepared for whatever it might find insequences. However, from time to time one

the overloaded field. The only way to prove does escape and cause an ICE elsewhere in the

that a given tree field is not overloaded is tocompiler.

do a global data flow analysis, which can be

very difficult. Thus, global consequences creep/Ve can generate a crude estimate of the num-

into the compiler over time, as new routinesber of places that have to take care when in-

are added that inspect trees that might be ovegpecting overloaded trees by counting uses of

loaded. the TYPE_P and DECL_P macros. As of
March 15, there were 41 and 80 uses, respec-

An example of these creeping consequencegvely, of these macros in the magtc direc-

is the name field of struct tree_type . tory, or about one use every 4000 lines. The
This usua_lly points to a'YPE_DECLnode, C++ front end had more, 143 and 67 uses re-
but sometimes it points to dDENTIFIER_ spectively, or about one use every 500 lines.

NODEnstead. When you get which, and whatThis is due to heavy overloading in the trees

that means, is not documented anywhere. Roussed to represent templates; see section 5.3 for
tines that just want to know the printable namefyrther discussion.
of a type have to use locutions like the follow-

Ing: 2.4 Lists of trees

name = TYPE_NAME (t); Linked lists are very common within trees.
This data structure is convenient when the size
if (TREE_CODE (name) of the list is not known in advance. However,

154 « GCC Developers’ Summit

struct tree_list {

(as always) consumes a full word; it is fair to
struct tree_common {

consider that entirely wasted, since lists are al-

ggg f;pa;’ ways known from context and the flag bits go
enum tre1e code code ‘8 unused. (See section 3.2 for details.) For a list
I* 24 flag bits */ ’ with only one data pointer per node, this struc-
¥ ture is 60% wasted space; compared to a vector
tree purpose; or an internally chained list, 80%.
tree value;

Because all the pointers are generidREE _
LIST does not reveal any information about its
Substructure oTREE LIST contents. Code that processes lists must know
- from context what the list contains, or else be
prepared to encounter anything. Context deter-

linked lists have notably more overhead tharfMines the contentin most cases; again, this wil
vectors on several different grounds. be discussed in detail in section 3.2.

h

Singly linked lists can be constructed using re- g Language-specific trees

served fields in the nodes carrying the data,

or using separate “cons cells.” Ignoring mal- _

loc overhead, a linked list using reserved fielddS W€ mentioned above, language front ends
in the data nodes consumes exactly the sandVe the ability to define new tree codes. Of-

amount of memory as a vector of pointers tole" these codes do not need their own sub-

those nodes. Either way, there is one extr&tructures. For instance, all of the language-
pointer for each node. Linked lists built out SPeCific codes defined by the C front end are

of separate cons cells, on the other hand, uslor C-specific operators, which use the generic

twice as much memory as a vector; two extra €Xpression” substructure. However, some lan-

pointers per node. In exchange, a data node c4#'@ges need their own substructures. The C++

be on more than one list if separate cons Ceng_ront end defines five such. Since the defini-

are used. Either way, traversing a linked list istion Of the basidree type is in a language-

more likely to cause memory-cache thrashing"dependent header file, there is no way to
than traversing the vector. Include these substructures in the tree union.

Thus, the accessor macros for those substruc-
All tree nodes have ahain field, reserved tures mustinclude casts to the appropriate type,
for chaining the node into a linked list. How- which is a minor hassle. Also, the garbage
ever, this field goes unused in approximatelycollector must assume that language-specific
two-thirds of all nodes (not countin§REE_ substructures can be encountered anywhere,
LIST ; see more detailed analysis below, inwhich adds both runtime overhead (determin-
Section 3.1). Instead, separate lists are built ouhg which substructure is active costs two func-
of TREE_LIST nodes. This is the “cons cell” tion calls per node visited) and source com-
technique, but with far more overhead, becauselexity (special annotations to indicate that the
each node in the list has the ability to point totree union is not exhaustive).

three data nodes instead of just one. .
Thetype anddecl substructures include an

In practice, slightly more than half of all lists opaque pointer field that front ends can use to
use only one data pointer per node, and almosittach their own special data to type and dec-
all the rest use only two. Also, the node headetaration nodes. This mechanism provides a

GCC Developers’ Summit 2004 « 155

clear separation between generic and languagésr what, anddebug_tree prints them with
specific data. It requires no casting, since thgeneric names.

opaque pointer refers to a forward-declared _)) _
struct type. Front ends simply provide a Languages sometimes invent their own multi-

complete declaration. However, it does requird®/'Posings for fields that would otherwise go

a second memory allocation, which adds overtnused. The C front end has recycled the
head. TYPE_VFIELDfield of incomplete(RECORD _

TYPE nodes to carry a list oVAR_DECk
Also, the front end might need to multipur- with the incomplete type, so that it can ad-
pose this field—storing different information just them later if the type is completed. This
depending on what sort of type or declaration iis much more efficient than the previous ap-
is—Dbut this is inconvenient, since these strucproach of carrying around a list of all vari-
tures arenot trees and cannot use the machin-ables with incomplete types in the transla-
ery that exists for tree polymorphism. The C++tion unit. However, it directly violates the
and Java front ends solve this problem by dulanguage-independent compiler’'s assumptions
plicating much of that machinery. The Ada about what can appear imYPE_VFIELD.
front end, instead, pretends that the field pointSeveral bugs have been traced to this list es-
to a tree, which can then be multipurposed incaping the C front end.
the normal fashion. Neither is an ideal solu-

tion. TYPE_VFIELD is available for use in the C

front end becausBRECORD_TYP&EN C never
The substructure for a bare identifier (codehave vtables. Th&RECORD_TYPEode is
IDENTIFIER_NODE) also provides for front used for object classes as well as “plain old
ends to attach their own data. Because idendata” structs, so it has all the fields necessary to
tifiers are so frequent, this data is appendethandle both, even though classes never occurin
to the generic substructure instead of beingC. More generally, language-independent trees
separately allocated. This is efficient, but re-carry fields needed to represent the constructs
quires front ends to define complex macros taf all the languages that GCC supports, even
access their own data, just as they would foif they are being used to represent a language
entirely language-specific substructures. Alsothat doesn’t have those constructs. This is
IDENTIFIER_NODESs are used in contexts memory overhead, no more...unless, as with
where the language-specific data will nevelTYPE_VFIELD, someone gets clever.
be used (notabpECL_ASSEMBLER_NAME

but space is allocated for it anyway. 2.6 Memory allocation, precompiled headers

The tree_common structure carries seven _
flag bits specifically for use by front ends, andGCC uses a garbage-collecting allocator for

several more that have generic names but ardl treées. This is convenient, because no one
only relevant to front ends. Thigpe sub- €Ver has to worry about the lifetime of these
structure carries another seven. teel sub- data structured It also facilitates precompiled
structure eight. These are not overhead as théjeaders (PCH). The currentimplementation, to
occupy space that would otherwise be paddin irst order, simply serializes to disk all live data
However, they are a maintenance burden, bl garbage-collected memory.
cause they are _heaV|Iy multipurposed. _It IS (_)f' 3Before the garbage collector was introduced, in
ten unclear which front ends use which bits1999, use-after-free bugs appeared about once every two
weeks; now they are unheard of.

156 ¢ GCC Developers’ Summit

When the garbage collector was first intro-what more predictable lifetimes. In conjunc-
duced, the marking routine for each data struction with the “zone collector” project, which is
ture had to be written by hand. Now insteadworking towards a generational collection al-
we use specialGTY annotations in the source gorithm, this should offer substantial perfor-
code, and a program callegtngtype which mance improvements.
understands a subset of C’s type grammar. It
scans the source code and generates markir})g Measurements
routines, directed by the annotations. It also
generates slightly different walking routines
which are used for PCH save and restore. In order to make sensible plans to solve the
_ _ problems we have discussed, we need hard
Both these things are great achievements frorata on how severe they are. Code inspection
a software maintenance standpoint. In the noreap reveal potential problems, but does not tell
mal course of affairs, programmers need neveys what the actual allocation patterns are, and
worry about memory lifetime. PCH requires tnere is no way to get a sense of the “big pic-

slightly more attention as one must ensure thage Overloading in particular is very hard to
everything that needs serialization is properlygiscover by code inspection.

annotated. Thgengtype program is a pow-

erful tool for doing introspection on GCC’s We therefore modified thgengtype pro-
data structures. We used it for this paper, t@ram to generate instrumentation which would
gather statistics on how fields of tree nodes areneasure how much overloading appeared in
used. We discuss below some other ways ithe trees produced by compilation of a test pro-
could be helpful. gram. We classified each node twice, once by

~ its tree code and once by its substructure.
On the other hand, the garbage collector is not

at all efficient. It allocates memory out of For each field that pointed to another tree node,
fixed-size buckets, with pages reserved for alwe recorded what kinds of tree it could point
locations of a given size, which causes considto, including nothing. When substructures con-
erable memory fragmentation. The collectortained arrays, such agruct tree_exp ,
uses a naive mark-and-sweep algorithm, whichve considered each element a separate field.
has to scan the entire active memory set ol his reveals for instance that the first operand
each collection. This is so slow that GCC con-of a CALL_EXPRIs usually anADDR_EXPR
tains throttling heuristics that effectively dis- and the second is alwaysT&REE_LIST. We
able all memory reuse for average-size transinstrumented lists specially, recording their av-
lation units. The auto-generated marking rou-erage length and the value distribution of the
tines require that type tags be in the samentire list, instead of treating each node as a
block of memory as the unions they disam-separate entity.

biguate; in some places (notably the C++ front
end's struct lang_decl) this forces the YSINg CVS HEAD as of 15 March 2004, we

creation of a redundant tag. measured allocations for the compilation of
GCC’s own C and C++ front ends (this exer-
This paper does not directly address any ofises only the C compiler) and for a small STL-
the problems with the garbage collector. How-based C++ program. Each of these was com-
ever, we expect our changes will cause trees tpiled in a single pass, using GCC's intermodule
use substantially less memory and have someanode. All inlining was disabled, and all func-
tion bodies retained, so that each function body

GCC Developers’ Summit 2004 « 157

would be counted exactly once. Measurementthe chain field could be eliminated, saving
were taken once at the end of compilation, seven more memoryDECILs andBLOCI§ are
transitory tree nodes were not inspected. Unehained together to indicate the lexical scope of
fortunately this means we missed some of theleclarations and these lists could easily be re-
more bizarre things done with trees, such aplaced with vectors. Furthermore, in the GIM-
the declaration expressions discussed in Se®LE representation (which had not yet been
tion 2.3. merged when these measurements were taken)

_ o . statements are held in sequence with an exter-
The C compiler generated a similar dlstrlbutlonna| doubly-linked list, so they do not need in-
of tree nodes during compilation of both front yo 4 chaining either.

ends, so we present here only data for the C++

front end. Compiling this C program gener- e
ated about 1 million instrumented nodes, occu-?"2 List distribution
pying 75MB of storage. The C++ program was
smaller. Compiling it generated about 150,000TREE_LIST nodes are used for all external

nodes, occupying 9MB. singly-linked lists. If we looked at these nodes
in isolation, all their fields would appear to be
3.1 Fields oftree_common heavily overloaded. However, our instrumenta-

tion captured the context of each list, revealing

: hat most lists have predi I nami :
Thetree_common substructure contains two that most lists have predictable dynamic types

tree-pointer fieldschain andtype , which The C front end allocated roughly 300,000
are presentin every node whether it needs themst nodes while compiling the C++ front end.
or not. The utilization of these fields is laid out There were seven major contexts, which are
in Tables 2 and 3. (The “proportion” column is enumerated in Table 4. Of these, only two
proportion of total GC memory allocation; not have nontrivial amounts of overloading, and
all of this is trees.) Itis immediately clear that gne of those is becau@ONSTRUCTORdes
memory could be saved just by excluding thesgre used to initialize both arrays and structures.
fields from substructures that never use them. |t js also apparent that thgpe field of these
lists is completely unused, and tperpose

++ i i . . .
For our C++ test case, remoylng tobain field is unused in half of the cases. We could
pointer from nodes where it isn’t used saves

0 :
134KB, or 1.5% of the total memory alloca- Eavceogc\)llé?t?rl]y ?::/Ie ?n(glﬁgi;theiiﬁilegll\?ecggcr)sn)
tion. Removing theype pointer saves 58KB, y g P '

or 0.6% of total memory. The numbers areThe C++ front end uses a wider variety of lists.
more impressive for C: removirghain saves Qur C++ test case produced 70,000 tree nodes
2.3MB, or 3.1% of memory; removintype in about 30 different uses, which are enumer-
saves 780KB, or 1.0% of memory. If inter- ated in Table 5. Like the C front end, thge
nal memory fragmentation is reduced by thisfield is unused in nearly all contexts, and the
change, which is likely as many of the affectedpurpose field is unused in about half of the
nodes are one word bigger than a power of twogases. There is quite a bit of overloading, but
memory savings could be even bigger. in most cases there is one primary usage and a
ffew outliers. The structures used to represent
templates, however, will require special atten-
4All statistics are for a host architecture with 32-bit tion and is discussed in Section 5.3. If all of
pointers. these uses were converted to specialized vec-

With more code changes, all of the uses o

158 ¢ GCC Developers’ Summit

tors, we might be able to save ab@y8MB of without multipurposing being involved. These
memory (8% of the total). fields point “upward” in the abstract syntax

_) tree, toward larger lexical structures. Since
We did notinstrumentREE_VEGs carefully 1ypgs andDECIs can nest inside each other

asTREE_LIST, but it shows similar proper- agpecially in C++), the context fields need to

ties. It does not carry three data pointers pepea gple to point to botYPEs andDECIs.
entry, but it does have the full overhead of

atree_common header, whosehain and _
type fields go unused. The entries are, a## Redesign
usual, declared asee s rather than anything

more specific, but in most cases the entries argyyr primary goal in redesigning trees is to re-

homogeneous within a given class. duce runtime overhead and maintenance bur-
dens. As we have discussed, overhead comes
3.3 Overloaded fields first from wasted memory. The primary causes

of wasted memory are unused fields in various

S tree substructures, and overuse of linked lists.
Tables 6 and 7 show the distribution of over-

loaded and/or multipurposed fields for the CWe could address unused fields without intro-
and C++ test programs respectively. Multipur-ducing any new static types. We could simply
posed fields are iitalics. We only show cross- promote all instances of multipurposed fields
class overloading, as we are not proposing téo substructures. Constants are already like
get rid of within-class overloading. Most over- this. Each code in the “constant” class (integer,
loading occurs among one primary class andeal, complex, string, vector) has its own sub-
a few outliers. Where there are “secondary”structure. Structure initializers are exceptional
uses, appearing in more than 5% of measureuh that they are not treated as constants, but as
nodes, that is usually a case of multipurposingexpressions—this should probably be changed.
It would not be hard to extend this to other

The primgry class is not always what onegyctyres. We would also want to break up
expects—in C, both BLOCK.supercontext andtree_common , moving its pointers into the

EXPR.operands are 99®ECIs, where one
might expect to find morBLOCK andEXPRs
respectively. This reflects the form of the typ- Furthermore, we already haveT&RREE_VEC
ical C program. Inner scopes tend not to havenode that could replacéREE_LIST when-
variable declarations, and therefore not to needver the list length is known in advance and
BLOCKnodes. Expressions tend to be simplepnly one pointer per element is needed. For
hence moseEXPRnodes point directly to vari- instance, it would be feasible to do this for
ableDECIs rather than to subexpressions. TheBLOCK_VARSWhere this will not work, we
C++ front end does more overloading than Ccould invent new lists with only one or two data
but we still observe the same pattern of primarypointers per node.

uses and outliers, except where there is mul-)
tipurposing. Expressions appear to be mord hese changes would reduce maintenance bur-
complicated in C++ than in C, but still 94% of dens only because accessor macros would have

EXPRs point directly taDECLS. more specific names, and the documentation
would be improved. They would do nothing

TYPE.context and DECL.context are anoma-at all for the overhead entailed by runtime type

lous in having substantial secondary target€hecking. In fact, they might make it worse,

substructures where they are actually used.

GCC Developers’ Summit 2004 « 159

since many checking macros would becometanceCOND_EXPRan be either & opera-
more specific. For instancREE_CHAIN tor or anif statement. This does not preclude
and TREE_TYPEcurrently do no checking at a front end from making a strong distinction in
all; in the above regime they would be replacedts own data structures, if that is appropriate to
by several new macros, which would check forthe language it recognizes.

specific substructures.)
Each of the miscellaneous trees (class)

In order to go any further, we need to makerequires individual attention. Some of them
the static types of trees more specific. That iscan be replaced with plain Gtruct s that
we need to stop usintyee as the type dec- never participate in overloading. Tid OCK
laration of every pointer to a tree. If we are node for instance will get this treatment. Other
to do this, we must decide how specific to benodes will be be recategorized into one or more
in our static declarations. Where possible weof the above classes. For instance, we need
will use pointers to specific structures. How-equivalents oERROR_MAR#r each of the
ever, some degree of overloading is necessargbove categories; these shoulok be unique,
We propose to introduce four new types, eaclso that they can carry information (such as the
of which covers a subset of the present tredocation of the error).

classes. A pointer with one of these types can o _ _

be overloaded freely within that subset, but noOPVviously it will not be possible to continue
outside. We discuss techniques for removinq‘s'ng one structure, carrying no static type in-

cross-class overloading in section 4.3. The reformation, for all linked lists. However, as
placement types are: we detail in Section 3.2, most lists point to

data items whose dynamic types are both pre-
dictable and homogeneous. Therefore, with
TYPE Type nodes: the presetit class. For a moderate amount of effort we can replace
instance,INTEGER_TYPE POINTER_ TREE_LIST with specialized list nodes for
TYPE andRECORD_TYPE each of the classes.

DECL Declaration nodes: the preseiit
class. For instanceEUNCTION DECL 41 Type safety
VAR_DECIlL.andTYPE_DECL
) Under the old design, all pointers had the
EXPR Expression nodes: the preseft , gyme static type, so there was never any need
2, ,'< ,and'e classes. For i, convert them. Under the new design, we
instance, PLUS_EXPR LE_EXPR and ,4|d like to make the static types of point-
ADDR_REF ers as specific as possible. The four classes

CONST Constant nodes: the preselt above are base types in the C++ sense, and

class. For instancdNTEGER CSTand each substructure is a derived type. We will
STRING CST - need a type-safe and terse way to convert be-

tween base and derived type pointers. Unfortu-

nately the C language does not provide conve-
The's' class is not included in this mapping nient facilities for this sort of operation. Point-
because, with the introduction of GENERIC ers to differentstruct s are not assignment-
and GIMPLE, the language-independent comcompatible. There is only one cast operator,
piler no longer makes a strong distinction be-(type), which does not validate the incom-
tween statements and expressions. For ining type at all.

160 ¢ GCC Developers’ Summit

We can simulate the C++ derived-type compat4.2 Language augmentations
ibility rule and dynamic_cast<> operator

in C, with a small amqunt of ext'ra verbosity The coding convention shown in Figure 1 de-
and some GNU extensions. In Figure 1 we il-jiperately does not use unions, unlike the cur-
lustrate one way to implement the conversionyent convention. This is because the union
operations, and the associated structure layoutannot include any language-specific substruc-
Code written to this convention should look al-t,res and we want to put them on an equal
most the same as codt_a_wrltte_n to the old CONtooting with language-independent substruc-
vention, but with specific variable types andyyres, The checked-cast approach is similar to
occa_smnal explicit conversions. It might be\yhat is done now for language-specific sub-
possible to usgengtype to generate all of gyryctures, but safer. If the macros are auto-
the accessor macros and checking logic fromyatically generated, it will also be much less
the substructure definitions, thus eliminatingiedious. Front ends are also free to declare
that source of bugs and tedium. new polymorphic classes; for instance, a lan-
guage that wants a strong distinction between
statements and expressions can invedit M T

s.

There would be acommonstructure for each
of the four major static types. Any fields that
truly are common to all substructures of that®'®s
type can be placed there. In the example, Wye also want to make it easier to add language-
included two boolean fields which are docu-gpecific data to generic substructures. It is
mented as relevant to all constants. We havgyajghtforward for a language to declare an
not yet decided what naming convention usey,gmented substructure and accessors, as they
for the new types; the mixture of struct tags andyg now for IDENTIFIER NODE. However,
all-caps typedefs in figure 1 is only one possithe garbage collector must be advised to allo-
bility. cate more memory for the augmented structure,
Iand to walk the complete structure for point-

The GNU extensions are only necessary fo e o
y y ers when marking live data. This is done for

type checking. When GCC is built with a com- : :
piler that does not support them, the mac:roéDE'\mFlER—NODE with specialTYmark-

can expand to unchecked casts; the compile\(?/‘\r/S ﬂnd Iangiuagte dhopdksc,i whlchtdot_n(;t S(t:ﬁle'
will still work. The compile-time error mes- € have not yet decided on a tactic tor this

sage produced by these macros is suboptima'P,rOblem'

it could be improved with a_builtin_ Finally, we intend to make tree codes more
error primitive. Also, in real life the run- gpacific so that languages do not have to incur
time checks would call a more specific ICE- gyerhead for functionality they do not use. For
reporting routine thambort . These details jnsiance, the(RECORD_TYPEode will apply
were omitted from the example for brevity. only to “plain old data?’ we will introduce a

Some checking does still occur at runtime. WenewCLASS_TYPEnode for object classes.

expect that the overhead will be substantially

lower in this scheme, but we can still dis-4-3 Adaptor nodes

able runtime checking in release builds for ef-

ficiency. Section 3.3 outlined instances of cross-class
overloading, that is, cases whdree point-
ers can refer to more than one of the four static
classes discussed in Section 4. We can elimi-

GCC Developers’ Summit 2004 « 161

nate many of these, but some are legitimate. to mainline when complete. We will partition

, these steps into three stages.
We do not want to combine tHBECL, EXPR

and CONSTclasses, but we could introduce The first stage of the process is to promote
adaptor nodes, which fit into one class and all multipurposed fields to substructures. It
carry a pointer to another class. They mightmay be feasible to do this stage before branch-
or might not carry other information. We al- ing. It is very simple and low-impact for fields
ready have the notion of &YPE_DECL we whose accessor macros are already as specific
could reuse it as an adaptor for context fieldsas they can get. Fields that have non-specific
pointing to aTYPE Context fields can also accessor macros require more thought, and the
point to BLOCIs; for that, we would need a change may be quite large, but still mostly
newBLOCK_DECladaptor. mechanical. Thehain andtype fields of

o tree_common will migrate into the substruc-
The statistics in tables 6 and 7 show that 94,05 that actually use them. It would be nice

99% of expression operands d&&Cls, SO it 5 (g the same for the common flag bits, but

would be most efficient to make that the un-yhat may not be feasible without introducing
marked case. We would add &XPR_DECL |, vanted padding.

adaptor for subexpressions, and use the exist-

ing CONST_DECAhs an adaptor for literal con- The tree-ssa branch has introduced a number
stants. This could facilitate conversion to GIM- of new'x’ nodes that are used in expressions,
PLE form, where all subexpressions are sepasuch asSSA_NAME These are not in class
rated from their contexts. ‘e’ mainly to avoid wasting memory on use-
less fields attached to all expressions. If the
substructure conversion is done properly it will
be possible to put them in cla®s or possi-

bly a new expression subclass.

Converting to statically typed trees is a con- _ o
siderable amount of work. It will have to be The second stage is to eliminate as much over-

done either piecemeal on the mainline, or orl0ading as possible, particularly what we might
its own dedicated branch. If the work is donedescribe as “abusive” overloading. We discuss
on a branch, it will rapidly become very hard @PProaches to some of these in sections 5.1-
to merge in changes from the mainline. How-2-3. The branch will be merged after each
ever, if the work is done on the mainline, it is abuse has been rectified. This stage will have
likely to be disruptive to other projects. The to occur semi-concurrently with the next one,
conversion may not be monotonic, and therd?€cause we do not know where all of the prob-

are several issues as yet unresolved, for whiclgms are.

experimentation will be necessary. Also, this.l.he third stage is to peel off the major tree

project is more work than one person can doclasses from the Uber-union, one at a time. The

alone. Collaboration by emailing patches baCli)ranch will be merged after each step. Ex-

and forth is tedious, compared to coIIaboratlonCept where we encounter unexpected abuses,
by working on the same branch.

the substantial changes in this stage affect only

On balance, we believe that most of the workthe implementation of the accessor macros.
should be done on a branch. However, in ordeflowever, this is the stage where we change
to avoid severe divergence, the project Shouw'aria_tble declarations, introduce explicit con-
be broken into steps which can be merged backersions, and rename accessor macros to con-

5 Conversion plan

162 ¢ GCC Developers’ Summit

form to a naming scheme that facilitates auto- texts, and therefore can be separated out

matic generation. This will entail mechanical relatively easily. It contains a list of
changes all over the compiler. We propose to DECILs, which will be the first use of spe-
do this stage in the following order: cialized vector types.

Types Of the remaining tree nodes, types are
the most distinct; there is rarely cross-
class overloading between types and other
things. However, we will need to create
specialized lists of types, and we expect
to find abuses in their relationship to dec-
larations.

Identifiers With the exception of C++ tem-
plate bodies, there are only a few places
where atree node might or might not be an
identifier, and they are all arguably bugs.
The new C++ parser should make it feasi-
ble to use custom data structures for C++
template bodies, so th#DENTIFIER _

NODEneed not be an overloading candi- constants In this step we will replace over-

date at all. In some place_s, identifiers are loading between declarations and strings
used where unboxed strings would suf- with anonymousCONST_DEChdaptors.

fice; we will remove all such identifiers in Also, trees which are alwaydTEGER
this step. or STRING_CSTnodes will be replaced
ERROR_MARRhere is one error mark node, ~ With unboxed integers or strings.

which can appear in any context WhereExpressions Next, we give expressions a dis-
the tree is inco mplete becausg the mput tinct type, and make their operands always
program was Incorrect. It carries no In- be DECLnodes. Subexpressions will be
formation. We mean to replace it with wrapped inEXPR_DECladaptor nodes.

separateNVALID_TYPE, lNVALID.— This is one of the most invasive changes to
DECL, INVALID_EXPR, and possibly be made; however, a suitably clever defi-

INVALID_CST codes. These nodes will nition of TREE OPERANBhould make
not be unique, and will carry enough in- it possible to do it piecemeal.

formation that later stages of compilation
do not need to be aware of them. Declarations At this point the only things left

in the tree union are declarations. We can
replace all remainingree variables with
DECLvariables, and delete the union en-
tirely.

Lists and vectors TREE_LIST must be re-
placed with specialized list nodes that
carry static type information. Itis also de-
sirable to use vectors where possible, in-
stead of lists. In this step we will design
a macro API for synthesizing vector and e will now discuss a few conversion steps in
list types, and the associated runtime APlygre detail.
for building lists, converting lists to vec-
tors, etc. This will allow us to save mem- ¢ ;1 = yeclaration parsing
ory immediately, by removing the unused

pointers from most lists. In further steps The C and C4+ . q
we will use it to define specialized list and etan parsers reuse expression nodes

for temporary structures while parsing declara-

tions, as described in section 2.3. This is in-

Blocks The lexical binding nodeBLOCKcan compatible with static typing. Also, it is in-
only appear within certain nodes and con-efficient; the temporary structure is far larger

vector types as needed.

GCC Developers’ Summit 2004 * 163

struct binfo {
unsigned int flags;
tree type;
struct binfo *next;
struct binfo *inheritance;

tree offset; A BINFO is a TREE_VECwith indexes de-
:ree Vﬁblel’ . fined for each piece of information. Informa-
t:gg thﬁé’ld_ tion about aBINFO's baseBINFOs is held in
unsigned_int num_bases; two addltlonaITRE_E_VE@, Wh_lch Is unnec-
essary fragmentation. There is a comment in

struct base { X - _
tree access: tree.h suggesting that this be changed:

struct binfo *base;
} bases[];

directed acyclic graph which mirrors the class
hierarchy. They carry data such as the loca-
tion of the base sub-object, the class type of
the base, etc.

??? This could probably be done by
g just allocating the base types at the end
of this TREE_VEQinstead of using an-
otherTREE_VEGQG. This would simplify
the calculation of how many basetypes a
than it needs to be (for instance, lists of identi- given type had.

fiers are used in places where flag words would

suffice) and the entire thing is discarded afte
processing bgrokdeclarator , producing
lots of garbage.

CustomBINFO structure

'As with declarator expressions, we mean to re-
place BINFO with a custom structure. The
fields that point toBINFOs are never over-

We plan to replace these expressions with &#aded, so we do not need to make it a tree
custom data structure. It need only contairSubstructure. An example structure is shown
fields for the information added at its level (cv- @b0ve, as it would appear before conversion to
qualifiers, attributes, array or function parame-SPecific static types. Further memory savings

ters), an enumeration of what is being declared@'® Possible: we can store less information in
(array, pointer, etc), and a pointer to the structhe BINFO and more in the(RECORD_TYPE

ture for the next level. It would use the poly- Of the base class, where it is not copied for ev-

morphism techniques described in Section 4.1€1y derived class. Theirtuals field is a

but static type constraints would ensure that itong list, with one entry for every virtual func-
never escaped the front end. tion in that class. If it can’t be moved to the

RECORD_TYPHRve can at least convert it to a
We expect this project to have the pleasant sidgpecialized vector.
effect of replacingyrokdeclarator with a
set of simpler functions, none of which is 12005 3 Template arguments and levels
lines long.

C++ template parameters may be types, ex-
pressions, or nested templates. Presently, the
C++ front end takes advantage of overloading
TheRECORD_TYPtor each class declared in to put all these things in a single parameter vec-
a C++ program has a set BINFO structures tor. Many of the uses ofFYPE_PandDECL_P

to represent its base class organization. Thereithin the C++ front end are due to this over-
is oneBINFO for each base class, arranged in doading. In this context, types are the most

5.2 BINFOs

164 ¢ GCC Developers’ Summit

struct inner_vec {
unsigned int num_args;
tree argsl];

h

struct outer_vec {
unsigned int num_levels;
struct inner_vec *levels]];

h

verted some list usages, giving experience in
the features that are necessary. We expect that
at that time a good approach will be obvious.

7 Acknowledgments

We would like to thank Diego Novillo and

Two-dimensional template parameter array Christian Lavoie for commenting on drafts of

the paper, and Sumana Harihareswara, Michael

common sort of parameter. We could use C++-
specificEXPR_TYPEandDECL_TYPEadap-
tor nodes. Another option is to use a tagged
array of unions, but then we would have to find
somewhere to put the tags.

It is possible for a template to have more than
one level of template parameters. Such tem-
plates have a vector of parameter vectors, one
for each level. To avoid overhead, templates
with only one level of parameters omit the
outer vector. This is another kind of over-
loading, and it costs quite a bit of complexity
(mostly incp-tree.h s macros for manipu-
lating template trees). A specialized two-dim-
ensional array would have substantially less
overhead. One possible structure layout is
shown here.

6 Closing remarks

This paper concentrates mostly on the common
code, and the C and C++ front ends. The Java,
Ada, Fortran and Objective C front ends will no
doubt have specific issues during conversion.
With the possible exception of Ada, we expect
that these will be no more trouble than the C++
front end. We will need support from front end
maintainers to complete the conversion for all
front ends.

We have glossed over the process of defining
specialized list and vector types. By the time
that is necessary, we will have already con-

Ellsworth, and Julia Bernd for copyeditorial as-
sistance above and beyond the call of duty.

GCC Developers’ Summit 2004 * 165

Tables and figures

In Tables 4—7, upper case indicates nodes with a particular tree structure; lower case indicates
nodes with a particular tree code. An entry with just a dash (—) indicates a field that was never
used.

Utilization
Class Proportion chain type
BLOCK 1.61% | 47.78% 0.00%
DECL 26.46% | 89.81% | 99.30%
EXPR 35.72%| 0.00% | 100.00%
STMT 14.85% | 60.21% 0.00%
IDENTIFIER 1.72% | 0.00% 0.00%
CONSTANT 14.75%| 0.00% | 100.00%
TYPE 4.89% | 0.00% | 71.42%

Table 2:tree_common utilization by class in C program

Utilization
Class Proportion chain type
BLOCK 3.85% | 2.35% 0.00%
DECL 33.60% | 60.80% | 99.68%
EXPR 19.23%| 0.00% | 43.45%
STMT 14.46% | 38.93% 0.00%
IDENTIFIER 7.26% | 0.00% 7.40%
CONSTANT 3.18% | 0.00% | 100.00%
TYPE 12.80%| 0.00% | 65.98%

Table 3:tree_common utilization by class in C++ program

Field Null | Len | Type Purpose Value
call_expr.op[1] 2% | 35| — — EXPR
record_type.minvdl | 99% | 3.0| — — DECL
function_type.values| 0% | 3.7| — — TYPE
enumeral_type.values 0% | 23.1| — identifier integer_cst
DECL.attributes 91% | 14| — identifier —b
TYPE.attributes 98% | 19| — identifier list
constructor.op[0] 0% | 9.6| — | field decl 65% EXPR
integer_cst 35%
TYPE.attributes.value 0% | 2.1 | — — identifier 26%
integer_cst 74%

8C_TYPE_INCOMPLETE_VAR%he C front end has invented its own multipurposing
for this field (see section 2.5).

bThis field is non-NULL for some attributes, none of which are used in the program we
measured.

Table 4: Lists in C program

166 ¢ GCC Developers’ Summit

Field Null | Len Type Purpose Value
record_t.pure_virtuals 99% | 8.7 — — method_t
record_t.befriending_classes96% | 1.3 — — record_t
record_t.vfields 85% | 1.0 — — record_t
record_t.friend_classes 97% | 2.3 — — record_t
type_d.initial.value 0% | 2.0 — — DECL
var_d.initial 17% | 2.3 — — EXPR
nw_expr.operands[0] 77%| 1.0 — — EXPR
call_expr.operands[1] 32% | 24 — — EXPR >99%
identifier <1%
TYPE.attributes.value 0% | 1.6 — — integer 82%
identifier 18%
function_t.binfo 73% | 1.0 — — null 99%
record_t 1%
method_t.binfo 82% | 1.0 — — null >99%
record_t <1%
cast_expr.operands|0] 32% | 1.1 — — DECL 55%
EXPR 38%
CONST 7%
namespace_d.initial 57% | 1.0 — namespace —
namespace_d.saved_tree | 71% | 1.0 — namespace —
DECL.attributes 9%% | 1.4 — identifier —
TYPE.attributes 99% | 1.7 — identifier list
type_d.initial 99% | 1.3 — identifier list
enumeral_t.values 0% | 16.9 — identifier integer
record_t.vcall_indices 85% | 5.6 — function_d integer
constructor.operands[0] 0% | 8.6 — integer EXPR
record_t.template_info 24% | 1.0 — DECL vec
record_t.vbases 98% | 1.0 — record_t vec
template_d.arguments 0% | 1.0 — int_cst vec
DECL.template_info 63% | 1.0 — DECL >99% vec
overload <1%
ctor_initializer.operands[0] | 10% | 2.1 — DECL 95% list
record_t 5%
record_t.decl_list 50% | 19.4 — record_t 99% DECL
null 1%
function_t.values <1% | 3.3 — null >99% TYPE
EXPR <1%
method_t.values 0% | 3.3 — null 97% TYPE
EXPR 3%
TEMPLATE_PARMS 0% | 1.0 — null 74% DECL
TYPE 25%
EXPR 1%
template_d.vindex 96% | 3.4 — vec record_t 97%
null 3%
template_d.size 56% | 2.0 | null 99% vec DECL 99%
record t 1% vec 1%
namespace_d.vindex 57% | 1.0 — null 67% | null 67%
namespace 33% namespace 339

Note: _tis short for_type, _dfor _decl

Table 5: Lists in C++ program

GCC Developers’ Summit 2004 « 167

In Tables 6 and 7talics indicate a multipurposed field; roman font indicates an overloaded field.

Field Primary Secondary Outlier

BLOCK.supercontext DECL 99% BLOCK 1%

DECL.context DECL 100% TYPE <1%

DECL.initial DECL 79% | EXPR 19%| TYPE 2%
BLOCK <1%

DECL.result TYPE 86% | DECL 14%

EXPR.operands DECL 99% EXPR <1%
IDENTIFIER <1%
LIST <1%
BLOCK <1%

TYPE.context DECL 87% | BLOCK 13%

TYPE.name DECL 100% IDENTIFIER <1%

TYPE.values LIST 76% | DECL 24% | TYPE <1%

Table 6: Multipurposing and overloading in C program

Field Primary Secondary Outlier
BLOCK.supercontext DECL 98% BLOCK 2%
DECL.arguments DECL 79% | LIST 14%
INT_CST 7%
DECL.context DECL 98% TYPE 2%
DECL.initial TYPE 54% | DECL 16% | LIST 1%
BLOCK 12% | STRING <1%
INT_CST 11%
EXPR 5%
DECL.befriending_classes LIST 60%
DECL 40%
DECL.result DECL 98% TYPE 2%
DECL.saved_tree EXPR 100% LIST <1%
DECL.size INT_CST 88%]| LIST 12%
DECL.vindex DECL 54% | INT_CST 22%| TYPE 4%
LIST 19%
EXPR.operands DECL 94% | EXPR 5% | LIST <1%
INT_CST <1%
BLOCK <1%
STRING <1%
TYPE <1%
TYPE.context DECL 62% | TYPE 38%
TYPE.values LIST 67% | DECL 22% | IDENTIFIER 1%
TPI 9% | EXPR <1%
TYPE <1%

Table 7: Multipurposing and overloading in C++ program

168 ¢ GCC Developers’ Summit

/* If V has type T, return V, else issue an error. */
#define verify_type(T,V) \
(__builtin_choose_expr \
(__builtin_types_compatible_p (typeof(V), T), \
(V). (void) 0))

[* If V has type T or F, return (T)V, else issue an error. */
#define validated_cast(T,F,V) \
(__builtin_choose_expr \

(__builtin_types_compatible_p (typeof(V), T) \

[| __builtin_types compatible_p (typeof(V), F), \

(T) (V), (void) 0))

[* If V has static type F or T and dynamic type K, return (T)V, else

issue an error. F and T are checked at compile time, K at runtime.

#define with_dynamic_type(K,T,F,V) \
({ T _v = validated_cast(T,F,V); \
if (_v->common.kind != K) \
abort (); \
v}

enum cst_kind { INTEGER_CST, ... };

struct cst_common
{
enum cst_kind kind : 8;
bool warned_overflow : 1;
bool overflow : 1;
/* possibly other flag bits */
h
typedef struct cst_ common *CONST;
#define CONST(C) verify_type(CONST, &C->common)

#define CONST_OVERFLOW(C) CONST(C)->overflow
#define CONST_WARNED_OVERFLOW(C) CONST(C)->warned_overflow

struct cst_int
{
struct cst_common common,;
unsigned HOST_WIDE_INT low;
HOST_WIDE_INT high;
3
#define CST_INT(C) \
with_dynamic_type(INTEGER_CST, struct cst_int *, CONST, C)

#define CST_INT_LOW(C) CST_INT(C)->low
#define CST_INT_HIGH(C) CST_INT(C)->high

*/

Figure 1: Structure and macro conventions for type safety

